NetBSD/sys/net/if_ethersubr.c
maxv d2e2e0f086 Replace KASSERTMSG by a real check. L2 encapsulation protocols (at least
L2TP) don't ensure the LLC is there, and in !DIAGNOSTIC configurations
m_copydata will crash. Tested with L2TP.
2018-04-09 16:14:11 +00:00

1678 lines
38 KiB
C

/* $NetBSD: if_ethersubr.c,v 1.263 2018/04/09 16:14:11 maxv Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.263 2018/04/09 16:14:11 maxv Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_atalk.h"
#include "opt_mbuftrace.h"
#include "opt_mpls.h"
#include "opt_gateway.h"
#include "opt_pppoe.h"
#include "opt_net_mpsafe.h"
#endif
#include "vlan.h"
#include "pppoe.h"
#include "bridge.h"
#include "arp.h"
#include "agr.h"
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/rnd.h>
#include <sys/rndsource.h>
#include <sys/cpu.h>
#include <sys/kmem.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#include <net/if_llc.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/pktqueue.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#if NARP == 0
/*
* XXX there should really be a way to issue this warning from within config(8)
*/
#error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
#endif
#include <net/bpf.h>
#include <net/if_ether.h>
#include <net/if_vlanvar.h>
#if NPPPOE > 0
#include <net/if_pppoe.h>
#endif
#if NAGR > 0
#include <net/agr/ieee8023_slowprotocols.h> /* XXX */
#include <net/agr/ieee8023ad.h>
#include <net/agr/if_agrvar.h>
#endif
#if NBRIDGE > 0
#include <net/if_bridgevar.h>
#endif
#include <netinet/in.h>
#ifdef INET
#include <netinet/in_var.h>
#endif
#include <netinet/if_inarp.h>
#ifdef INET6
#ifndef INET
#include <netinet/in.h>
#endif
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
#endif
#include "carp.h"
#if NCARP > 0
#include <netinet/ip_carp.h>
#endif
#ifdef NETATALK
#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/at_extern.h>
#define llc_snap_org_code llc_un.type_snap.org_code
#define llc_snap_ether_type llc_un.type_snap.ether_type
extern u_char at_org_code[3];
extern u_char aarp_org_code[3];
#endif /* NETATALK */
#ifdef MPLS
#include <netmpls/mpls.h>
#include <netmpls/mpls_var.h>
#endif
static struct timeval bigpktppslim_last;
static int bigpktppslim = 2; /* XXX */
static int bigpktpps_count;
static kmutex_t bigpktpps_lock __cacheline_aligned;
const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
{ 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
#define senderr(e) { error = (e); goto bad;}
static int ether_output(struct ifnet *, struct mbuf *,
const struct sockaddr *, const struct rtentry *);
/*
* Ethernet output routine.
* Encapsulate a packet of type family for the local net.
* Assumes that ifp is actually pointer to ethercom structure.
*/
static int
ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
const struct sockaddr * const dst, const struct rtentry *rt)
{
uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
uint16_t etype = 0;
int error = 0, hdrcmplt = 0;
struct mbuf *m = m0;
struct mbuf *mcopy = NULL;
struct ether_header *eh;
struct ifnet *ifp = ifp0;
#ifdef INET
struct arphdr *ah;
#endif
#ifdef NETATALK
struct at_ifaddr *aa;
#endif
#ifdef MBUFTRACE
m_claimm(m, ifp->if_mowner);
#endif
#if NCARP > 0
if (ifp->if_type == IFT_CARP) {
struct ifaddr *ifa;
int s = pserialize_read_enter();
/* loop back if this is going to the carp interface */
if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
(ifa = ifa_ifwithaddr(dst)) != NULL) {
if (ifa->ifa_ifp == ifp0) {
pserialize_read_exit(s);
return looutput(ifp0, m, dst, rt);
}
}
pserialize_read_exit(s);
ifp = ifp->if_carpdev;
/* ac = (struct arpcom *)ifp; */
if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
senderr(ENETDOWN);
}
#endif
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
senderr(ENETDOWN);
switch (dst->sa_family) {
#ifdef INET
case AF_INET:
if (m->m_flags & M_BCAST) {
memcpy(edst, etherbroadcastaddr, sizeof(edst));
} else if (m->m_flags & M_MCAST) {
ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
} else {
error = arpresolve(ifp, rt, m, dst, edst, sizeof(edst));
if (error)
return (error == EWOULDBLOCK) ? 0 : error;
}
/* If broadcasting on a simplex interface, loopback a copy */
if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
mcopy = m_copy(m, 0, M_COPYALL);
etype = htons(ETHERTYPE_IP);
break;
case AF_ARP:
ah = mtod(m, struct arphdr *);
if (m->m_flags & M_BCAST) {
memcpy(edst, etherbroadcastaddr, sizeof(edst));
} else {
void *tha = ar_tha(ah);
if (tha == NULL) {
/* fake with ARPHRD_IEEE1394 */
m_freem(m);
return 0;
}
memcpy(edst, tha, sizeof(edst));
}
ah->ar_hrd = htons(ARPHRD_ETHER);
switch (ntohs(ah->ar_op)) {
case ARPOP_REVREQUEST:
case ARPOP_REVREPLY:
etype = htons(ETHERTYPE_REVARP);
break;
case ARPOP_REQUEST:
case ARPOP_REPLY:
default:
etype = htons(ETHERTYPE_ARP);
}
break;
#endif
#ifdef INET6
case AF_INET6:
if (m->m_flags & M_BCAST) {
memcpy(edst, etherbroadcastaddr, sizeof(edst));
} else if (m->m_flags & M_MCAST) {
ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
edst);
} else {
error = nd6_resolve(ifp, rt, m, dst, edst,
sizeof(edst));
if (error)
return (error == EWOULDBLOCK) ? 0 : error;
}
etype = htons(ETHERTYPE_IPV6);
break;
#endif
#ifdef NETATALK
case AF_APPLETALK: {
struct ifaddr *ifa;
int s;
KERNEL_LOCK(1, NULL);
if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
#ifdef NETATALKDEBUG
printf("aarpresolve failed\n");
#endif
KERNEL_UNLOCK_ONE(NULL);
return 0;
}
/*
* ifaddr is the first thing in at_ifaddr
*/
s = pserialize_read_enter();
ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
if (ifa == NULL) {
pserialize_read_exit(s);
KERNEL_UNLOCK_ONE(NULL);
senderr(EADDRNOTAVAIL);
}
aa = (struct at_ifaddr *)ifa;
/*
* In the phase 2 case, we need to prepend an mbuf for the
* llc header. Since we must preserve the value of m,
* which is passed to us by value, we m_copy() the first
* mbuf, and use it for our llc header.
*/
if (aa->aa_flags & AFA_PHASE2) {
struct llc llc;
M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
if (m == NULL) {
pserialize_read_exit(s);
KERNEL_UNLOCK_ONE(NULL);
senderr(ENOBUFS);
}
llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
llc.llc_control = LLC_UI;
memcpy(llc.llc_snap_org_code, at_org_code,
sizeof(llc.llc_snap_org_code));
llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
memcpy(mtod(m, void *), &llc, sizeof(struct llc));
} else {
etype = htons(ETHERTYPE_ATALK);
}
pserialize_read_exit(s);
KERNEL_UNLOCK_ONE(NULL);
break;
}
#endif /* NETATALK */
case pseudo_AF_HDRCMPLT:
hdrcmplt = 1;
memcpy(esrc,
((const struct ether_header *)dst->sa_data)->ether_shost,
sizeof(esrc));
/* FALLTHROUGH */
case AF_UNSPEC:
memcpy(edst,
((const struct ether_header *)dst->sa_data)->ether_dhost,
sizeof(edst));
/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
etype = ((const struct ether_header *)dst->sa_data)->ether_type;
break;
default:
printf("%s: can't handle af%d\n", ifp->if_xname,
dst->sa_family);
senderr(EAFNOSUPPORT);
}
#ifdef MPLS
{
struct m_tag *mtag;
mtag = m_tag_find(m, PACKET_TAG_MPLS, NULL);
if (mtag != NULL) {
/* Having the tag itself indicates it's MPLS */
etype = htons(ETHERTYPE_MPLS);
m_tag_delete(m, mtag);
}
}
#endif
if (mcopy)
(void)looutput(ifp, mcopy, dst, rt);
KASSERT((m->m_flags & M_PKTHDR) != 0);
/*
* If no ether type is set, this must be a 802.2 formatted packet.
*/
if (etype == 0)
etype = htons(m->m_pkthdr.len);
/*
* Add local net header. If no space in first mbuf, allocate another.
*/
M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
if (m == NULL)
senderr(ENOBUFS);
eh = mtod(m, struct ether_header *);
/* Note: etype is already in network byte order. */
memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
memcpy(eh->ether_dhost, edst, sizeof(edst));
if (hdrcmplt) {
memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
} else {
memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
sizeof(eh->ether_shost));
}
#if NCARP > 0
if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
sizeof(eh->ether_shost));
}
#endif
if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
return error;
if (m == NULL)
return 0;
#if NBRIDGE > 0
/*
* Bridges require special output handling.
*/
if (ifp->if_bridge)
return bridge_output(ifp, m, NULL, NULL);
#endif
#if NCARP > 0
if (ifp != ifp0)
ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
#endif
#ifdef ALTQ
KERNEL_LOCK(1, NULL);
/*
* If ALTQ is enabled on the parent interface, do
* classification; the queueing discipline might not
* require classification, but might require the
* address family/header pointer in the pktattr.
*/
if (ALTQ_IS_ENABLED(&ifp->if_snd))
altq_etherclassify(&ifp->if_snd, m);
KERNEL_UNLOCK_ONE(NULL);
#endif
return ifq_enqueue(ifp, m);
bad:
if (m)
m_freem(m);
return error;
}
#ifdef ALTQ
/*
* This routine is a slight hack to allow a packet to be classified
* if the Ethernet headers are present. It will go away when ALTQ's
* classification engine understands link headers.
*
* XXX: We may need to do m_pullups here. First to ensure struct ether_header
* is indeed contiguous, then to read the LLC and so on.
*/
void
altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
{
struct ether_header *eh;
struct mbuf *mtop = m;
uint16_t ether_type;
int hlen, af, hdrsize;
void *hdr;
KASSERT((mtop->m_flags & M_PKTHDR) != 0);
hlen = ETHER_HDR_LEN;
eh = mtod(m, struct ether_header *);
ether_type = htons(eh->ether_type);
if (ether_type < ETHERMTU) {
/* LLC/SNAP */
struct llc *llc = (struct llc *)(eh + 1);
hlen += 8;
if (m->m_len < hlen ||
llc->llc_dsap != LLC_SNAP_LSAP ||
llc->llc_ssap != LLC_SNAP_LSAP ||
llc->llc_control != LLC_UI) {
/* Not SNAP. */
goto bad;
}
ether_type = htons(llc->llc_un.type_snap.ether_type);
}
switch (ether_type) {
case ETHERTYPE_IP:
af = AF_INET;
hdrsize = 20; /* sizeof(struct ip) */
break;
case ETHERTYPE_IPV6:
af = AF_INET6;
hdrsize = 40; /* sizeof(struct ip6_hdr) */
break;
default:
af = AF_UNSPEC;
hdrsize = 0;
break;
}
while (m->m_len <= hlen) {
hlen -= m->m_len;
m = m->m_next;
if (m == NULL)
goto bad;
}
if (m->m_len < (hlen + hdrsize)) {
/*
* protocol header not in a single mbuf.
* We can't cope with this situation right
* now (but it shouldn't ever happen, really, anyhow).
*/
#ifdef DEBUG
printf("altq_etherclassify: headers span multiple mbufs: "
"%d < %d\n", m->m_len, (hlen + hdrsize));
#endif
goto bad;
}
m->m_data += hlen;
m->m_len -= hlen;
hdr = mtod(m, void *);
if (ALTQ_NEEDS_CLASSIFY(ifq)) {
mtop->m_pkthdr.pattr_class =
(*ifq->altq_classify)(ifq->altq_clfier, m, af);
}
mtop->m_pkthdr.pattr_af = af;
mtop->m_pkthdr.pattr_hdr = hdr;
m->m_data -= hlen;
m->m_len += hlen;
return;
bad:
mtop->m_pkthdr.pattr_class = NULL;
mtop->m_pkthdr.pattr_hdr = NULL;
mtop->m_pkthdr.pattr_af = AF_UNSPEC;
}
#endif /* ALTQ */
/*
* Process a received Ethernet packet;
* the packet is in the mbuf chain m with
* the ether header.
*/
void
ether_input(struct ifnet *ifp, struct mbuf *m)
{
struct ethercom *ec = (struct ethercom *) ifp;
pktqueue_t *pktq = NULL;
struct ifqueue *inq = NULL;
uint16_t etype;
struct ether_header *eh;
size_t ehlen;
static int earlypkts;
int isr = 0;
#if defined (LLC) || defined(NETATALK)
struct llc *l;
#endif
KASSERT(!cpu_intr_p());
KASSERT((m->m_flags & M_PKTHDR) != 0);
KASSERT(m->m_len >= sizeof(*eh));
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
return;
}
#ifdef MBUFTRACE
m_claimm(m, &ec->ec_rx_mowner);
#endif
eh = mtod(m, struct ether_header *);
etype = ntohs(eh->ether_type);
ehlen = sizeof(*eh);
if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
rnd_add_data(NULL, eh, ehlen, 0);
earlypkts++;
}
/*
* Determine if the packet is within its size limits. For MPLS the
* header length is variable, so we skip the check.
*/
if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
mutex_enter(&bigpktpps_lock);
if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
bigpktppslim)) {
printf("%s: discarding oversize frame (len=%d)\n",
ifp->if_xname, m->m_pkthdr.len);
}
mutex_exit(&bigpktpps_lock);
m_freem(m);
return;
}
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
/*
* If this is not a simplex interface, drop the packet
* if it came from us.
*/
if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
ETHER_ADDR_LEN) == 0) {
m_freem(m);
return;
}
if (memcmp(etherbroadcastaddr,
eh->ether_dhost, ETHER_ADDR_LEN) == 0)
m->m_flags |= M_BCAST;
else
m->m_flags |= M_MCAST;
ifp->if_imcasts++;
}
/* If the CRC is still on the packet, trim it off. */
if (m->m_flags & M_HASFCS) {
m_adj(m, -ETHER_CRC_LEN);
m->m_flags &= ~M_HASFCS;
}
ifp->if_ibytes += m->m_pkthdr.len;
#if NCARP > 0
if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
/*
* Clear M_PROMISC, in case the packet comes from a
* vlan.
*/
m->m_flags &= ~M_PROMISC;
if (carp_input(m, (uint8_t *)&eh->ether_shost,
(uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
return;
}
#endif
if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
(ifp->if_flags & IFF_PROMISC) != 0 &&
memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
ETHER_ADDR_LEN) != 0) {
m->m_flags |= M_PROMISC;
}
if ((m->m_flags & M_PROMISC) == 0) {
if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
return;
if (m == NULL)
return;
eh = mtod(m, struct ether_header *);
etype = ntohs(eh->ether_type);
}
#if NAGR > 0
if (ifp->if_agrprivate &&
__predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
m->m_flags &= ~M_PROMISC;
agr_input(ifp, m);
return;
}
#endif
/*
* If VLANs are configured on the interface, check to
* see if the device performed the decapsulation and
* provided us with the tag.
*/
if (ec->ec_nvlans && vlan_has_tag(m)) {
#if NVLAN > 0
/*
* vlan_input() will either recursively call ether_input()
* or drop the packet.
*/
vlan_input(ifp, m);
#else
m_freem(m);
#endif
return;
}
/*
* Handle protocols that expect to have the Ethernet header
* (and possibly FCS) intact.
*/
switch (etype) {
case ETHERTYPE_VLAN: {
struct ether_vlan_header *evl = (void *)eh;
/*
* If there is a tag of 0, then the VLAN header was probably
* just being used to store the priority. Extract the ether
* type, and if IP or IPV6, let them deal with it.
*/
if (m->m_len >= sizeof(*evl) &&
EVL_VLANOFTAG(evl->evl_tag) == 0) {
etype = ntohs(evl->evl_proto);
ehlen = sizeof(*evl);
if ((m->m_flags & M_PROMISC) == 0 &&
(etype == ETHERTYPE_IP ||
etype == ETHERTYPE_IPV6))
break;
}
#if NVLAN > 0
/*
* vlan_input() will either recursively call ether_input()
* or drop the packet.
*/
if (ec->ec_nvlans != 0)
vlan_input(ifp, m);
else
#endif
m_freem(m);
return;
}
#if NPPPOE > 0
case ETHERTYPE_PPPOEDISC:
pppoedisc_input(ifp, m);
return;
case ETHERTYPE_PPPOE:
pppoe_input(ifp, m);
return;
#endif
case ETHERTYPE_SLOWPROTOCOLS: {
uint8_t subtype;
if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
m_freem(m);
return;
}
m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
switch (subtype) {
#if NAGR > 0
case SLOWPROTOCOLS_SUBTYPE_LACP:
if (ifp->if_agrprivate) {
ieee8023ad_lacp_input(ifp, m);
return;
}
break;
case SLOWPROTOCOLS_SUBTYPE_MARKER:
if (ifp->if_agrprivate) {
ieee8023ad_marker_input(ifp, m);
return;
}
break;
#endif
default:
if (subtype == 0 || subtype > 10) {
/* illegal value */
m_freem(m);
return;
}
/* unknown subtype */
break;
}
/* FALLTHROUGH */
}
default:
if (m->m_flags & M_PROMISC) {
m_freem(m);
return;
}
}
/* If the CRC is still on the packet, trim it off. */
if (m->m_flags & M_HASFCS) {
m_adj(m, -ETHER_CRC_LEN);
m->m_flags &= ~M_HASFCS;
}
if (etype > ETHERMTU + sizeof(struct ether_header)) {
/* Strip off the Ethernet header. */
m_adj(m, ehlen);
switch (etype) {
#ifdef INET
case ETHERTYPE_IP:
#ifdef GATEWAY
if (ipflow_fastforward(m))
return;
#endif
pktq = ip_pktq;
break;
case ETHERTYPE_ARP:
isr = NETISR_ARP;
inq = &arpintrq;
break;
case ETHERTYPE_REVARP:
revarpinput(m); /* XXX queue? */
return;
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
if (__predict_false(!in6_present)) {
m_freem(m);
return;
}
#ifdef GATEWAY
if (ip6flow_fastforward(&m))
return;
#endif
pktq = ip6_pktq;
break;
#endif
#ifdef NETATALK
case ETHERTYPE_ATALK:
isr = NETISR_ATALK;
inq = &atintrq1;
break;
case ETHERTYPE_AARP:
aarpinput(ifp, m); /* XXX queue? */
return;
#endif
#ifdef MPLS
case ETHERTYPE_MPLS:
isr = NETISR_MPLS;
inq = &mplsintrq;
break;
#endif
default:
m_freem(m);
return;
}
} else {
KASSERT(ehlen == sizeof(*eh));
#if defined (LLC) || defined (NETATALK)
if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
goto dropanyway;
}
l = (struct llc *)(eh+1);
switch (l->llc_dsap) {
#ifdef NETATALK
case LLC_SNAP_LSAP:
switch (l->llc_control) {
case LLC_UI:
if (l->llc_ssap != LLC_SNAP_LSAP) {
goto dropanyway;
}
if (memcmp(&(l->llc_snap_org_code)[0],
at_org_code, sizeof(at_org_code)) == 0 &&
ntohs(l->llc_snap_ether_type) ==
ETHERTYPE_ATALK) {
inq = &atintrq2;
m_adj(m, sizeof(struct ether_header)
+ sizeof(struct llc));
isr = NETISR_ATALK;
break;
}
if (memcmp(&(l->llc_snap_org_code)[0],
aarp_org_code,
sizeof(aarp_org_code)) == 0 &&
ntohs(l->llc_snap_ether_type) ==
ETHERTYPE_AARP) {
m_adj(m, sizeof(struct ether_header)
+ sizeof(struct llc));
aarpinput(ifp, m); /* XXX queue? */
return;
}
default:
goto dropanyway;
}
break;
#endif
dropanyway:
default:
m_freem(m);
return;
}
#else /* LLC || NETATALK */
m_freem(m);
return;
#endif /* LLC || NETATALK */
}
if (__predict_true(pktq)) {
#ifdef NET_MPSAFE
const u_int h = curcpu()->ci_index;
#else
const uint32_t h = pktq_rps_hash(m);
#endif
if (__predict_false(!pktq_enqueue(pktq, m, h))) {
m_freem(m);
}
return;
}
if (__predict_false(!inq)) {
/* Should not happen. */
m_freem(m);
return;
}
IFQ_LOCK(inq);
if (IF_QFULL(inq)) {
IF_DROP(inq);
IFQ_UNLOCK(inq);
m_freem(m);
} else {
IF_ENQUEUE(inq, m);
IFQ_UNLOCK(inq);
schednetisr(isr);
}
}
/*
* Convert Ethernet address to printable (loggable) representation.
*/
char *
ether_sprintf(const u_char *ap)
{
static char etherbuf[3 * ETHER_ADDR_LEN];
return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
}
char *
ether_snprintf(char *buf, size_t len, const u_char *ap)
{
char *cp = buf;
size_t i;
for (i = 0; i < len / 3; i++) {
*cp++ = hexdigits[*ap >> 4];
*cp++ = hexdigits[*ap++ & 0xf];
*cp++ = ':';
}
*--cp = '\0';
return buf;
}
/*
* Perform common duties while attaching to interface list
*/
void
ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
{
struct ethercom *ec = (struct ethercom *)ifp;
ifp->if_type = IFT_ETHER;
ifp->if_hdrlen = ETHER_HDR_LEN;
ifp->if_dlt = DLT_EN10MB;
ifp->if_mtu = ETHERMTU;
ifp->if_output = ether_output;
ifp->_if_input = ether_input;
if (ifp->if_baudrate == 0)
ifp->if_baudrate = IF_Mbps(10); /* just a default */
if (lla != NULL)
if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
LIST_INIT(&ec->ec_multiaddrs);
ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
ifp->if_broadcastaddr = etherbroadcastaddr;
bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#ifdef MBUFTRACE
strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
sizeof(ec->ec_tx_mowner.mo_name));
strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
sizeof(ec->ec_tx_mowner.mo_descr));
strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
sizeof(ec->ec_rx_mowner.mo_name));
strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
sizeof(ec->ec_rx_mowner.mo_descr));
MOWNER_ATTACH(&ec->ec_tx_mowner);
MOWNER_ATTACH(&ec->ec_rx_mowner);
ifp->if_mowner = &ec->ec_tx_mowner;
#endif
}
void
ether_ifdetach(struct ifnet *ifp)
{
struct ethercom *ec = (void *) ifp;
struct ether_multi *enm;
/*
* Prevent further calls to ioctl (for example turning off
* promiscuous mode from the bridge code), which eventually can
* call if_init() which can cause panics because the interface
* is in the process of being detached. Return device not configured
* instead.
*/
ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
#if NBRIDGE > 0
if (ifp->if_bridge)
bridge_ifdetach(ifp);
#endif
bpf_detach(ifp);
#if NVLAN > 0
if (ec->ec_nvlans)
vlan_ifdetach(ifp);
#endif
ETHER_LOCK(ec);
while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
LIST_REMOVE(enm, enm_list);
kmem_free(enm, sizeof(*enm));
ec->ec_multicnt--;
}
ETHER_UNLOCK(ec);
mutex_obj_free(ec->ec_lock);
ec->ec_lock = NULL;
ifp->if_mowner = NULL;
MOWNER_DETACH(&ec->ec_rx_mowner);
MOWNER_DETACH(&ec->ec_tx_mowner);
}
#if 0
/*
* This is for reference. We have a table-driven version
* of the little-endian crc32 generator, which is faster
* than the double-loop.
*/
uint32_t
ether_crc32_le(const uint8_t *buf, size_t len)
{
uint32_t c, crc, carry;
size_t i, j;
crc = 0xffffffffU; /* initial value */
for (i = 0; i < len; i++) {
c = buf[i];
for (j = 0; j < 8; j++) {
carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
crc >>= 1;
c >>= 1;
if (carry)
crc = (crc ^ ETHER_CRC_POLY_LE);
}
}
return (crc);
}
#else
uint32_t
ether_crc32_le(const uint8_t *buf, size_t len)
{
static const uint32_t crctab[] = {
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc;
size_t i;
crc = 0xffffffffU; /* initial value */
for (i = 0; i < len; i++) {
crc ^= buf[i];
crc = (crc >> 4) ^ crctab[crc & 0xf];
crc = (crc >> 4) ^ crctab[crc & 0xf];
}
return (crc);
}
#endif
uint32_t
ether_crc32_be(const uint8_t *buf, size_t len)
{
uint32_t c, crc, carry;
size_t i, j;
crc = 0xffffffffU; /* initial value */
for (i = 0; i < len; i++) {
c = buf[i];
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
}
}
return (crc);
}
#ifdef INET
const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
{ 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
{ 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
#endif
#ifdef INET6
const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
{ 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
{ 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
#endif
/*
* ether_aton implementation, not using a static buffer.
*/
int
ether_aton_r(u_char *dest, size_t len, const char *str)
{
const u_char *cp = (const void *)str;
u_char *ep;
#define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
if (len < ETHER_ADDR_LEN)
return ENOSPC;
ep = dest + ETHER_ADDR_LEN;
while (*cp) {
if (!isxdigit(*cp))
return EINVAL;
*dest = atox(*cp);
cp++;
if (isxdigit(*cp)) {
*dest = (*dest << 4) | atox(*cp);
cp++;
}
dest++;
if (dest == ep)
return (*cp == '\0') ? 0 : ENAMETOOLONG;
switch (*cp) {
case ':':
case '-':
case '.':
cp++;
break;
}
}
return ENOBUFS;
}
/*
* Convert a sockaddr into an Ethernet address or range of Ethernet
* addresses.
*/
int
ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
uint8_t addrhi[ETHER_ADDR_LEN])
{
#ifdef INET
const struct sockaddr_in *sin;
#endif
#ifdef INET6
const struct sockaddr_in6 *sin6;
#endif
switch (sa->sa_family) {
case AF_UNSPEC:
memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
break;
#ifdef INET
case AF_INET:
sin = satocsin(sa);
if (sin->sin_addr.s_addr == INADDR_ANY) {
/*
* An IP address of INADDR_ANY means listen to
* or stop listening to all of the Ethernet
* multicast addresses used for IP.
* (This is for the sake of IP multicast routers.)
*/
memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
} else {
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
}
break;
#endif
#ifdef INET6
case AF_INET6:
sin6 = satocsin6(sa);
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
/*
* An IP6 address of 0 means listen to or stop
* listening to all of the Ethernet multicast
* address used for IP6.
* (This is used for multicast routers.)
*/
memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
} else {
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
}
break;
#endif
default:
return EAFNOSUPPORT;
}
return 0;
}
/*
* Add an Ethernet multicast address or range of addresses to the list for a
* given interface.
*/
int
ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
{
struct ether_multi *enm, *_enm;
u_char addrlo[ETHER_ADDR_LEN];
u_char addrhi[ETHER_ADDR_LEN];
int error = 0;
/* Allocate out of lock */
enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
ETHER_LOCK(ec);
error = ether_multiaddr(sa, addrlo, addrhi);
if (error != 0)
goto out;
/*
* Verify that we have valid Ethernet multicast addresses.
*/
if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
error = EINVAL;
goto out;
}
/*
* See if the address range is already in the list.
*/
ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, _enm);
if (_enm != NULL) {
/*
* Found it; just increment the reference count.
*/
++_enm->enm_refcount;
error = 0;
goto out;
}
/*
* Link a new multicast record into the interface's multicast list.
*/
memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
enm->enm_refcount = 1;
LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
ec->ec_multicnt++;
/*
* Return ENETRESET to inform the driver that the list has changed
* and its reception filter should be adjusted accordingly.
*/
error = ENETRESET;
enm = NULL;
out:
ETHER_UNLOCK(ec);
if (enm != NULL)
kmem_free(enm, sizeof(*enm));
return error;
}
/*
* Delete a multicast address record.
*/
int
ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
{
struct ether_multi *enm;
u_char addrlo[ETHER_ADDR_LEN];
u_char addrhi[ETHER_ADDR_LEN];
int error;
ETHER_LOCK(ec);
error = ether_multiaddr(sa, addrlo, addrhi);
if (error != 0)
goto error;
/*
* Look up the address in our list.
*/
ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm);
if (enm == NULL) {
error = ENXIO;
goto error;
}
if (--enm->enm_refcount != 0) {
/*
* Still some claims to this record.
*/
error = 0;
goto error;
}
/*
* No remaining claims to this record; unlink and free it.
*/
LIST_REMOVE(enm, enm_list);
ec->ec_multicnt--;
ETHER_UNLOCK(ec);
kmem_free(enm, sizeof(*enm));
/*
* Return ENETRESET to inform the driver that the list has changed
* and its reception filter should be adjusted accordingly.
*/
return ENETRESET;
error:
ETHER_UNLOCK(ec);
return error;
}
void
ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
{
ec->ec_ifflags_cb = cb;
}
/*
* Common ioctls for Ethernet interfaces. Note, we must be
* called at splnet().
*/
int
ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct ethercom *ec = (void *) ifp;
struct eccapreq *eccr;
struct ifreq *ifr = (struct ifreq *)data;
struct if_laddrreq *iflr = data;
const struct sockaddr_dl *sdl;
static const uint8_t zero[ETHER_ADDR_LEN];
int error;
switch (cmd) {
case SIOCINITIFADDR:
{
struct ifaddr *ifa = (struct ifaddr *)data;
if (ifa->ifa_addr->sa_family != AF_LINK
&& (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING)) {
ifp->if_flags |= IFF_UP;
if ((error = (*ifp->if_init)(ifp)) != 0)
return error;
}
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(ifp, ifa);
#endif
return 0;
}
case SIOCSIFMTU:
{
int maxmtu;
if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
maxmtu = ETHERMTU_JUMBO;
else
maxmtu = ETHERMTU;
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
return EINVAL;
else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
return error;
else if (ifp->if_flags & IFF_UP) {
/* Make sure the device notices the MTU change. */
return (*ifp->if_init)(ifp);
} else
return 0;
}
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
return error;
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_RUNNING:
/*
* If interface is marked down and it is running,
* then stop and disable it.
*/
(*ifp->if_stop)(ifp, 1);
break;
case IFF_UP:
/*
* If interface is marked up and it is stopped, then
* start it.
*/
return (*ifp->if_init)(ifp);
case IFF_UP | IFF_RUNNING:
error = 0;
if (ec->ec_ifflags_cb != NULL) {
error = (*ec->ec_ifflags_cb)(ec);
if (error == ENETRESET) {
/*
* Reset the interface to pick up
* changes in any other flags that
* affect the hardware state.
*/
return (*ifp->if_init)(ifp);
}
} else
error = (*ifp->if_init)(ifp);
return error;
case 0:
break;
}
return 0;
case SIOCGETHERCAP:
eccr = (struct eccapreq *)data;
eccr->eccr_capabilities = ec->ec_capabilities;
eccr->eccr_capenable = ec->ec_capenable;
return 0;
case SIOCADDMULTI:
return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
case SIOCDELMULTI:
return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (ec->ec_mii == NULL)
return ENOTTY;
return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd);
case SIOCALIFADDR:
sdl = satocsdl(sstocsa(&iflr->addr));
if (sdl->sdl_family != AF_LINK)
;
else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
return EINVAL;
else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
return EINVAL;
/*FALLTHROUGH*/
default:
return ifioctl_common(ifp, cmd, data);
}
return 0;
}
/*
* Enable/disable passing VLAN packets if the parent interface supports it.
* Return:
* 0: Ok
* -1: Parent interface does not support vlans
* >0: Error
*/
int
ether_enable_vlan_mtu(struct ifnet *ifp)
{
int error;
struct ethercom *ec = (void *)ifp;
/* Parent does not support VLAN's */
if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
return -1;
/*
* Parent supports the VLAN_MTU capability,
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
* enable it.
*/
ec->ec_capenable |= ETHERCAP_VLAN_MTU;
/* Interface is down, defer for later */
if ((ifp->if_flags & IFF_UP) == 0)
return 0;
if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
return 0;
ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
return error;
}
int
ether_disable_vlan_mtu(struct ifnet *ifp)
{
int error;
struct ethercom *ec = (void *)ifp;
/* We still have VLAN's, defer for later */
if (ec->ec_nvlans != 0)
return 0;
/* Parent does not support VLAB's, nothing to do. */
if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
return -1;
/*
* Disable Tx/Rx of VLAN-sized frames.
*/
ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
/* Interface is down, defer for later */
if ((ifp->if_flags & IFF_UP) == 0)
return 0;
if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
return 0;
ec->ec_capenable |= ETHERCAP_VLAN_MTU;
return error;
}
static int
ether_multicast_sysctl(SYSCTLFN_ARGS)
{
struct ether_multi *enm;
struct ifnet *ifp;
struct ethercom *ec;
int error = 0;
size_t written;
struct psref psref;
int bound;
unsigned int multicnt;
struct ether_multi_sysctl *addrs;
int i;
if (namelen != 1)
return EINVAL;
bound = curlwp_bind();
ifp = if_get_byindex(name[0], &psref);
if (ifp == NULL) {
error = ENODEV;
goto out;
}
if (ifp->if_type != IFT_ETHER) {
if_put(ifp, &psref);
*oldlenp = 0;
goto out;
}
ec = (struct ethercom *)ifp;
if (oldp == NULL) {
if_put(ifp, &psref);
*oldlenp = ec->ec_multicnt * sizeof(*addrs);
goto out;
}
/*
* ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
* is sleepable, while holding it. Copy data to a local buffer first
* with the lock taken and then call sysctl_copyout without holding it.
*/
retry:
multicnt = ec->ec_multicnt;
if (multicnt == 0) {
if_put(ifp, &psref);
*oldlenp = 0;
goto out;
}
addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
ETHER_LOCK(ec);
if (multicnt != ec->ec_multicnt) {
/* The number of multicast addresses has changed */
ETHER_UNLOCK(ec);
kmem_free(addrs, sizeof(*addrs) * multicnt);
goto retry;
}
i = 0;
LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
struct ether_multi_sysctl *addr = &addrs[i];
addr->enm_refcount = enm->enm_refcount;
memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
i++;
}
ETHER_UNLOCK(ec);
error = 0;
written = 0;
for (i = 0; i < multicnt; i++) {
struct ether_multi_sysctl *addr = &addrs[i];
if (written + sizeof(*addr) > *oldlenp)
break;
error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
if (error)
break;
written += sizeof(*addr);
oldp = (char *)oldp + sizeof(*addr);
}
kmem_free(addrs, sizeof(*addrs) * multicnt);
if_put(ifp, &psref);
*oldlenp = written;
out:
curlwp_bindx(bound);
return error;
}
static void
ether_sysctl_setup(struct sysctllog **clog)
{
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ether",
SYSCTL_DESCR("Ethernet-specific information"),
NULL, 0, NULL, 0,
CTL_NET, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "multicast",
SYSCTL_DESCR("multicast addresses"),
ether_multicast_sysctl, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
}
void
etherinit(void)
{
mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
ether_sysctl_setup(NULL);
}