bd52d17906
too large to list, but see: http://gcc.gnu.org/gcc-3.4/changes.html http://gcc.gnu.org/gcc-4.0/changes.html http://gcc.gnu.org/gcc-4.1/changes.html for the details.
2589 lines
79 KiB
C
2589 lines
79 KiB
C
/* Allocate registers within a basic block, for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Allocation of hard register numbers to pseudo registers is done in
|
||
two passes. In this pass we consider only regs that are born and
|
||
die once within one basic block. We do this one basic block at a
|
||
time. Then the next pass allocates the registers that remain.
|
||
Two passes are used because this pass uses methods that work only
|
||
on linear code, but that do a better job than the general methods
|
||
used in global_alloc, and more quickly too.
|
||
|
||
The assignments made are recorded in the vector reg_renumber
|
||
whose space is allocated here. The rtl code itself is not altered.
|
||
|
||
We assign each instruction in the basic block a number
|
||
which is its order from the beginning of the block.
|
||
Then we can represent the lifetime of a pseudo register with
|
||
a pair of numbers, and check for conflicts easily.
|
||
We can record the availability of hard registers with a
|
||
HARD_REG_SET for each instruction. The HARD_REG_SET
|
||
contains 0 or 1 for each hard reg.
|
||
|
||
To avoid register shuffling, we tie registers together when one
|
||
dies by being copied into another, or dies in an instruction that
|
||
does arithmetic to produce another. The tied registers are
|
||
allocated as one. Registers with different reg class preferences
|
||
can never be tied unless the class preferred by one is a subclass
|
||
of the one preferred by the other.
|
||
|
||
Tying is represented with "quantity numbers".
|
||
A non-tied register is given a new quantity number.
|
||
Tied registers have the same quantity number.
|
||
|
||
We have provision to exempt registers, even when they are contained
|
||
within the block, that can be tied to others that are not contained in it.
|
||
This is so that global_alloc could process them both and tie them then.
|
||
But this is currently disabled since tying in global_alloc is not
|
||
yet implemented. */
|
||
|
||
/* Pseudos allocated here can be reallocated by global.c if the hard register
|
||
is used as a spill register. Currently we don't allocate such pseudos
|
||
here if their preferred class is likely to be used by spills. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "function.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "toplev.h"
|
||
#include "except.h"
|
||
#include "integrate.h"
|
||
#include "reload.h"
|
||
#include "ggc.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
|
||
/* Next quantity number available for allocation. */
|
||
|
||
static int next_qty;
|
||
|
||
/* Information we maintain about each quantity. */
|
||
struct qty
|
||
{
|
||
/* The number of refs to quantity Q. */
|
||
|
||
int n_refs;
|
||
|
||
/* The frequency of uses of quantity Q. */
|
||
|
||
int freq;
|
||
|
||
/* Insn number (counting from head of basic block)
|
||
where quantity Q was born. -1 if birth has not been recorded. */
|
||
|
||
int birth;
|
||
|
||
/* Insn number (counting from head of basic block)
|
||
where given quantity died. Due to the way tying is done,
|
||
and the fact that we consider in this pass only regs that die but once,
|
||
a quantity can die only once. Each quantity's life span
|
||
is a set of consecutive insns. -1 if death has not been recorded. */
|
||
|
||
int death;
|
||
|
||
/* Number of words needed to hold the data in given quantity.
|
||
This depends on its machine mode. It is used for these purposes:
|
||
1. It is used in computing the relative importance of qtys,
|
||
which determines the order in which we look for regs for them.
|
||
2. It is used in rules that prevent tying several registers of
|
||
different sizes in a way that is geometrically impossible
|
||
(see combine_regs). */
|
||
|
||
int size;
|
||
|
||
/* Number of times a reg tied to given qty lives across a CALL_INSN. */
|
||
|
||
int n_calls_crossed;
|
||
|
||
/* Number of times a reg tied to given qty lives across a CALL_INSN
|
||
that might throw. */
|
||
|
||
int n_throwing_calls_crossed;
|
||
|
||
/* The register number of one pseudo register whose reg_qty value is Q.
|
||
This register should be the head of the chain
|
||
maintained in reg_next_in_qty. */
|
||
|
||
int first_reg;
|
||
|
||
/* Reg class contained in (smaller than) the preferred classes of all
|
||
the pseudo regs that are tied in given quantity.
|
||
This is the preferred class for allocating that quantity. */
|
||
|
||
enum reg_class min_class;
|
||
|
||
/* Register class within which we allocate given qty if we can't get
|
||
its preferred class. */
|
||
|
||
enum reg_class alternate_class;
|
||
|
||
/* This holds the mode of the registers that are tied to given qty,
|
||
or VOIDmode if registers with differing modes are tied together. */
|
||
|
||
enum machine_mode mode;
|
||
|
||
/* the hard reg number chosen for given quantity,
|
||
or -1 if none was found. */
|
||
|
||
short phys_reg;
|
||
};
|
||
|
||
static struct qty *qty;
|
||
|
||
/* These fields are kept separately to speedup their clearing. */
|
||
|
||
/* We maintain two hard register sets that indicate suggested hard registers
|
||
for each quantity. The first, phys_copy_sugg, contains hard registers
|
||
that are tied to the quantity by a simple copy. The second contains all
|
||
hard registers that are tied to the quantity via an arithmetic operation.
|
||
|
||
The former register set is given priority for allocation. This tends to
|
||
eliminate copy insns. */
|
||
|
||
/* Element Q is a set of hard registers that are suggested for quantity Q by
|
||
copy insns. */
|
||
|
||
static HARD_REG_SET *qty_phys_copy_sugg;
|
||
|
||
/* Element Q is a set of hard registers that are suggested for quantity Q by
|
||
arithmetic insns. */
|
||
|
||
static HARD_REG_SET *qty_phys_sugg;
|
||
|
||
/* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
|
||
|
||
static short *qty_phys_num_copy_sugg;
|
||
|
||
/* Element Q is the number of suggested registers in qty_phys_sugg. */
|
||
|
||
static short *qty_phys_num_sugg;
|
||
|
||
/* If (REG N) has been assigned a quantity number, is a register number
|
||
of another register assigned the same quantity number, or -1 for the
|
||
end of the chain. qty->first_reg point to the head of this chain. */
|
||
|
||
static int *reg_next_in_qty;
|
||
|
||
/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
|
||
if it is >= 0,
|
||
of -1 if this register cannot be allocated by local-alloc,
|
||
or -2 if not known yet.
|
||
|
||
Note that if we see a use or death of pseudo register N with
|
||
reg_qty[N] == -2, register N must be local to the current block. If
|
||
it were used in more than one block, we would have reg_qty[N] == -1.
|
||
This relies on the fact that if reg_basic_block[N] is >= 0, register N
|
||
will not appear in any other block. We save a considerable number of
|
||
tests by exploiting this.
|
||
|
||
If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
|
||
be referenced. */
|
||
|
||
static int *reg_qty;
|
||
|
||
/* The offset (in words) of register N within its quantity.
|
||
This can be nonzero if register N is SImode, and has been tied
|
||
to a subreg of a DImode register. */
|
||
|
||
static char *reg_offset;
|
||
|
||
/* Vector of substitutions of register numbers,
|
||
used to map pseudo regs into hardware regs.
|
||
This is set up as a result of register allocation.
|
||
Element N is the hard reg assigned to pseudo reg N,
|
||
or is -1 if no hard reg was assigned.
|
||
If N is a hard reg number, element N is N. */
|
||
|
||
short *reg_renumber;
|
||
|
||
/* Set of hard registers live at the current point in the scan
|
||
of the instructions in a basic block. */
|
||
|
||
static HARD_REG_SET regs_live;
|
||
|
||
/* Each set of hard registers indicates registers live at a particular
|
||
point in the basic block. For N even, regs_live_at[N] says which
|
||
hard registers are needed *after* insn N/2 (i.e., they may not
|
||
conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
|
||
|
||
If an object is to conflict with the inputs of insn J but not the
|
||
outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
|
||
if it is to conflict with the outputs of insn J but not the inputs of
|
||
insn J + 1, it is said to die at index J*2 + 1. */
|
||
|
||
static HARD_REG_SET *regs_live_at;
|
||
|
||
/* Communicate local vars `insn_number' and `insn'
|
||
from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
|
||
static int this_insn_number;
|
||
static rtx this_insn;
|
||
|
||
struct equivalence
|
||
{
|
||
/* Set when an attempt should be made to replace a register
|
||
with the associated src_p entry. */
|
||
|
||
char replace;
|
||
|
||
/* Set when a REG_EQUIV note is found or created. Use to
|
||
keep track of what memory accesses might be created later,
|
||
e.g. by reload. */
|
||
|
||
rtx replacement;
|
||
|
||
rtx *src_p;
|
||
|
||
/* Loop depth is used to recognize equivalences which appear
|
||
to be present within the same loop (or in an inner loop). */
|
||
|
||
int loop_depth;
|
||
|
||
/* The list of each instruction which initializes this register. */
|
||
|
||
rtx init_insns;
|
||
|
||
/* Nonzero if this had a preexisting REG_EQUIV note. */
|
||
|
||
int is_arg_equivalence;
|
||
};
|
||
|
||
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
|
||
structure for that register. */
|
||
|
||
static struct equivalence *reg_equiv;
|
||
|
||
/* Nonzero if we recorded an equivalence for a LABEL_REF. */
|
||
static int recorded_label_ref;
|
||
|
||
static void alloc_qty (int, enum machine_mode, int, int);
|
||
static void validate_equiv_mem_from_store (rtx, rtx, void *);
|
||
static int validate_equiv_mem (rtx, rtx, rtx);
|
||
static int equiv_init_varies_p (rtx);
|
||
static int equiv_init_movable_p (rtx, int);
|
||
static int contains_replace_regs (rtx);
|
||
static int memref_referenced_p (rtx, rtx);
|
||
static int memref_used_between_p (rtx, rtx, rtx);
|
||
static void update_equiv_regs (void);
|
||
static void no_equiv (rtx, rtx, void *);
|
||
static void block_alloc (int);
|
||
static int qty_sugg_compare (int, int);
|
||
static int qty_sugg_compare_1 (const void *, const void *);
|
||
static int qty_compare (int, int);
|
||
static int qty_compare_1 (const void *, const void *);
|
||
static int combine_regs (rtx, rtx, int, int, rtx, int);
|
||
static int reg_meets_class_p (int, enum reg_class);
|
||
static void update_qty_class (int, int);
|
||
static void reg_is_set (rtx, rtx, void *);
|
||
static void reg_is_born (rtx, int);
|
||
static void wipe_dead_reg (rtx, int);
|
||
static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
|
||
int, int);
|
||
static void mark_life (int, enum machine_mode, int);
|
||
static void post_mark_life (int, enum machine_mode, int, int, int);
|
||
static int no_conflict_p (rtx, rtx, rtx);
|
||
static int requires_inout (const char *);
|
||
|
||
/* Allocate a new quantity (new within current basic block)
|
||
for register number REGNO which is born at index BIRTH
|
||
within the block. MODE and SIZE are info on reg REGNO. */
|
||
|
||
static void
|
||
alloc_qty (int regno, enum machine_mode mode, int size, int birth)
|
||
{
|
||
int qtyno = next_qty++;
|
||
|
||
reg_qty[regno] = qtyno;
|
||
reg_offset[regno] = 0;
|
||
reg_next_in_qty[regno] = -1;
|
||
|
||
qty[qtyno].first_reg = regno;
|
||
qty[qtyno].size = size;
|
||
qty[qtyno].mode = mode;
|
||
qty[qtyno].birth = birth;
|
||
qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
|
||
qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
|
||
qty[qtyno].min_class = reg_preferred_class (regno);
|
||
qty[qtyno].alternate_class = reg_alternate_class (regno);
|
||
qty[qtyno].n_refs = REG_N_REFS (regno);
|
||
qty[qtyno].freq = REG_FREQ (regno);
|
||
}
|
||
|
||
/* Main entry point of this file. */
|
||
|
||
int
|
||
local_alloc (void)
|
||
{
|
||
int i;
|
||
int max_qty;
|
||
basic_block b;
|
||
|
||
/* We need to keep track of whether or not we recorded a LABEL_REF so
|
||
that we know if the jump optimizer needs to be rerun. */
|
||
recorded_label_ref = 0;
|
||
|
||
/* Leaf functions and non-leaf functions have different needs.
|
||
If defined, let the machine say what kind of ordering we
|
||
should use. */
|
||
#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
|
||
ORDER_REGS_FOR_LOCAL_ALLOC;
|
||
#endif
|
||
|
||
/* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
|
||
registers. */
|
||
update_equiv_regs ();
|
||
|
||
/* This sets the maximum number of quantities we can have. Quantity
|
||
numbers start at zero and we can have one for each pseudo. */
|
||
max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
|
||
|
||
/* Allocate vectors of temporary data.
|
||
See the declarations of these variables, above,
|
||
for what they mean. */
|
||
|
||
qty = xmalloc (max_qty * sizeof (struct qty));
|
||
qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
|
||
qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
|
||
qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
|
||
qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
|
||
|
||
reg_qty = xmalloc (max_regno * sizeof (int));
|
||
reg_offset = xmalloc (max_regno * sizeof (char));
|
||
reg_next_in_qty = xmalloc (max_regno * sizeof (int));
|
||
|
||
/* Determine which pseudo-registers can be allocated by local-alloc.
|
||
In general, these are the registers used only in a single block and
|
||
which only die once.
|
||
|
||
We need not be concerned with which block actually uses the register
|
||
since we will never see it outside that block. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
|
||
reg_qty[i] = -2;
|
||
else
|
||
reg_qty[i] = -1;
|
||
}
|
||
|
||
/* Force loop below to initialize entire quantity array. */
|
||
next_qty = max_qty;
|
||
|
||
/* Allocate each block's local registers, block by block. */
|
||
|
||
FOR_EACH_BB (b)
|
||
{
|
||
/* NEXT_QTY indicates which elements of the `qty_...'
|
||
vectors might need to be initialized because they were used
|
||
for the previous block; it is set to the entire array before
|
||
block 0. Initialize those, with explicit loop if there are few,
|
||
else with bzero and bcopy. Do not initialize vectors that are
|
||
explicit set by `alloc_qty'. */
|
||
|
||
if (next_qty < 6)
|
||
{
|
||
for (i = 0; i < next_qty; i++)
|
||
{
|
||
CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
|
||
qty_phys_num_copy_sugg[i] = 0;
|
||
CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
|
||
qty_phys_num_sugg[i] = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
#define CLEAR(vector) \
|
||
memset ((vector), 0, (sizeof (*(vector))) * next_qty);
|
||
|
||
CLEAR (qty_phys_copy_sugg);
|
||
CLEAR (qty_phys_num_copy_sugg);
|
||
CLEAR (qty_phys_sugg);
|
||
CLEAR (qty_phys_num_sugg);
|
||
}
|
||
|
||
next_qty = 0;
|
||
|
||
block_alloc (b->index);
|
||
}
|
||
|
||
free (qty);
|
||
free (qty_phys_copy_sugg);
|
||
free (qty_phys_num_copy_sugg);
|
||
free (qty_phys_sugg);
|
||
free (qty_phys_num_sugg);
|
||
|
||
free (reg_qty);
|
||
free (reg_offset);
|
||
free (reg_next_in_qty);
|
||
|
||
return recorded_label_ref;
|
||
}
|
||
|
||
/* Used for communication between the following two functions: contains
|
||
a MEM that we wish to ensure remains unchanged. */
|
||
static rtx equiv_mem;
|
||
|
||
/* Set nonzero if EQUIV_MEM is modified. */
|
||
static int equiv_mem_modified;
|
||
|
||
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
|
||
Called via note_stores. */
|
||
|
||
static void
|
||
validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if ((REG_P (dest)
|
||
&& reg_overlap_mentioned_p (dest, equiv_mem))
|
||
|| (MEM_P (dest)
|
||
&& true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
|
||
equiv_mem_modified = 1;
|
||
}
|
||
|
||
/* Verify that no store between START and the death of REG invalidates
|
||
MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
|
||
by storing into an overlapping memory location, or with a non-const
|
||
CALL_INSN.
|
||
|
||
Return 1 if MEMREF remains valid. */
|
||
|
||
static int
|
||
validate_equiv_mem (rtx start, rtx reg, rtx memref)
|
||
{
|
||
rtx insn;
|
||
rtx note;
|
||
|
||
equiv_mem = memref;
|
||
equiv_mem_modified = 0;
|
||
|
||
/* If the memory reference has side effects or is volatile, it isn't a
|
||
valid equivalence. */
|
||
if (side_effects_p (memref))
|
||
return 0;
|
||
|
||
for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
|
||
{
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
if (find_reg_note (insn, REG_DEAD, reg))
|
||
return 1;
|
||
|
||
if (CALL_P (insn) && ! MEM_READONLY_P (memref)
|
||
&& ! CONST_OR_PURE_CALL_P (insn))
|
||
return 0;
|
||
|
||
note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
|
||
|
||
/* If a register mentioned in MEMREF is modified via an
|
||
auto-increment, we lose the equivalence. Do the same if one
|
||
dies; although we could extend the life, it doesn't seem worth
|
||
the trouble. */
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if ((REG_NOTE_KIND (note) == REG_INC
|
||
|| REG_NOTE_KIND (note) == REG_DEAD)
|
||
&& REG_P (XEXP (note, 0))
|
||
&& reg_overlap_mentioned_p (XEXP (note, 0), memref))
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns zero if X is known to be invariant. */
|
||
|
||
static int
|
||
equiv_init_varies_p (rtx x)
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
int i;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
|
||
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case REG:
|
||
return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (equiv_init_varies_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (equiv_init_varies_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns nonzero if X (used to initialize register REGNO) is movable.
|
||
X is only movable if the registers it uses have equivalent initializations
|
||
which appear to be within the same loop (or in an inner loop) and movable
|
||
or if they are not candidates for local_alloc and don't vary. */
|
||
|
||
static int
|
||
equiv_init_movable_p (rtx x, int regno)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case SET:
|
||
return equiv_init_movable_p (SET_SRC (x), regno);
|
||
|
||
case CC0:
|
||
case CLOBBER:
|
||
return 0;
|
||
|
||
case PRE_INC:
|
||
case PRE_DEC:
|
||
case POST_INC:
|
||
case POST_DEC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
return 0;
|
||
|
||
case REG:
|
||
return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
|
||
&& reg_equiv[REGNO (x)].replace)
|
||
|| (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
|
||
|
||
case UNSPEC_VOLATILE:
|
||
return 0;
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 0;
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
if (! equiv_init_movable_p (XEXP (x, i), regno))
|
||
return 0;
|
||
break;
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
|
||
return 0;
|
||
break;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
|
||
|
||
static int
|
||
contains_replace_regs (rtx x)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case PC:
|
||
case CC0:
|
||
case HIGH:
|
||
return 0;
|
||
|
||
case REG:
|
||
return reg_equiv[REGNO (x)].replace;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
if (contains_replace_regs (XEXP (x, i)))
|
||
return 1;
|
||
break;
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (contains_replace_regs (XVECEXP (x, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* TRUE if X references a memory location that would be affected by a store
|
||
to MEMREF. */
|
||
|
||
static int
|
||
memref_referenced_p (rtx memref, rtx x)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case PC:
|
||
case CC0:
|
||
case HIGH:
|
||
case LO_SUM:
|
||
return 0;
|
||
|
||
case REG:
|
||
return (reg_equiv[REGNO (x)].replacement
|
||
&& memref_referenced_p (memref,
|
||
reg_equiv[REGNO (x)].replacement));
|
||
|
||
case MEM:
|
||
if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
|
||
return 1;
|
||
break;
|
||
|
||
case SET:
|
||
/* If we are setting a MEM, it doesn't count (its address does), but any
|
||
other SET_DEST that has a MEM in it is referencing the MEM. */
|
||
if (MEM_P (SET_DEST (x)))
|
||
{
|
||
if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
|
||
return 1;
|
||
}
|
||
else if (memref_referenced_p (memref, SET_DEST (x)))
|
||
return 1;
|
||
|
||
return memref_referenced_p (memref, SET_SRC (x));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
if (memref_referenced_p (memref, XEXP (x, i)))
|
||
return 1;
|
||
break;
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (memref_referenced_p (memref, XVECEXP (x, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* TRUE if some insn in the range (START, END] references a memory location
|
||
that would be affected by a store to MEMREF. */
|
||
|
||
static int
|
||
memref_used_between_p (rtx memref, rtx start, rtx end)
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
if (memref_referenced_p (memref, PATTERN (insn)))
|
||
return 1;
|
||
|
||
/* Nonconst functions may access memory. */
|
||
if (CALL_P (insn)
|
||
&& (! CONST_OR_PURE_CALL_P (insn)
|
||
|| pure_call_p (insn)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Find registers that are equivalent to a single value throughout the
|
||
compilation (either because they can be referenced in memory or are set once
|
||
from a single constant). Lower their priority for a register.
|
||
|
||
If such a register is only referenced once, try substituting its value
|
||
into the using insn. If it succeeds, we can eliminate the register
|
||
completely.
|
||
|
||
Initialize the REG_EQUIV_INIT array of initializing insns. */
|
||
|
||
static void
|
||
update_equiv_regs (void)
|
||
{
|
||
rtx insn;
|
||
basic_block bb;
|
||
int loop_depth;
|
||
regset_head cleared_regs;
|
||
int clear_regnos = 0;
|
||
|
||
reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
|
||
INIT_REG_SET (&cleared_regs);
|
||
reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
|
||
reg_equiv_init_size = max_regno;
|
||
|
||
init_alias_analysis ();
|
||
|
||
/* Scan the insns and find which registers have equivalences. Do this
|
||
in a separate scan of the insns because (due to -fcse-follow-jumps)
|
||
a register can be set below its use. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
loop_depth = bb->loop_depth;
|
||
|
||
for (insn = BB_HEAD (bb);
|
||
insn != NEXT_INSN (BB_END (bb));
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
rtx note;
|
||
rtx set;
|
||
rtx dest, src;
|
||
int regno;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_INC)
|
||
no_equiv (XEXP (note, 0), note, NULL);
|
||
|
||
set = single_set (insn);
|
||
|
||
/* If this insn contains more (or less) than a single SET,
|
||
only mark all destinations as having no known equivalence. */
|
||
if (set == 0)
|
||
{
|
||
note_stores (PATTERN (insn), no_equiv, NULL);
|
||
continue;
|
||
}
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx part = XVECEXP (PATTERN (insn), 0, i);
|
||
if (part != set)
|
||
note_stores (part, no_equiv, NULL);
|
||
}
|
||
}
|
||
|
||
dest = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
|
||
/* See if this is setting up the equivalence between an argument
|
||
register and its stack slot. */
|
||
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
if (note)
|
||
{
|
||
gcc_assert (REG_P (dest));
|
||
regno = REGNO (dest);
|
||
|
||
/* Note that we don't want to clear reg_equiv_init even if there
|
||
are multiple sets of this register. */
|
||
reg_equiv[regno].is_arg_equivalence = 1;
|
||
|
||
/* Record for reload that this is an equivalencing insn. */
|
||
if (rtx_equal_p (src, XEXP (note, 0)))
|
||
reg_equiv_init[regno]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
|
||
|
||
/* Continue normally in case this is a candidate for
|
||
replacements. */
|
||
}
|
||
|
||
if (!optimize)
|
||
continue;
|
||
|
||
/* We only handle the case of a pseudo register being set
|
||
once, or always to the same value. */
|
||
/* ??? The mn10200 port breaks if we add equivalences for
|
||
values that need an ADDRESS_REGS register and set them equivalent
|
||
to a MEM of a pseudo. The actual problem is in the over-conservative
|
||
handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
|
||
calculate_needs, but we traditionally work around this problem
|
||
here by rejecting equivalences when the destination is in a register
|
||
that's likely spilled. This is fragile, of course, since the
|
||
preferred class of a pseudo depends on all instructions that set
|
||
or use it. */
|
||
|
||
if (!REG_P (dest)
|
||
|| (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
|
||
|| reg_equiv[regno].init_insns == const0_rtx
|
||
|| (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
|
||
&& MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
|
||
{
|
||
/* This might be setting a SUBREG of a pseudo, a pseudo that is
|
||
also set somewhere else to a constant. */
|
||
note_stores (set, no_equiv, NULL);
|
||
continue;
|
||
}
|
||
|
||
note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
||
|
||
/* cse sometimes generates function invariants, but doesn't put a
|
||
REG_EQUAL note on the insn. Since this note would be redundant,
|
||
there's no point creating it earlier than here. */
|
||
if (! note && ! rtx_varies_p (src, 0))
|
||
note = set_unique_reg_note (insn, REG_EQUAL, src);
|
||
|
||
/* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
|
||
since it represents a function call */
|
||
if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
|
||
note = NULL_RTX;
|
||
|
||
if (REG_N_SETS (regno) != 1
|
||
&& (! note
|
||
|| rtx_varies_p (XEXP (note, 0), 0)
|
||
|| (reg_equiv[regno].replacement
|
||
&& ! rtx_equal_p (XEXP (note, 0),
|
||
reg_equiv[regno].replacement))))
|
||
{
|
||
no_equiv (dest, set, NULL);
|
||
continue;
|
||
}
|
||
/* Record this insn as initializing this register. */
|
||
reg_equiv[regno].init_insns
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
|
||
|
||
/* If this register is known to be equal to a constant, record that
|
||
it is always equivalent to the constant. */
|
||
if (note && ! rtx_varies_p (XEXP (note, 0), 0))
|
||
PUT_MODE (note, (enum machine_mode) REG_EQUIV);
|
||
|
||
/* If this insn introduces a "constant" register, decrease the priority
|
||
of that register. Record this insn if the register is only used once
|
||
more and the equivalence value is the same as our source.
|
||
|
||
The latter condition is checked for two reasons: First, it is an
|
||
indication that it may be more efficient to actually emit the insn
|
||
as written (if no registers are available, reload will substitute
|
||
the equivalence). Secondly, it avoids problems with any registers
|
||
dying in this insn whose death notes would be missed.
|
||
|
||
If we don't have a REG_EQUIV note, see if this insn is loading
|
||
a register used only in one basic block from a MEM. If so, and the
|
||
MEM remains unchanged for the life of the register, add a REG_EQUIV
|
||
note. */
|
||
|
||
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
|
||
if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
|
||
&& MEM_P (SET_SRC (set))
|
||
&& validate_equiv_mem (insn, dest, SET_SRC (set)))
|
||
REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
|
||
REG_NOTES (insn));
|
||
|
||
if (note)
|
||
{
|
||
int regno = REGNO (dest);
|
||
rtx x = XEXP (note, 0);
|
||
|
||
/* If we haven't done so, record for reload that this is an
|
||
equivalencing insn. */
|
||
if (!reg_equiv[regno].is_arg_equivalence
|
||
&& (!MEM_P (x) || rtx_equal_p (src, x)))
|
||
reg_equiv_init[regno]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
|
||
|
||
/* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
|
||
We might end up substituting the LABEL_REF for uses of the
|
||
pseudo here or later. That kind of transformation may turn an
|
||
indirect jump into a direct jump, in which case we must rerun the
|
||
jump optimizer to ensure that the JUMP_LABEL fields are valid. */
|
||
if (GET_CODE (x) == LABEL_REF
|
||
|| (GET_CODE (x) == CONST
|
||
&& GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
|
||
recorded_label_ref = 1;
|
||
|
||
reg_equiv[regno].replacement = x;
|
||
reg_equiv[regno].src_p = &SET_SRC (set);
|
||
reg_equiv[regno].loop_depth = loop_depth;
|
||
|
||
/* Don't mess with things live during setjmp. */
|
||
if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
|
||
{
|
||
/* Note that the statement below does not affect the priority
|
||
in local-alloc! */
|
||
REG_LIVE_LENGTH (regno) *= 2;
|
||
|
||
/* If the register is referenced exactly twice, meaning it is
|
||
set once and used once, indicate that the reference may be
|
||
replaced by the equivalence we computed above. Do this
|
||
even if the register is only used in one block so that
|
||
dependencies can be handled where the last register is
|
||
used in a different block (i.e. HIGH / LO_SUM sequences)
|
||
and to reduce the number of registers alive across
|
||
calls. */
|
||
|
||
if (REG_N_REFS (regno) == 2
|
||
&& (rtx_equal_p (x, src)
|
||
|| ! equiv_init_varies_p (src))
|
||
&& NONJUMP_INSN_P (insn)
|
||
&& equiv_init_movable_p (PATTERN (insn), regno))
|
||
reg_equiv[regno].replace = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!optimize)
|
||
goto out;
|
||
|
||
/* A second pass, to gather additional equivalences with memory. This needs
|
||
to be done after we know which registers we are going to replace. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx set, src, dest;
|
||
unsigned regno;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
set = single_set (insn);
|
||
if (! set)
|
||
continue;
|
||
|
||
dest = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
|
||
/* If this sets a MEM to the contents of a REG that is only used
|
||
in a single basic block, see if the register is always equivalent
|
||
to that memory location and if moving the store from INSN to the
|
||
insn that set REG is safe. If so, put a REG_EQUIV note on the
|
||
initializing insn.
|
||
|
||
Don't add a REG_EQUIV note if the insn already has one. The existing
|
||
REG_EQUIV is likely more useful than the one we are adding.
|
||
|
||
If one of the regs in the address has reg_equiv[REGNO].replace set,
|
||
then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
|
||
optimization may move the set of this register immediately before
|
||
insn, which puts it after reg_equiv[REGNO].init_insns, and hence
|
||
the mention in the REG_EQUIV note would be to an uninitialized
|
||
pseudo. */
|
||
|
||
if (MEM_P (dest) && REG_P (src)
|
||
&& (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
|
||
&& REG_BASIC_BLOCK (regno) >= 0
|
||
&& REG_N_SETS (regno) == 1
|
||
&& reg_equiv[regno].init_insns != 0
|
||
&& reg_equiv[regno].init_insns != const0_rtx
|
||
&& ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
|
||
REG_EQUIV, NULL_RTX)
|
||
&& ! contains_replace_regs (XEXP (dest, 0)))
|
||
{
|
||
rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
||
if (validate_equiv_mem (init_insn, src, dest)
|
||
&& ! memref_used_between_p (dest, init_insn, insn))
|
||
{
|
||
REG_NOTES (init_insn)
|
||
= gen_rtx_EXPR_LIST (REG_EQUIV, dest,
|
||
REG_NOTES (init_insn));
|
||
/* This insn makes the equivalence, not the one initializing
|
||
the register. */
|
||
reg_equiv_init[regno]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now scan all regs killed in an insn to see if any of them are
|
||
registers only used that once. If so, see if we can replace the
|
||
reference with the equivalent form. If we can, delete the
|
||
initializing reference and this register will go away. If we
|
||
can't replace the reference, and the initializing reference is
|
||
within the same loop (or in an inner loop), then move the register
|
||
initialization just before the use, so that they are in the same
|
||
basic block. */
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
{
|
||
loop_depth = bb->loop_depth;
|
||
for (insn = BB_END (bb);
|
||
insn != PREV_INSN (BB_HEAD (bb));
|
||
insn = PREV_INSN (insn))
|
||
{
|
||
rtx link;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
/* Don't substitute into a non-local goto, this confuses CFG. */
|
||
if (JUMP_P (insn)
|
||
&& find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
|
||
continue;
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
{
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
/* Make sure this insn still refers to the register. */
|
||
&& reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
|
||
{
|
||
int regno = REGNO (XEXP (link, 0));
|
||
rtx equiv_insn;
|
||
|
||
if (! reg_equiv[regno].replace
|
||
|| reg_equiv[regno].loop_depth < loop_depth)
|
||
continue;
|
||
|
||
/* reg_equiv[REGNO].replace gets set only when
|
||
REG_N_REFS[REGNO] is 2, i.e. the register is set
|
||
once and used once. (If it were only set, but not used,
|
||
flow would have deleted the setting insns.) Hence
|
||
there can only be one insn in reg_equiv[REGNO].init_insns. */
|
||
gcc_assert (reg_equiv[regno].init_insns
|
||
&& !XEXP (reg_equiv[regno].init_insns, 1));
|
||
equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
||
|
||
/* We may not move instructions that can throw, since
|
||
that changes basic block boundaries and we are not
|
||
prepared to adjust the CFG to match. */
|
||
if (can_throw_internal (equiv_insn))
|
||
continue;
|
||
|
||
if (asm_noperands (PATTERN (equiv_insn)) < 0
|
||
&& validate_replace_rtx (regno_reg_rtx[regno],
|
||
*(reg_equiv[regno].src_p), insn))
|
||
{
|
||
rtx equiv_link;
|
||
rtx last_link;
|
||
rtx note;
|
||
|
||
/* Find the last note. */
|
||
for (last_link = link; XEXP (last_link, 1);
|
||
last_link = XEXP (last_link, 1))
|
||
;
|
||
|
||
/* Append the REG_DEAD notes from equiv_insn. */
|
||
equiv_link = REG_NOTES (equiv_insn);
|
||
while (equiv_link)
|
||
{
|
||
note = equiv_link;
|
||
equiv_link = XEXP (equiv_link, 1);
|
||
if (REG_NOTE_KIND (note) == REG_DEAD)
|
||
{
|
||
remove_note (equiv_insn, note);
|
||
XEXP (last_link, 1) = note;
|
||
XEXP (note, 1) = NULL_RTX;
|
||
last_link = note;
|
||
}
|
||
}
|
||
|
||
remove_death (regno, insn);
|
||
REG_N_REFS (regno) = 0;
|
||
REG_FREQ (regno) = 0;
|
||
delete_insn (equiv_insn);
|
||
|
||
reg_equiv[regno].init_insns
|
||
= XEXP (reg_equiv[regno].init_insns, 1);
|
||
|
||
/* Remember to clear REGNO from all basic block's live
|
||
info. */
|
||
SET_REGNO_REG_SET (&cleared_regs, regno);
|
||
clear_regnos++;
|
||
reg_equiv_init[regno] = NULL_RTX;
|
||
}
|
||
/* Move the initialization of the register to just before
|
||
INSN. Update the flow information. */
|
||
else if (PREV_INSN (insn) != equiv_insn)
|
||
{
|
||
rtx new_insn;
|
||
|
||
new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
|
||
REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
|
||
REG_NOTES (equiv_insn) = 0;
|
||
|
||
/* Make sure this insn is recognized before
|
||
reload begins, otherwise
|
||
eliminate_regs_in_insn will die. */
|
||
INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
|
||
|
||
delete_insn (equiv_insn);
|
||
|
||
XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
|
||
|
||
REG_BASIC_BLOCK (regno) = bb->index;
|
||
REG_N_CALLS_CROSSED (regno) = 0;
|
||
REG_N_THROWING_CALLS_CROSSED (regno) = 0;
|
||
REG_LIVE_LENGTH (regno) = 2;
|
||
|
||
if (insn == BB_HEAD (bb))
|
||
BB_HEAD (bb) = PREV_INSN (insn);
|
||
|
||
/* Remember to clear REGNO from all basic block's live
|
||
info. */
|
||
SET_REGNO_REG_SET (&cleared_regs, regno);
|
||
clear_regnos++;
|
||
reg_equiv_init[regno]
|
||
= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Clear all dead REGNOs from all basic block's live info. */
|
||
if (clear_regnos)
|
||
{
|
||
unsigned j;
|
||
|
||
if (clear_regnos > 8)
|
||
{
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
|
||
&cleared_regs);
|
||
AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
|
||
&cleared_regs);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
reg_set_iterator rsi;
|
||
EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
|
||
{
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
|
||
CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
out:
|
||
/* Clean up. */
|
||
end_alias_analysis ();
|
||
CLEAR_REG_SET (&cleared_regs);
|
||
free (reg_equiv);
|
||
}
|
||
|
||
/* Mark REG as having no known equivalence.
|
||
Some instructions might have been processed before and furnished
|
||
with REG_EQUIV notes for this register; these notes will have to be
|
||
removed.
|
||
STORE is the piece of RTL that does the non-constant / conflicting
|
||
assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
|
||
but needs to be there because this function is called from note_stores. */
|
||
static void
|
||
no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno;
|
||
rtx list;
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
regno = REGNO (reg);
|
||
list = reg_equiv[regno].init_insns;
|
||
if (list == const0_rtx)
|
||
return;
|
||
reg_equiv[regno].init_insns = const0_rtx;
|
||
reg_equiv[regno].replacement = NULL_RTX;
|
||
/* This doesn't matter for equivalences made for argument registers, we
|
||
should keep their initialization insns. */
|
||
if (reg_equiv[regno].is_arg_equivalence)
|
||
return;
|
||
reg_equiv_init[regno] = NULL_RTX;
|
||
for (; list; list = XEXP (list, 1))
|
||
{
|
||
rtx insn = XEXP (list, 0);
|
||
remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
|
||
}
|
||
}
|
||
|
||
/* Allocate hard regs to the pseudo regs used only within block number B.
|
||
Only the pseudos that die but once can be handled. */
|
||
|
||
static void
|
||
block_alloc (int b)
|
||
{
|
||
int i, q;
|
||
rtx insn;
|
||
rtx note, hard_reg;
|
||
int insn_number = 0;
|
||
int insn_count = 0;
|
||
int max_uid = get_max_uid ();
|
||
int *qty_order;
|
||
int no_conflict_combined_regno = -1;
|
||
|
||
/* Count the instructions in the basic block. */
|
||
|
||
insn = BB_END (BASIC_BLOCK (b));
|
||
while (1)
|
||
{
|
||
if (!NOTE_P (insn))
|
||
{
|
||
++insn_count;
|
||
gcc_assert (insn_count <= max_uid);
|
||
}
|
||
if (insn == BB_HEAD (BASIC_BLOCK (b)))
|
||
break;
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
|
||
/* +2 to leave room for a post_mark_life at the last insn and for
|
||
the birth of a CLOBBER in the first insn. */
|
||
regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
|
||
|
||
/* Initialize table of hardware registers currently live. */
|
||
|
||
REG_SET_TO_HARD_REG_SET (regs_live,
|
||
BASIC_BLOCK (b)->il.rtl->global_live_at_start);
|
||
|
||
/* This loop scans the instructions of the basic block
|
||
and assigns quantities to registers.
|
||
It computes which registers to tie. */
|
||
|
||
insn = BB_HEAD (BASIC_BLOCK (b));
|
||
while (1)
|
||
{
|
||
if (!NOTE_P (insn))
|
||
insn_number++;
|
||
|
||
if (INSN_P (insn))
|
||
{
|
||
rtx link, set;
|
||
int win = 0;
|
||
rtx r0, r1 = NULL_RTX;
|
||
int combined_regno = -1;
|
||
int i;
|
||
|
||
this_insn_number = insn_number;
|
||
this_insn = insn;
|
||
|
||
extract_insn (insn);
|
||
which_alternative = -1;
|
||
|
||
/* Is this insn suitable for tying two registers?
|
||
If so, try doing that.
|
||
Suitable insns are those with at least two operands and where
|
||
operand 0 is an output that is a register that is not
|
||
earlyclobber.
|
||
|
||
We can tie operand 0 with some operand that dies in this insn.
|
||
First look for operands that are required to be in the same
|
||
register as operand 0. If we find such, only try tying that
|
||
operand or one that can be put into that operand if the
|
||
operation is commutative. If we don't find an operand
|
||
that is required to be in the same register as operand 0,
|
||
we can tie with any operand.
|
||
|
||
Subregs in place of regs are also ok.
|
||
|
||
If tying is done, WIN is set nonzero. */
|
||
|
||
if (optimize
|
||
&& recog_data.n_operands > 1
|
||
&& recog_data.constraints[0][0] == '='
|
||
&& recog_data.constraints[0][1] != '&')
|
||
{
|
||
/* If non-negative, is an operand that must match operand 0. */
|
||
int must_match_0 = -1;
|
||
/* Counts number of alternatives that require a match with
|
||
operand 0. */
|
||
int n_matching_alts = 0;
|
||
|
||
for (i = 1; i < recog_data.n_operands; i++)
|
||
{
|
||
const char *p = recog_data.constraints[i];
|
||
int this_match = requires_inout (p);
|
||
|
||
n_matching_alts += this_match;
|
||
if (this_match == recog_data.n_alternatives)
|
||
must_match_0 = i;
|
||
}
|
||
|
||
r0 = recog_data.operand[0];
|
||
for (i = 1; i < recog_data.n_operands; i++)
|
||
{
|
||
/* Skip this operand if we found an operand that
|
||
must match operand 0 and this operand isn't it
|
||
and can't be made to be it by commutativity. */
|
||
|
||
if (must_match_0 >= 0 && i != must_match_0
|
||
&& ! (i == must_match_0 + 1
|
||
&& recog_data.constraints[i-1][0] == '%')
|
||
&& ! (i == must_match_0 - 1
|
||
&& recog_data.constraints[i][0] == '%'))
|
||
continue;
|
||
|
||
/* Likewise if each alternative has some operand that
|
||
must match operand zero. In that case, skip any
|
||
operand that doesn't list operand 0 since we know that
|
||
the operand always conflicts with operand 0. We
|
||
ignore commutativity in this case to keep things simple. */
|
||
if (n_matching_alts == recog_data.n_alternatives
|
||
&& 0 == requires_inout (recog_data.constraints[i]))
|
||
continue;
|
||
|
||
r1 = recog_data.operand[i];
|
||
|
||
/* If the operand is an address, find a register in it.
|
||
There may be more than one register, but we only try one
|
||
of them. */
|
||
if (recog_data.constraints[i][0] == 'p'
|
||
|| EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
|
||
recog_data.constraints[i]))
|
||
while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
|
||
r1 = XEXP (r1, 0);
|
||
|
||
/* Avoid making a call-saved register unnecessarily
|
||
clobbered. */
|
||
hard_reg = get_hard_reg_initial_reg (cfun, r1);
|
||
if (hard_reg != NULL_RTX)
|
||
{
|
||
if (REG_P (hard_reg)
|
||
&& REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
|
||
&& !call_used_regs[REGNO (hard_reg)])
|
||
continue;
|
||
}
|
||
|
||
if (REG_P (r0) || GET_CODE (r0) == SUBREG)
|
||
{
|
||
/* We have two priorities for hard register preferences.
|
||
If we have a move insn or an insn whose first input
|
||
can only be in the same register as the output, give
|
||
priority to an equivalence found from that insn. */
|
||
int may_save_copy
|
||
= (r1 == recog_data.operand[i] && must_match_0 >= 0);
|
||
|
||
if (REG_P (r1) || GET_CODE (r1) == SUBREG)
|
||
win = combine_regs (r1, r0, may_save_copy,
|
||
insn_number, insn, 0);
|
||
}
|
||
if (win)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Recognize an insn sequence with an ultimate result
|
||
which can safely overlap one of the inputs.
|
||
The sequence begins with a CLOBBER of its result,
|
||
and ends with an insn that copies the result to itself
|
||
and has a REG_EQUAL note for an equivalent formula.
|
||
That note indicates what the inputs are.
|
||
The result and the input can overlap if each insn in
|
||
the sequence either doesn't mention the input
|
||
or has a REG_NO_CONFLICT note to inhibit the conflict.
|
||
|
||
We do the combining test at the CLOBBER so that the
|
||
destination register won't have had a quantity number
|
||
assigned, since that would prevent combining. */
|
||
|
||
if (optimize
|
||
&& GET_CODE (PATTERN (insn)) == CLOBBER
|
||
&& (r0 = XEXP (PATTERN (insn), 0),
|
||
REG_P (r0))
|
||
&& (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
|
||
&& XEXP (link, 0) != 0
|
||
&& NONJUMP_INSN_P (XEXP (link, 0))
|
||
&& (set = single_set (XEXP (link, 0))) != 0
|
||
&& SET_DEST (set) == r0 && SET_SRC (set) == r0
|
||
&& (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
|
||
NULL_RTX)) != 0)
|
||
{
|
||
if (r1 = XEXP (note, 0), REG_P (r1)
|
||
/* Check that we have such a sequence. */
|
||
&& no_conflict_p (insn, r0, r1))
|
||
win = combine_regs (r1, r0, 1, insn_number, insn, 1);
|
||
else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
|
||
&& (r1 = XEXP (XEXP (note, 0), 0),
|
||
REG_P (r1) || GET_CODE (r1) == SUBREG)
|
||
&& no_conflict_p (insn, r0, r1))
|
||
win = combine_regs (r1, r0, 0, insn_number, insn, 1);
|
||
|
||
/* Here we care if the operation to be computed is
|
||
commutative. */
|
||
else if (COMMUTATIVE_P (XEXP (note, 0))
|
||
&& (r1 = XEXP (XEXP (note, 0), 1),
|
||
(REG_P (r1) || GET_CODE (r1) == SUBREG))
|
||
&& no_conflict_p (insn, r0, r1))
|
||
win = combine_regs (r1, r0, 0, insn_number, insn, 1);
|
||
|
||
/* If we did combine something, show the register number
|
||
in question so that we know to ignore its death. */
|
||
if (win)
|
||
no_conflict_combined_regno = REGNO (r1);
|
||
}
|
||
|
||
/* If registers were just tied, set COMBINED_REGNO
|
||
to the number of the register used in this insn
|
||
that was tied to the register set in this insn.
|
||
This register's qty should not be "killed". */
|
||
|
||
if (win)
|
||
{
|
||
while (GET_CODE (r1) == SUBREG)
|
||
r1 = SUBREG_REG (r1);
|
||
combined_regno = REGNO (r1);
|
||
}
|
||
|
||
/* Mark the death of everything that dies in this instruction,
|
||
except for anything that was just combined. */
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& REG_P (XEXP (link, 0))
|
||
&& combined_regno != (int) REGNO (XEXP (link, 0))
|
||
&& (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
|
||
|| ! find_reg_note (insn, REG_NO_CONFLICT,
|
||
XEXP (link, 0))))
|
||
wipe_dead_reg (XEXP (link, 0), 0);
|
||
|
||
/* Allocate qty numbers for all registers local to this block
|
||
that are born (set) in this instruction.
|
||
A pseudo that already has a qty is not changed. */
|
||
|
||
note_stores (PATTERN (insn), reg_is_set, NULL);
|
||
|
||
/* If anything is set in this insn and then unused, mark it as dying
|
||
after this insn, so it will conflict with our outputs. This
|
||
can't match with something that combined, and it doesn't matter
|
||
if it did. Do this after the calls to reg_is_set since these
|
||
die after, not during, the current insn. */
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_UNUSED
|
||
&& REG_P (XEXP (link, 0)))
|
||
wipe_dead_reg (XEXP (link, 0), 1);
|
||
|
||
/* If this is an insn that has a REG_RETVAL note pointing at a
|
||
CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
|
||
block, so clear any register number that combined within it. */
|
||
if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
|
||
&& NONJUMP_INSN_P (XEXP (note, 0))
|
||
&& GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
|
||
no_conflict_combined_regno = -1;
|
||
}
|
||
|
||
/* Set the registers live after INSN_NUMBER. Note that we never
|
||
record the registers live before the block's first insn, since no
|
||
pseudos we care about are live before that insn. */
|
||
|
||
IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
|
||
IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
|
||
|
||
if (insn == BB_END (BASIC_BLOCK (b)))
|
||
break;
|
||
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
/* Now every register that is local to this basic block
|
||
should have been given a quantity, or else -1 meaning ignore it.
|
||
Every quantity should have a known birth and death.
|
||
|
||
Order the qtys so we assign them registers in order of the
|
||
number of suggested registers they need so we allocate those with
|
||
the most restrictive needs first. */
|
||
|
||
qty_order = xmalloc (next_qty * sizeof (int));
|
||
for (i = 0; i < next_qty; i++)
|
||
qty_order[i] = i;
|
||
|
||
#define EXCHANGE(I1, I2) \
|
||
{ i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
|
||
|
||
switch (next_qty)
|
||
{
|
||
case 3:
|
||
/* Make qty_order[2] be the one to allocate last. */
|
||
if (qty_sugg_compare (0, 1) > 0)
|
||
EXCHANGE (0, 1);
|
||
if (qty_sugg_compare (1, 2) > 0)
|
||
EXCHANGE (2, 1);
|
||
|
||
/* ... Fall through ... */
|
||
case 2:
|
||
/* Put the best one to allocate in qty_order[0]. */
|
||
if (qty_sugg_compare (0, 1) > 0)
|
||
EXCHANGE (0, 1);
|
||
|
||
/* ... Fall through ... */
|
||
|
||
case 1:
|
||
case 0:
|
||
/* Nothing to do here. */
|
||
break;
|
||
|
||
default:
|
||
qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
|
||
}
|
||
|
||
/* Try to put each quantity in a suggested physical register, if it has one.
|
||
This may cause registers to be allocated that otherwise wouldn't be, but
|
||
this seems acceptable in local allocation (unlike global allocation). */
|
||
for (i = 0; i < next_qty; i++)
|
||
{
|
||
q = qty_order[i];
|
||
if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
|
||
qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
|
||
0, 1, qty[q].birth, qty[q].death);
|
||
else
|
||
qty[q].phys_reg = -1;
|
||
}
|
||
|
||
/* Order the qtys so we assign them registers in order of
|
||
decreasing length of life. Normally call qsort, but if we
|
||
have only a very small number of quantities, sort them ourselves. */
|
||
|
||
for (i = 0; i < next_qty; i++)
|
||
qty_order[i] = i;
|
||
|
||
#define EXCHANGE(I1, I2) \
|
||
{ i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
|
||
|
||
switch (next_qty)
|
||
{
|
||
case 3:
|
||
/* Make qty_order[2] be the one to allocate last. */
|
||
if (qty_compare (0, 1) > 0)
|
||
EXCHANGE (0, 1);
|
||
if (qty_compare (1, 2) > 0)
|
||
EXCHANGE (2, 1);
|
||
|
||
/* ... Fall through ... */
|
||
case 2:
|
||
/* Put the best one to allocate in qty_order[0]. */
|
||
if (qty_compare (0, 1) > 0)
|
||
EXCHANGE (0, 1);
|
||
|
||
/* ... Fall through ... */
|
||
|
||
case 1:
|
||
case 0:
|
||
/* Nothing to do here. */
|
||
break;
|
||
|
||
default:
|
||
qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
|
||
}
|
||
|
||
/* Now for each qty that is not a hardware register,
|
||
look for a hardware register to put it in.
|
||
First try the register class that is cheapest for this qty,
|
||
if there is more than one class. */
|
||
|
||
for (i = 0; i < next_qty; i++)
|
||
{
|
||
q = qty_order[i];
|
||
if (qty[q].phys_reg < 0)
|
||
{
|
||
#ifdef INSN_SCHEDULING
|
||
/* These values represent the adjusted lifetime of a qty so
|
||
that it conflicts with qtys which appear near the start/end
|
||
of this qty's lifetime.
|
||
|
||
The purpose behind extending the lifetime of this qty is to
|
||
discourage the register allocator from creating false
|
||
dependencies.
|
||
|
||
The adjustment value is chosen to indicate that this qty
|
||
conflicts with all the qtys in the instructions immediately
|
||
before and after the lifetime of this qty.
|
||
|
||
Experiments have shown that higher values tend to hurt
|
||
overall code performance.
|
||
|
||
If allocation using the extended lifetime fails we will try
|
||
again with the qty's unadjusted lifetime. */
|
||
int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
|
||
int fake_death = MIN (insn_number * 2 + 1,
|
||
qty[q].death + 2 - qty[q].death % 2);
|
||
#endif
|
||
|
||
if (N_REG_CLASSES > 1)
|
||
{
|
||
#ifdef INSN_SCHEDULING
|
||
/* We try to avoid using hard registers allocated to qtys which
|
||
are born immediately after this qty or die immediately before
|
||
this qty.
|
||
|
||
This optimization is only appropriate when we will run
|
||
a scheduling pass after reload and we are not optimizing
|
||
for code size. */
|
||
if (flag_schedule_insns_after_reload
|
||
&& !optimize_size
|
||
&& !SMALL_REGISTER_CLASSES)
|
||
{
|
||
qty[q].phys_reg = find_free_reg (qty[q].min_class,
|
||
qty[q].mode, q, 0, 0,
|
||
fake_birth, fake_death);
|
||
if (qty[q].phys_reg >= 0)
|
||
continue;
|
||
}
|
||
#endif
|
||
qty[q].phys_reg = find_free_reg (qty[q].min_class,
|
||
qty[q].mode, q, 0, 0,
|
||
qty[q].birth, qty[q].death);
|
||
if (qty[q].phys_reg >= 0)
|
||
continue;
|
||
}
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
/* Similarly, avoid false dependencies. */
|
||
if (flag_schedule_insns_after_reload
|
||
&& !optimize_size
|
||
&& !SMALL_REGISTER_CLASSES
|
||
&& qty[q].alternate_class != NO_REGS)
|
||
qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
|
||
qty[q].mode, q, 0, 0,
|
||
fake_birth, fake_death);
|
||
#endif
|
||
if (qty[q].alternate_class != NO_REGS)
|
||
qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
|
||
qty[q].mode, q, 0, 0,
|
||
qty[q].birth, qty[q].death);
|
||
}
|
||
}
|
||
|
||
/* Now propagate the register assignments
|
||
to the pseudo regs belonging to the qtys. */
|
||
|
||
for (q = 0; q < next_qty; q++)
|
||
if (qty[q].phys_reg >= 0)
|
||
{
|
||
for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
|
||
reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
|
||
}
|
||
|
||
/* Clean up. */
|
||
free (regs_live_at);
|
||
free (qty_order);
|
||
}
|
||
|
||
/* Compare two quantities' priority for getting real registers.
|
||
We give shorter-lived quantities higher priority.
|
||
Quantities with more references are also preferred, as are quantities that
|
||
require multiple registers. This is the identical prioritization as
|
||
done by global-alloc.
|
||
|
||
We used to give preference to registers with *longer* lives, but using
|
||
the same algorithm in both local- and global-alloc can speed up execution
|
||
of some programs by as much as a factor of three! */
|
||
|
||
/* Note that the quotient will never be bigger than
|
||
the value of floor_log2 times the maximum number of
|
||
times a register can occur in one insn (surely less than 100)
|
||
weighted by frequency (max REG_FREQ_MAX).
|
||
Multiplying this by 10000/REG_FREQ_MAX can't overflow.
|
||
QTY_CMP_PRI is also used by qty_sugg_compare. */
|
||
|
||
#define QTY_CMP_PRI(q) \
|
||
((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
|
||
/ (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
|
||
|
||
static int
|
||
qty_compare (int q1, int q2)
|
||
{
|
||
return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
|
||
}
|
||
|
||
static int
|
||
qty_compare_1 (const void *q1p, const void *q2p)
|
||
{
|
||
int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
|
||
int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
|
||
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
/* If qtys are equally good, sort by qty number,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return q1 - q2;
|
||
}
|
||
|
||
/* Compare two quantities' priority for getting real registers. This version
|
||
is called for quantities that have suggested hard registers. First priority
|
||
goes to quantities that have copy preferences, then to those that have
|
||
normal preferences. Within those groups, quantities with the lower
|
||
number of preferences have the highest priority. Of those, we use the same
|
||
algorithm as above. */
|
||
|
||
#define QTY_CMP_SUGG(q) \
|
||
(qty_phys_num_copy_sugg[q] \
|
||
? qty_phys_num_copy_sugg[q] \
|
||
: qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
|
||
|
||
static int
|
||
qty_sugg_compare (int q1, int q2)
|
||
{
|
||
int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
|
||
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
|
||
}
|
||
|
||
static int
|
||
qty_sugg_compare_1 (const void *q1p, const void *q2p)
|
||
{
|
||
int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
|
||
int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
|
||
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
/* If qtys are equally good, sort by qty number,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return q1 - q2;
|
||
}
|
||
|
||
#undef QTY_CMP_SUGG
|
||
#undef QTY_CMP_PRI
|
||
|
||
/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
|
||
Returns 1 if have done so, or 0 if cannot.
|
||
|
||
Combining registers means marking them as having the same quantity
|
||
and adjusting the offsets within the quantity if either of
|
||
them is a SUBREG.
|
||
|
||
We don't actually combine a hard reg with a pseudo; instead
|
||
we just record the hard reg as the suggestion for the pseudo's quantity.
|
||
If we really combined them, we could lose if the pseudo lives
|
||
across an insn that clobbers the hard reg (eg, movmem).
|
||
|
||
ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
|
||
there is no REG_DEAD note on INSN. This occurs during the processing
|
||
of REG_NO_CONFLICT blocks.
|
||
|
||
MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
|
||
SETREG or if the input and output must share a register.
|
||
In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
|
||
|
||
There are elaborate checks for the validity of combining. */
|
||
|
||
static int
|
||
combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
|
||
rtx insn, int already_dead)
|
||
{
|
||
int ureg, sreg;
|
||
int offset = 0;
|
||
int usize, ssize;
|
||
int sqty;
|
||
|
||
/* Determine the numbers and sizes of registers being used. If a subreg
|
||
is present that does not change the entire register, don't consider
|
||
this a copy insn. */
|
||
|
||
while (GET_CODE (usedreg) == SUBREG)
|
||
{
|
||
rtx subreg = SUBREG_REG (usedreg);
|
||
|
||
if (REG_P (subreg))
|
||
{
|
||
if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
|
||
may_save_copy = 0;
|
||
|
||
if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
|
||
offset += subreg_regno_offset (REGNO (subreg),
|
||
GET_MODE (subreg),
|
||
SUBREG_BYTE (usedreg),
|
||
GET_MODE (usedreg));
|
||
else
|
||
offset += (SUBREG_BYTE (usedreg)
|
||
/ REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
|
||
}
|
||
|
||
usedreg = subreg;
|
||
}
|
||
|
||
if (!REG_P (usedreg))
|
||
return 0;
|
||
|
||
ureg = REGNO (usedreg);
|
||
if (ureg < FIRST_PSEUDO_REGISTER)
|
||
usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
|
||
else
|
||
usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
|
||
+ (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
|
||
/ REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
|
||
|
||
while (GET_CODE (setreg) == SUBREG)
|
||
{
|
||
rtx subreg = SUBREG_REG (setreg);
|
||
|
||
if (REG_P (subreg))
|
||
{
|
||
if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
|
||
may_save_copy = 0;
|
||
|
||
if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
|
||
offset -= subreg_regno_offset (REGNO (subreg),
|
||
GET_MODE (subreg),
|
||
SUBREG_BYTE (setreg),
|
||
GET_MODE (setreg));
|
||
else
|
||
offset -= (SUBREG_BYTE (setreg)
|
||
/ REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
|
||
}
|
||
|
||
setreg = subreg;
|
||
}
|
||
|
||
if (!REG_P (setreg))
|
||
return 0;
|
||
|
||
sreg = REGNO (setreg);
|
||
if (sreg < FIRST_PSEUDO_REGISTER)
|
||
ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
|
||
else
|
||
ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
|
||
+ (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
|
||
/ REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
|
||
|
||
/* If UREG is a pseudo-register that hasn't already been assigned a
|
||
quantity number, it means that it is not local to this block or dies
|
||
more than once. In either event, we can't do anything with it. */
|
||
if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
|
||
/* Do not combine registers unless one fits within the other. */
|
||
|| (offset > 0 && usize + offset > ssize)
|
||
|| (offset < 0 && usize + offset < ssize)
|
||
/* Do not combine with a smaller already-assigned object
|
||
if that smaller object is already combined with something bigger. */
|
||
|| (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
|
||
&& usize < qty[reg_qty[ureg]].size)
|
||
/* Can't combine if SREG is not a register we can allocate. */
|
||
|| (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
|
||
/* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
|
||
These have already been taken care of. This probably wouldn't
|
||
combine anyway, but don't take any chances. */
|
||
|| (ureg >= FIRST_PSEUDO_REGISTER
|
||
&& find_reg_note (insn, REG_NO_CONFLICT, usedreg))
|
||
/* Don't tie something to itself. In most cases it would make no
|
||
difference, but it would screw up if the reg being tied to itself
|
||
also dies in this insn. */
|
||
|| ureg == sreg
|
||
/* Don't try to connect two different hardware registers. */
|
||
|| (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
|
||
/* Don't connect two different machine modes if they have different
|
||
implications as to which registers may be used. */
|
||
|| !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
|
||
return 0;
|
||
|
||
/* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
|
||
qty_phys_sugg for the pseudo instead of tying them.
|
||
|
||
Return "failure" so that the lifespan of UREG is terminated here;
|
||
that way the two lifespans will be disjoint and nothing will prevent
|
||
the pseudo reg from being given this hard reg. */
|
||
|
||
if (ureg < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* Allocate a quantity number so we have a place to put our
|
||
suggestions. */
|
||
if (reg_qty[sreg] == -2)
|
||
reg_is_born (setreg, 2 * insn_number);
|
||
|
||
if (reg_qty[sreg] >= 0)
|
||
{
|
||
if (may_save_copy
|
||
&& ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
|
||
{
|
||
SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
|
||
qty_phys_num_copy_sugg[reg_qty[sreg]]++;
|
||
}
|
||
else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
|
||
{
|
||
SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
|
||
qty_phys_num_sugg[reg_qty[sreg]]++;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Similarly for SREG a hard register and UREG a pseudo register. */
|
||
|
||
if (sreg < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (may_save_copy
|
||
&& ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
|
||
{
|
||
SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
|
||
qty_phys_num_copy_sugg[reg_qty[ureg]]++;
|
||
}
|
||
else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
|
||
{
|
||
SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
|
||
qty_phys_num_sugg[reg_qty[ureg]]++;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* At this point we know that SREG and UREG are both pseudos.
|
||
Do nothing if SREG already has a quantity or is a register that we
|
||
don't allocate. */
|
||
if (reg_qty[sreg] >= -1
|
||
/* If we are not going to let any regs live across calls,
|
||
don't tie a call-crossing reg to a non-call-crossing reg. */
|
||
|| (current_function_has_nonlocal_label
|
||
&& ((REG_N_CALLS_CROSSED (ureg) > 0)
|
||
!= (REG_N_CALLS_CROSSED (sreg) > 0))))
|
||
return 0;
|
||
|
||
/* We don't already know about SREG, so tie it to UREG
|
||
if this is the last use of UREG, provided the classes they want
|
||
are compatible. */
|
||
|
||
if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
|
||
&& reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
|
||
{
|
||
/* Add SREG to UREG's quantity. */
|
||
sqty = reg_qty[ureg];
|
||
reg_qty[sreg] = sqty;
|
||
reg_offset[sreg] = reg_offset[ureg] + offset;
|
||
reg_next_in_qty[sreg] = qty[sqty].first_reg;
|
||
qty[sqty].first_reg = sreg;
|
||
|
||
/* If SREG's reg class is smaller, set qty[SQTY].min_class. */
|
||
update_qty_class (sqty, sreg);
|
||
|
||
/* Update info about quantity SQTY. */
|
||
qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
|
||
qty[sqty].n_throwing_calls_crossed
|
||
+= REG_N_THROWING_CALLS_CROSSED (sreg);
|
||
qty[sqty].n_refs += REG_N_REFS (sreg);
|
||
qty[sqty].freq += REG_FREQ (sreg);
|
||
if (usize < ssize)
|
||
{
|
||
int i;
|
||
|
||
for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
|
||
reg_offset[i] -= offset;
|
||
|
||
qty[sqty].size = ssize;
|
||
qty[sqty].mode = GET_MODE (setreg);
|
||
}
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the preferred class of REG allows it to be tied
|
||
to a quantity or register whose class is CLASS.
|
||
True if REG's reg class either contains or is contained in CLASS. */
|
||
|
||
static int
|
||
reg_meets_class_p (int reg, enum reg_class class)
|
||
{
|
||
enum reg_class rclass = reg_preferred_class (reg);
|
||
return (reg_class_subset_p (rclass, class)
|
||
|| reg_class_subset_p (class, rclass));
|
||
}
|
||
|
||
/* Update the class of QTYNO assuming that REG is being tied to it. */
|
||
|
||
static void
|
||
update_qty_class (int qtyno, int reg)
|
||
{
|
||
enum reg_class rclass = reg_preferred_class (reg);
|
||
if (reg_class_subset_p (rclass, qty[qtyno].min_class))
|
||
qty[qtyno].min_class = rclass;
|
||
|
||
rclass = reg_alternate_class (reg);
|
||
if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
|
||
qty[qtyno].alternate_class = rclass;
|
||
}
|
||
|
||
/* Handle something which alters the value of an rtx REG.
|
||
|
||
REG is whatever is set or clobbered. SETTER is the rtx that
|
||
is modifying the register.
|
||
|
||
If it is not really a register, we do nothing.
|
||
The file-global variables `this_insn' and `this_insn_number'
|
||
carry info from `block_alloc'. */
|
||
|
||
static void
|
||
reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
|
||
a hard register. These may actually not exist any more. */
|
||
|
||
if (GET_CODE (reg) != SUBREG
|
||
&& !REG_P (reg))
|
||
return;
|
||
|
||
/* Mark this register as being born. If it is used in a CLOBBER, mark
|
||
it as being born halfway between the previous insn and this insn so that
|
||
it conflicts with our inputs but not the outputs of the previous insn. */
|
||
|
||
reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
|
||
}
|
||
|
||
/* Handle beginning of the life of register REG.
|
||
BIRTH is the index at which this is happening. */
|
||
|
||
static void
|
||
reg_is_born (rtx reg, int birth)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
{
|
||
regno = REGNO (SUBREG_REG (reg));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
regno = subreg_regno (reg);
|
||
}
|
||
else
|
||
regno = REGNO (reg);
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
mark_life (regno, GET_MODE (reg), 1);
|
||
|
||
/* If the register was to have been born earlier that the present
|
||
insn, mark it as live where it is actually born. */
|
||
if (birth < 2 * this_insn_number)
|
||
post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
|
||
}
|
||
else
|
||
{
|
||
if (reg_qty[regno] == -2)
|
||
alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
|
||
|
||
/* If this register has a quantity number, show that it isn't dead. */
|
||
if (reg_qty[regno] >= 0)
|
||
qty[reg_qty[regno]].death = -1;
|
||
}
|
||
}
|
||
|
||
/* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
|
||
REG is an output that is dying (i.e., it is never used), otherwise it
|
||
is an input (the normal case).
|
||
If OUTPUT_P is 1, then we extend the life past the end of this insn. */
|
||
|
||
static void
|
||
wipe_dead_reg (rtx reg, int output_p)
|
||
{
|
||
int regno = REGNO (reg);
|
||
|
||
/* If this insn has multiple results,
|
||
and the dead reg is used in one of the results,
|
||
extend its life to after this insn,
|
||
so it won't get allocated together with any other result of this insn.
|
||
|
||
It is unsafe to use !single_set here since it will ignore an unused
|
||
output. Just because an output is unused does not mean the compiler
|
||
can assume the side effect will not occur. Consider if REG appears
|
||
in the address of an output and we reload the output. If we allocate
|
||
REG to the same hard register as an unused output we could set the hard
|
||
register before the output reload insn. */
|
||
if (GET_CODE (PATTERN (this_insn)) == PARALLEL
|
||
&& multiple_sets (this_insn))
|
||
{
|
||
int i;
|
||
for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx set = XVECEXP (PATTERN (this_insn), 0, i);
|
||
if (GET_CODE (set) == SET
|
||
&& !REG_P (SET_DEST (set))
|
||
&& !rtx_equal_p (reg, SET_DEST (set))
|
||
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
||
output_p = 1;
|
||
}
|
||
}
|
||
|
||
/* If this register is used in an auto-increment address, then extend its
|
||
life to after this insn, so that it won't get allocated together with
|
||
the result of this insn. */
|
||
if (! output_p && find_regno_note (this_insn, REG_INC, regno))
|
||
output_p = 1;
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
mark_life (regno, GET_MODE (reg), 0);
|
||
|
||
/* If a hard register is dying as an output, mark it as in use at
|
||
the beginning of this insn (the above statement would cause this
|
||
not to happen). */
|
||
if (output_p)
|
||
post_mark_life (regno, GET_MODE (reg), 1,
|
||
2 * this_insn_number, 2 * this_insn_number + 1);
|
||
}
|
||
|
||
else if (reg_qty[regno] >= 0)
|
||
qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
|
||
}
|
||
|
||
/* Find a block of SIZE words of hard regs in reg_class CLASS
|
||
that can hold something of machine-mode MODE
|
||
(but actually we test only the first of the block for holding MODE)
|
||
and still free between insn BORN_INDEX and insn DEAD_INDEX,
|
||
and return the number of the first of them.
|
||
Return -1 if such a block cannot be found.
|
||
If QTYNO crosses calls, insist on a register preserved by calls,
|
||
unless ACCEPT_CALL_CLOBBERED is nonzero.
|
||
|
||
If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
|
||
register is available. If not, return -1. */
|
||
|
||
static int
|
||
find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
|
||
int accept_call_clobbered, int just_try_suggested,
|
||
int born_index, int dead_index)
|
||
{
|
||
int i, ins;
|
||
HARD_REG_SET first_used, used;
|
||
#ifdef ELIMINABLE_REGS
|
||
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
||
#endif
|
||
|
||
/* Validate our parameters. */
|
||
gcc_assert (born_index >= 0 && born_index <= dead_index);
|
||
|
||
/* Don't let a pseudo live in a reg across a function call
|
||
if we might get a nonlocal goto. */
|
||
if (current_function_has_nonlocal_label
|
||
&& qty[qtyno].n_calls_crossed > 0)
|
||
return -1;
|
||
|
||
if (accept_call_clobbered)
|
||
COPY_HARD_REG_SET (used, call_fixed_reg_set);
|
||
else if (qty[qtyno].n_calls_crossed == 0)
|
||
COPY_HARD_REG_SET (used, fixed_reg_set);
|
||
else
|
||
COPY_HARD_REG_SET (used, call_used_reg_set);
|
||
|
||
if (accept_call_clobbered)
|
||
IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
|
||
|
||
for (ins = born_index; ins < dead_index; ins++)
|
||
IOR_HARD_REG_SET (used, regs_live_at[ins]);
|
||
|
||
IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
|
||
|
||
/* Don't use the frame pointer reg in local-alloc even if
|
||
we may omit the frame pointer, because if we do that and then we
|
||
need a frame pointer, reload won't know how to move the pseudo
|
||
to another hard reg. It can move only regs made by global-alloc.
|
||
|
||
This is true of any register that can be eliminated. */
|
||
#ifdef ELIMINABLE_REGS
|
||
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
|
||
SET_HARD_REG_BIT (used, eliminables[i].from);
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
/* If FRAME_POINTER_REGNUM is not a real register, then protect the one
|
||
that it might be eliminated into. */
|
||
SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
#else
|
||
SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
|
||
#endif
|
||
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
|
||
#endif
|
||
|
||
/* Normally, the registers that can be used for the first register in
|
||
a multi-register quantity are the same as those that can be used for
|
||
subsequent registers. However, if just trying suggested registers,
|
||
restrict our consideration to them. If there are copy-suggested
|
||
register, try them. Otherwise, try the arithmetic-suggested
|
||
registers. */
|
||
COPY_HARD_REG_SET (first_used, used);
|
||
|
||
if (just_try_suggested)
|
||
{
|
||
if (qty_phys_num_copy_sugg[qtyno] != 0)
|
||
IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
|
||
else
|
||
IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
|
||
}
|
||
|
||
/* If all registers are excluded, we can't do anything. */
|
||
GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
|
||
|
||
/* If at least one would be suitable, test each hard reg. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
#ifdef REG_ALLOC_ORDER
|
||
int regno = reg_alloc_order[i];
|
||
#else
|
||
int regno = i;
|
||
#endif
|
||
if (! TEST_HARD_REG_BIT (first_used, regno)
|
||
&& HARD_REGNO_MODE_OK (regno, mode)
|
||
&& (qty[qtyno].n_calls_crossed == 0
|
||
|| accept_call_clobbered
|
||
|| ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
||
{
|
||
int j;
|
||
int size1 = hard_regno_nregs[regno][mode];
|
||
for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
|
||
if (j == size1)
|
||
{
|
||
/* Mark that this register is in use between its birth and death
|
||
insns. */
|
||
post_mark_life (regno, mode, 1, born_index, dead_index);
|
||
return regno;
|
||
}
|
||
#ifndef REG_ALLOC_ORDER
|
||
/* Skip starting points we know will lose. */
|
||
i += j;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
fail:
|
||
/* If we are just trying suggested register, we have just tried copy-
|
||
suggested registers, and there are arithmetic-suggested registers,
|
||
try them. */
|
||
|
||
/* If it would be profitable to allocate a call-clobbered register
|
||
and save and restore it around calls, do that. */
|
||
if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
|
||
&& qty_phys_num_sugg[qtyno] != 0)
|
||
{
|
||
/* Don't try the copy-suggested regs again. */
|
||
qty_phys_num_copy_sugg[qtyno] = 0;
|
||
return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
|
||
born_index, dead_index);
|
||
}
|
||
|
||
/* We need not check to see if the current function has nonlocal
|
||
labels because we don't put any pseudos that are live over calls in
|
||
registers in that case. Avoid putting pseudos crossing calls that
|
||
might throw into call used registers. */
|
||
|
||
if (! accept_call_clobbered
|
||
&& flag_caller_saves
|
||
&& ! just_try_suggested
|
||
&& qty[qtyno].n_calls_crossed != 0
|
||
&& qty[qtyno].n_throwing_calls_crossed == 0
|
||
&& CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
|
||
qty[qtyno].n_calls_crossed))
|
||
{
|
||
i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
|
||
if (i >= 0)
|
||
caller_save_needed = 1;
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Mark that REGNO with machine-mode MODE is live starting from the current
|
||
insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
|
||
is zero). */
|
||
|
||
static void
|
||
mark_life (int regno, enum machine_mode mode, int life)
|
||
{
|
||
int j = hard_regno_nregs[regno][mode];
|
||
if (life)
|
||
while (--j >= 0)
|
||
SET_HARD_REG_BIT (regs_live, regno + j);
|
||
else
|
||
while (--j >= 0)
|
||
CLEAR_HARD_REG_BIT (regs_live, regno + j);
|
||
}
|
||
|
||
/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
|
||
is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
|
||
to insn number DEATH (exclusive). */
|
||
|
||
static void
|
||
post_mark_life (int regno, enum machine_mode mode, int life, int birth,
|
||
int death)
|
||
{
|
||
int j = hard_regno_nregs[regno][mode];
|
||
HARD_REG_SET this_reg;
|
||
|
||
CLEAR_HARD_REG_SET (this_reg);
|
||
while (--j >= 0)
|
||
SET_HARD_REG_BIT (this_reg, regno + j);
|
||
|
||
if (life)
|
||
while (birth < death)
|
||
{
|
||
IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
|
||
birth++;
|
||
}
|
||
else
|
||
while (birth < death)
|
||
{
|
||
AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
|
||
birth++;
|
||
}
|
||
}
|
||
|
||
/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
|
||
is the register being clobbered, and R1 is a register being used in
|
||
the equivalent expression.
|
||
|
||
If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
|
||
in which it is used, return 1.
|
||
|
||
Otherwise, return 0. */
|
||
|
||
static int
|
||
no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
|
||
{
|
||
int ok = 0;
|
||
rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
|
||
rtx p, last;
|
||
|
||
/* If R1 is a hard register, return 0 since we handle this case
|
||
when we scan the insns that actually use it. */
|
||
|
||
if (note == 0
|
||
|| (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
|
||
|| (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
|
||
&& REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
|
||
return 0;
|
||
|
||
last = XEXP (note, 0);
|
||
|
||
for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
|
||
if (INSN_P (p))
|
||
{
|
||
if (find_reg_note (p, REG_DEAD, r1))
|
||
ok = 1;
|
||
|
||
/* There must be a REG_NO_CONFLICT note on every insn, otherwise
|
||
some earlier optimization pass has inserted instructions into
|
||
the sequence, and it is not safe to perform this optimization.
|
||
Note that emit_no_conflict_block always ensures that this is
|
||
true when these sequences are created. */
|
||
if (! find_reg_note (p, REG_NO_CONFLICT, r1))
|
||
return 0;
|
||
}
|
||
|
||
return ok;
|
||
}
|
||
|
||
/* Return the number of alternatives for which the constraint string P
|
||
indicates that the operand must be equal to operand 0 and that no register
|
||
is acceptable. */
|
||
|
||
static int
|
||
requires_inout (const char *p)
|
||
{
|
||
char c;
|
||
int found_zero = 0;
|
||
int reg_allowed = 0;
|
||
int num_matching_alts = 0;
|
||
int len;
|
||
|
||
for ( ; (c = *p); p += len)
|
||
{
|
||
len = CONSTRAINT_LEN (c, p);
|
||
switch (c)
|
||
{
|
||
case '=': case '+': case '?':
|
||
case '#': case '&': case '!':
|
||
case '*': case '%':
|
||
case 'm': case '<': case '>': case 'V': case 'o':
|
||
case 'E': case 'F': case 'G': case 'H':
|
||
case 's': case 'i': case 'n':
|
||
case 'I': case 'J': case 'K': case 'L':
|
||
case 'M': case 'N': case 'O': case 'P':
|
||
case 'X':
|
||
/* These don't say anything we care about. */
|
||
break;
|
||
|
||
case ',':
|
||
if (found_zero && ! reg_allowed)
|
||
num_matching_alts++;
|
||
|
||
found_zero = reg_allowed = 0;
|
||
break;
|
||
|
||
case '0':
|
||
found_zero = 1;
|
||
break;
|
||
|
||
case '1': case '2': case '3': case '4': case '5':
|
||
case '6': case '7': case '8': case '9':
|
||
/* Skip the balance of the matching constraint. */
|
||
do
|
||
p++;
|
||
while (ISDIGIT (*p));
|
||
len = 0;
|
||
break;
|
||
|
||
default:
|
||
if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
|
||
&& !EXTRA_ADDRESS_CONSTRAINT (c, p))
|
||
break;
|
||
/* Fall through. */
|
||
case 'p':
|
||
case 'g': case 'r':
|
||
reg_allowed = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (found_zero && ! reg_allowed)
|
||
num_matching_alts++;
|
||
|
||
return num_matching_alts;
|
||
}
|
||
|
||
void
|
||
dump_local_alloc (FILE *file)
|
||
{
|
||
int i;
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] != -1)
|
||
fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
|
||
}
|
||
|
||
/* Run old register allocator. Return TRUE if we must exit
|
||
rest_of_compilation upon return. */
|
||
static void
|
||
rest_of_handle_local_alloc (void)
|
||
{
|
||
int rebuild_notes;
|
||
|
||
/* Determine if the current function is a leaf before running reload
|
||
since this can impact optimizations done by the prologue and
|
||
epilogue thus changing register elimination offsets. */
|
||
current_function_is_leaf = leaf_function_p ();
|
||
|
||
/* Allocate the reg_renumber array. */
|
||
allocate_reg_info (max_regno, FALSE, TRUE);
|
||
|
||
/* And the reg_equiv_memory_loc array. */
|
||
VARRAY_GROW (reg_equiv_memory_loc_varray, max_regno);
|
||
reg_equiv_memory_loc = &VARRAY_RTX (reg_equiv_memory_loc_varray, 0);
|
||
|
||
allocate_initial_values (reg_equiv_memory_loc);
|
||
|
||
regclass (get_insns (), max_reg_num (), dump_file);
|
||
rebuild_notes = local_alloc ();
|
||
|
||
/* Local allocation may have turned an indirect jump into a direct
|
||
jump. If so, we must rebuild the JUMP_LABEL fields of jumping
|
||
instructions. */
|
||
if (rebuild_notes)
|
||
{
|
||
timevar_push (TV_JUMP);
|
||
|
||
rebuild_jump_labels (get_insns ());
|
||
purge_all_dead_edges ();
|
||
delete_unreachable_blocks ();
|
||
|
||
timevar_pop (TV_JUMP);
|
||
}
|
||
|
||
if (dump_enabled_p (pass_local_alloc.static_pass_number))
|
||
{
|
||
timevar_push (TV_DUMP);
|
||
dump_flow_info (dump_file);
|
||
dump_local_alloc (dump_file);
|
||
timevar_pop (TV_DUMP);
|
||
}
|
||
}
|
||
|
||
struct tree_opt_pass pass_local_alloc =
|
||
{
|
||
"lreg", /* name */
|
||
NULL, /* gate */
|
||
rest_of_handle_local_alloc, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_LOCAL_ALLOC, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'l' /* letter */
|
||
};
|
||
|