1218 lines
28 KiB
C
1218 lines
28 KiB
C
/* $NetBSD: fd.c,v 1.8 1995/07/11 18:32:07 leo Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995 Leo Weppelman.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Leo Weppelman.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This file contains a driver for the Floppy Disk Controller (FDC)
|
|
* on the Atari TT. It uses the WD 1772 chip, modified for steprates.
|
|
*
|
|
* The ST floppy disk controller shares the access to the DMA circuitry
|
|
* with other devices. For this reason the floppy disk controller makes
|
|
* use of some special DMA accessing code.
|
|
*
|
|
* Interrupts from the FDC are in fact DMA interrupts which get their
|
|
* first level handling in 'dma.c' . If the floppy driver is currently
|
|
* using DMA the interrupt is signalled to 'fdcint'.
|
|
*
|
|
* TODO:
|
|
* - Test it with 2 drives (I don't have them)
|
|
* - Test it with an HD-drive (Don't have that either)
|
|
* - Finish ioctl's
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/dkbad.h>
|
|
#include <atari/atari/device.h>
|
|
#include <machine/disklabel.h>
|
|
#include <machine/iomap.h>
|
|
#include <machine/mfp.h>
|
|
#include <machine/dma.h>
|
|
#include <machine/video.h>
|
|
#include <atari/dev/fdreg.h>
|
|
|
|
/*
|
|
* Be verbose for debugging
|
|
*/
|
|
/*#define FLP_DEBUG 1 */
|
|
|
|
#define FDC_MAX_DMA_AD 0x1000000 /* No DMA possible beyond */
|
|
|
|
/* Parameters for the disk drive. */
|
|
#define SECTOR_SIZE 512 /* physical sector size in bytes */
|
|
#define NR_DRIVES 2 /* maximum number of drives */
|
|
#define NR_TYPES 3 /* number of diskette/drive combinations*/
|
|
#define MAX_ERRORS 10 /* how often to try rd/wt before quitting*/
|
|
#define STEP_DELAY 6000 /* 6ms (6000us) delay after stepping */
|
|
|
|
|
|
#define INV_TRK 32000 /* Should fit in unsigned short */
|
|
#define INV_PART NR_TYPES
|
|
|
|
/*
|
|
* Driver states
|
|
*/
|
|
#define FLP_IDLE 0x00 /* floppy is idle */
|
|
#define FLP_MON 0x01 /* idle with motor on */
|
|
#define FLP_STAT 0x02 /* determine floppy status */
|
|
#define FLP_XFER 0x04 /* read/write data from floppy */
|
|
|
|
/*
|
|
* Timer delay's
|
|
*/
|
|
#define FLP_MONDELAY (3 * hz) /* motor-on delay */
|
|
#define FLP_XFERDELAY (2 * hz) /* timeout on transfer */
|
|
|
|
/*
|
|
* The density codes
|
|
*/
|
|
#define FLP_DD 0 /* Double density */
|
|
#define FLP_HD 1 /* High density */
|
|
|
|
|
|
#define b_block b_resid /* FIXME: this is not the place */
|
|
|
|
/*
|
|
* Global data for all physical floppy devices
|
|
*/
|
|
static short selected = 0; /* drive/head currently selected*/
|
|
static short motoron = 0; /* motor is spinning */
|
|
static short nopens = 0; /* Number of opens executed */
|
|
|
|
static short fd_state = FLP_IDLE; /* Current driver state */
|
|
static int lock_stat= 0; /* dma locking status */
|
|
static short fd_cmd = 0; /* command being executed */
|
|
static char *fd_error= NULL; /* error from fd_xfer_ok() */
|
|
|
|
/*
|
|
* Private per device data
|
|
*/
|
|
struct fd_softc {
|
|
struct dkdevice dkdev;
|
|
struct buf bufq; /* queue of buf's */
|
|
int unit; /* unit for atari controlling hw*/
|
|
int nheads; /* number of heads in use */
|
|
int nsectors; /* number of sectors/track */
|
|
int density; /* density code */
|
|
int nblocks; /* number of blocks on disk */
|
|
int curtrk; /* track head positioned on */
|
|
short flags; /* misc flags */
|
|
short part; /* Current open partition */
|
|
int sector; /* logical sector for I/O */
|
|
caddr_t io_data; /* KVA for data transfer */
|
|
int io_bytes; /* bytes left for I/O */
|
|
int io_dir; /* B_READ/B_WRITE */
|
|
int errcnt; /* current error count */
|
|
u_char *bounceb; /* Bounce buffer */
|
|
|
|
};
|
|
|
|
/*
|
|
* Flags in fd_softc:
|
|
*/
|
|
#define FLPF_NOTRESP 0x001 /* Unit not responding */
|
|
#define FLPF_ISOPEN 0x002 /* Unit is open */
|
|
#define FLPF_SPARE 0x004 /* Not used */
|
|
#define FLPF_HAVELAB 0x008 /* We have a valid label */
|
|
#define FLPF_BOUNCE 0x010 /* Now using the bounce buffer */
|
|
#define FLPF_WRTPROT 0x020 /* Unit is write-protected */
|
|
#define FLPF_EMPTY 0x040 /* Unit is empty */
|
|
#define FLPF_INOPEN 0x080 /* Currently being opened */
|
|
#define FLPF_GETSTAT 0x100 /* Getting unit status */
|
|
|
|
struct fd_types {
|
|
int nheads; /* Heads in use */
|
|
int nsectors; /* sectors per track */
|
|
int nblocks; /* number of blocks */
|
|
int density; /* density code */
|
|
} fdtypes[NR_TYPES] = {
|
|
{ 1, 9, 720 , FLP_DD }, /* 360 Kb */
|
|
{ 2, 9, 1440 , FLP_DD }, /* 720 Kb */
|
|
{ 2, 18, 2880 , FLP_HD }, /* 1.44 Mb */
|
|
};
|
|
|
|
typedef void (*FPV)();
|
|
|
|
/*
|
|
* Private drive functions....
|
|
*/
|
|
static void fdstart __P((struct fd_softc *));
|
|
static void fddone __P((struct fd_softc *));
|
|
static void fdstatus __P((struct fd_softc *));
|
|
static void fd_xfer __P((struct fd_softc *));
|
|
static void fdcint __P((struct fd_softc *));
|
|
static int fd_xfer_ok __P((struct fd_softc *));
|
|
static void fdmotoroff __P((struct fd_softc *));
|
|
static int fdminphys __P((struct buf *));
|
|
static void fdtestdrv __P((struct fd_softc *));
|
|
static int fdgetdisklabel __P((struct fd_softc *, dev_t));
|
|
static int fdselect __P((int, int, int));
|
|
static void fddeselect __P((void));
|
|
|
|
extern __inline__ u_char read_fdreg(u_short regno)
|
|
{
|
|
DMA->dma_mode = regno;
|
|
return(DMA->dma_data);
|
|
}
|
|
|
|
extern __inline__ void write_fdreg(u_short regno, u_short val)
|
|
{
|
|
DMA->dma_mode = regno;
|
|
DMA->dma_data = val;
|
|
}
|
|
|
|
extern __inline__ u_char read_dmastat(void)
|
|
{
|
|
DMA->dma_mode = FDC_CS | DMA_SCREG;
|
|
return(DMA->dma_stat);
|
|
}
|
|
|
|
/*
|
|
* Autoconfig stuff....
|
|
*/
|
|
static int fdcmatch __P((struct device *, struct cfdata *, void *));
|
|
static int fdcprint __P((void *, char *));
|
|
static void fdcattach __P((struct device *, struct device *, void *));
|
|
|
|
struct cfdriver fdccd = {
|
|
NULL, "fdc", (cfmatch_t)fdcmatch, fdcattach, DV_DULL,
|
|
sizeof(struct device), NULL, 0 };
|
|
|
|
static int
|
|
fdcmatch(pdp, cfp, auxp)
|
|
struct device *pdp;
|
|
struct cfdata *cfp;
|
|
void *auxp;
|
|
{
|
|
if(strcmp("fdc", auxp) || cfp->cf_unit != 0)
|
|
return(0);
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
fdcattach(pdp, dp, auxp)
|
|
struct device *pdp, *dp;
|
|
void *auxp;
|
|
{
|
|
struct fd_softc fdsoftc;
|
|
int i, nfound = 0;
|
|
|
|
printf("\n");
|
|
fddeselect();
|
|
for(i = 0; i < NR_DRIVES; i++) {
|
|
|
|
/*
|
|
* Test if unit is present
|
|
*/
|
|
fdsoftc.unit = i;
|
|
fdsoftc.flags = 0;
|
|
st_dmagrab(fdcint, fdtestdrv, &fdsoftc, &lock_stat, 0);
|
|
st_dmafree(&fdsoftc, &lock_stat);
|
|
|
|
if(!(fdsoftc.flags & FLPF_NOTRESP)) {
|
|
nfound++;
|
|
config_found(dp, (void*)i, fdcprint);
|
|
}
|
|
}
|
|
|
|
if(nfound) {
|
|
/*
|
|
* enable disk related interrupts
|
|
*/
|
|
MFP->mf_ierb |= IB_DINT;
|
|
MFP->mf_iprb &= ~IB_DINT;
|
|
MFP->mf_imrb |= IB_DINT;
|
|
}
|
|
}
|
|
|
|
static int
|
|
fdcprint(auxp, pnp)
|
|
void *auxp;
|
|
char *pnp;
|
|
{
|
|
return(UNCONF);
|
|
}
|
|
|
|
static int fdmatch __P((struct device *, struct cfdata *, void *));
|
|
static void fdattach __P((struct device *, struct device *, void *));
|
|
void fdstrategy __P((struct buf *));
|
|
struct dkdriver fddkdriver = { fdstrategy };
|
|
|
|
struct cfdriver fdcd = {
|
|
NULL, "fd", (cfmatch_t)fdmatch, fdattach, DV_DISK,
|
|
sizeof(struct fd_softc), NULL, 0 };
|
|
|
|
static int
|
|
fdmatch(pdp, cfp, auxp)
|
|
struct device *pdp;
|
|
struct cfdata *cfp;
|
|
void *auxp;
|
|
{
|
|
int unit = (int)auxp;
|
|
return(1);
|
|
}
|
|
|
|
static void
|
|
fdattach(pdp, dp, auxp)
|
|
struct device *pdp, *dp;
|
|
void *auxp;
|
|
{
|
|
struct fd_softc *sc;
|
|
|
|
sc = (struct fd_softc *)dp;
|
|
|
|
printf("\n");
|
|
|
|
sc->dkdev.dk_driver = &fddkdriver;
|
|
}
|
|
|
|
fdioctl(dev, cmd, addr, flag, p)
|
|
dev_t dev;
|
|
u_long cmd;
|
|
int flag;
|
|
caddr_t addr;
|
|
struct proc *p;
|
|
{
|
|
struct fd_softc *sc;
|
|
void *data;
|
|
|
|
sc = getsoftc(fdcd, DISKUNIT(dev));
|
|
|
|
if((sc->flags & FLPF_HAVELAB) == 0)
|
|
return(EBADF);
|
|
|
|
switch(cmd) {
|
|
case DIOCSBAD:
|
|
return(EINVAL);
|
|
case DIOCGDINFO:
|
|
*(struct disklabel *)addr = sc->dkdev.dk_label;
|
|
return(0);
|
|
case DIOCGPART:
|
|
((struct partinfo *)addr)->disklab =
|
|
&sc->dkdev.dk_label;
|
|
((struct partinfo *)addr)->part =
|
|
&sc->dkdev.dk_label.d_partitions[DISKPART(dev)];
|
|
return(0);
|
|
#ifdef notyet /* XXX LWP */
|
|
case DIOCSRETRIES:
|
|
case DIOCSSTEP:
|
|
case DIOCSDINFO:
|
|
case DIOCWDINFO:
|
|
case DIOCWLABEL:
|
|
#endif /* notyet */
|
|
default:
|
|
return(ENOTTY);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Open the device. If this is the first open on both the floppy devices,
|
|
* intialize the controller.
|
|
* Note that partition info on the floppy device is used to distinguise
|
|
* between 780Kb and 360Kb floppy's.
|
|
* partition 0: 360Kb
|
|
* partition 1: 780Kb
|
|
*/
|
|
Fdopen(dev, flags, devtype, proc)
|
|
dev_t dev;
|
|
int flags, devtype;
|
|
struct proc *proc;
|
|
{
|
|
struct fd_softc *sc;
|
|
int sps;
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("Fdopen dev=0x%x\n", dev);
|
|
#endif
|
|
|
|
if(DISKPART(dev) >= NR_TYPES)
|
|
return(ENXIO);
|
|
|
|
if((sc = getsoftc(fdcd, DISKUNIT(dev))) == NULL)
|
|
return(ENXIO);
|
|
|
|
/*
|
|
* If no floppy currently open, reset the controller and select
|
|
* floppy type.
|
|
*/
|
|
if(!nopens) {
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("Fdopen device not yet open\n");
|
|
#endif
|
|
nopens++;
|
|
write_fdreg(FDC_CS, IRUPT);
|
|
delay(40);
|
|
}
|
|
|
|
/*
|
|
* Sleep while other process is opening the device
|
|
*/
|
|
sps = splbio();
|
|
while(sc->flags & FLPF_INOPEN)
|
|
tsleep((caddr_t)sc, PRIBIO, "Fdopen", 0);
|
|
splx(sps);
|
|
|
|
if(!(sc->flags & FLPF_ISOPEN)) {
|
|
/*
|
|
* Initialise some driver values.
|
|
*/
|
|
int part = DISKPART(dev);
|
|
void *addr;
|
|
|
|
sc->bufq.b_actf = NULL;
|
|
sc->unit = DISKUNIT(dev);
|
|
sc->part = part;
|
|
sc->nheads = fdtypes[part].nheads;
|
|
sc->nsectors = fdtypes[part].nsectors;
|
|
sc->nblocks = fdtypes[part].nblocks;
|
|
sc->density = fdtypes[part].density;
|
|
sc->curtrk = INV_TRK;
|
|
sc->sector = 0;
|
|
sc->errcnt = 0;
|
|
sc->bounceb = (u_char*)alloc_stmem(SECTOR_SIZE, &addr);
|
|
if(sc->bounceb == NULL)
|
|
return(ENOMEM); /* XXX */
|
|
|
|
/*
|
|
* Go get write protect + loaded status
|
|
*/
|
|
sc->flags |= FLPF_INOPEN|FLPF_GETSTAT;
|
|
sps = splbio();
|
|
st_dmagrab(fdcint, fdstatus, sc, &lock_stat, 0);
|
|
while(sc->flags & FLPF_GETSTAT)
|
|
tsleep((caddr_t)sc, PRIBIO, "Fdopen", 0);
|
|
splx(sps);
|
|
wakeup((caddr_t)sc);
|
|
|
|
if((sc->flags & FLPF_WRTPROT) && (flags & FWRITE)) {
|
|
sc->flags = 0;
|
|
return(EPERM);
|
|
}
|
|
if(sc->flags & FLPF_EMPTY) {
|
|
sc->flags = 0;
|
|
return(ENXIO);
|
|
}
|
|
sc->flags &= ~(FLPF_INOPEN|FLPF_GETSTAT);
|
|
sc->flags |= FLPF_ISOPEN;
|
|
}
|
|
else {
|
|
/*
|
|
* Multiply opens are granted when accessing the same type of
|
|
* floppy (eq. the same partition).
|
|
*/
|
|
if(sc->part != DISKPART(dev))
|
|
return(ENXIO); /* XXX temporarely out of business */
|
|
}
|
|
fdgetdisklabel(sc, dev);
|
|
#ifdef FLP_DEBUG
|
|
printf("Fdopen open succeeded on type %d\n", sc->part);
|
|
#endif
|
|
}
|
|
|
|
fdclose(dev, flags, devtype, proc)
|
|
dev_t dev;
|
|
int flags, devtype;
|
|
struct proc *proc;
|
|
{
|
|
struct fd_softc *sc;
|
|
|
|
sc = getsoftc(fdcd, DISKUNIT(dev));
|
|
free_stmem(sc->bounceb);
|
|
sc->flags = 0;
|
|
nopens--;
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("Closed floppy device -- nopens: %d\n", nopens);
|
|
#endif
|
|
return(0);
|
|
}
|
|
|
|
void
|
|
fdstrategy(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct fd_softc *sc;
|
|
int sps, nblocks;
|
|
|
|
sc = getsoftc(fdcd, DISKUNIT(bp->b_dev));
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fdstrategy: 0x%x\n", bp);
|
|
#endif
|
|
|
|
/*
|
|
* check for valid partition and bounds
|
|
*/
|
|
nblocks = (bp->b_bcount + SECTOR_SIZE - 1) / SECTOR_SIZE;
|
|
if((bp->b_blkno < 0) || ((bp->b_blkno + nblocks) >= sc->nblocks)) {
|
|
if((bp->b_blkno == sc->nblocks) && (bp->b_flags & B_READ)) {
|
|
/*
|
|
* Read 1 block beyond, return EOF
|
|
*/
|
|
bp->b_resid = bp->b_bcount;
|
|
goto done;
|
|
}
|
|
/*
|
|
* Try to limit the size of the transaction, adjust count
|
|
* if we succeed.
|
|
*/
|
|
nblocks = sc->nblocks - bp->b_blkno;
|
|
if((nblocks <= 0) || (bp->b_blkno < 0)) {
|
|
bp->b_error = EINVAL;
|
|
bp->b_flags |= B_ERROR;
|
|
goto done;
|
|
}
|
|
bp->b_bcount = nblocks * SECTOR_SIZE;
|
|
}
|
|
if(bp->b_bcount == 0)
|
|
goto done;
|
|
|
|
/*
|
|
* Set order info for disksort
|
|
*/
|
|
bp->b_block = bp->b_blkno / (sc->nsectors * sc->nheads);
|
|
|
|
/*
|
|
* queue the buf and kick the low level code
|
|
*/
|
|
sps = splbio();
|
|
disksort(&sc->bufq, bp);
|
|
if(!lock_stat) {
|
|
if(fd_state & FLP_MON)
|
|
untimeout((FPV)fdmotoroff, (void*)sc);
|
|
fd_state = FLP_IDLE;
|
|
st_dmagrab(fdcint, fdstart, sc, &lock_stat, 0);
|
|
}
|
|
splx(sps);
|
|
|
|
return;
|
|
done:
|
|
bp->b_resid = bp->b_bcount;
|
|
biodone(bp);
|
|
}
|
|
|
|
/*
|
|
* no dumps to floppy disks thank you.
|
|
*/
|
|
int
|
|
fddump(dev_t dev)
|
|
{
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* no dumps to floppy disks thank you.
|
|
*/
|
|
int
|
|
fdsize(dev)
|
|
dev_t dev;
|
|
{
|
|
return(-1);
|
|
}
|
|
|
|
int
|
|
fdread(dev, uio)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
{
|
|
return(physio(fdstrategy, NULL, dev, B_READ, fdminphys, uio));
|
|
}
|
|
|
|
int
|
|
fdwrite(dev, uio)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
{
|
|
return(physio(fdstrategy, NULL, dev, B_WRITE, fdminphys, uio));
|
|
}
|
|
|
|
/*
|
|
* Called through DMA-dispatcher, get status.
|
|
*/
|
|
static void
|
|
fdstatus(sc)
|
|
struct fd_softc *sc;
|
|
{
|
|
#ifdef FLP_DEBUG
|
|
printf("fdstatus\n");
|
|
#endif
|
|
sc->errcnt = 0;
|
|
fd_state = FLP_STAT;
|
|
fd_xfer(sc);
|
|
}
|
|
|
|
/*
|
|
* Called through the dma-dispatcher. So we know we are the only ones
|
|
* messing with the floppy-controler.
|
|
* Initialize some fields in the fdsoftc for the state-machine and get
|
|
* it going.
|
|
*/
|
|
static void
|
|
fdstart(sc)
|
|
struct fd_softc *sc;
|
|
{
|
|
struct buf *bp;
|
|
|
|
bp = sc->bufq.b_actf;
|
|
sc->sector = bp->b_blkno; /* Start sector for I/O */
|
|
sc->io_data = bp->b_data; /* KVA base for I/O */
|
|
sc->io_bytes = bp->b_bcount; /* Transfer size in bytes */
|
|
sc->io_dir = bp->b_flags & B_READ;/* Direction of transfer */
|
|
sc->errcnt = 0; /* No errors yet */
|
|
fd_state = FLP_XFER; /* Yes, we're going to transfer */
|
|
|
|
fd_xfer(sc);
|
|
}
|
|
|
|
/*
|
|
* The current transaction is finished (for good or bad). Let go of
|
|
* the the dma-resources. Call biodone() to finish the transaction.
|
|
* Find a new transaction to work on.
|
|
*/
|
|
static void
|
|
fddone(sc)
|
|
register struct fd_softc *sc;
|
|
{
|
|
struct buf *bp, *dp;
|
|
struct fd_softc *sc1;
|
|
int i, sps;
|
|
|
|
/*
|
|
* Give others a chance to use the dma.
|
|
*/
|
|
st_dmafree(sc, &lock_stat);
|
|
|
|
|
|
if(fd_state != FLP_STAT) {
|
|
/*
|
|
* Finish current transaction.
|
|
*/
|
|
sps = splbio();
|
|
dp = &sc->bufq;
|
|
bp = dp->b_actf;
|
|
if(bp == NULL)
|
|
panic("fddone");
|
|
dp->b_actf = bp->b_actf;
|
|
splx(sps);
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fddone: unit: %d, buf: %x, resid: %d\n",sc->unit,bp,
|
|
sc->io_bytes);
|
|
#endif
|
|
bp->b_resid = sc->io_bytes;
|
|
biodone(bp);
|
|
}
|
|
fd_state = FLP_MON;
|
|
|
|
if(lock_stat)
|
|
return; /* XXX Is this possible? */
|
|
|
|
/*
|
|
* Find a new transaction on round-robin basis.
|
|
*/
|
|
for(i = sc->unit + 1; ;i++) {
|
|
if(i >= fdcd.cd_ndevs)
|
|
i = 0;
|
|
if((sc1 = fdcd.cd_devs[i]) == NULL)
|
|
continue;
|
|
if(sc1->bufq.b_actf)
|
|
break;
|
|
if(i == sc->unit) {
|
|
timeout((FPV)fdmotoroff, (void*)sc, FLP_MONDELAY);
|
|
#ifdef FLP_DEBUG
|
|
printf("fddone: Nothing to do\n");
|
|
#endif
|
|
return; /* No work */
|
|
}
|
|
}
|
|
fd_state = FLP_IDLE;
|
|
#ifdef FLP_DEBUG
|
|
printf("fddone: Staring job on unit %d\n", sc1->unit);
|
|
#endif
|
|
st_dmagrab(fdcint, fdstart, sc1, &lock_stat, 0);
|
|
}
|
|
|
|
static int
|
|
fdselect(drive, head, dense)
|
|
int drive, head, dense;
|
|
{
|
|
int i, sps, spinning;
|
|
#ifdef FLP_DEBUG
|
|
printf("fdselect: drive=%d, head=%d, dense=%d\n", drive, head, dense);
|
|
#endif
|
|
i = ((drive == 1) ? PA_FLOP1 : PA_FLOP0) | head;
|
|
spinning = motoron;
|
|
motoron = 1;
|
|
|
|
switch(dense) {
|
|
case FLP_DD:
|
|
DMA->dma_drvmode = 0;
|
|
break;
|
|
case FLP_HD:
|
|
DMA->dma_drvmode = (FDC_HDSET|FDC_HDSIG);
|
|
break;
|
|
default:
|
|
panic("fdselect: unknown density code\n");
|
|
}
|
|
if(i != selected) {
|
|
sps = splhigh();
|
|
|
|
selected = i;
|
|
SOUND->sd_selr = YM_IOA;
|
|
SOUND->sd_wdat = (SOUND->sd_rdat & 0x78) | (i ^ 0x07);
|
|
splx(sps);
|
|
}
|
|
return(spinning);
|
|
}
|
|
|
|
static void
|
|
fddeselect()
|
|
{
|
|
int sps;
|
|
|
|
sps = splhigh();
|
|
SOUND->sd_selr = YM_IOA;
|
|
SOUND->sd_wdat = SOUND->sd_rdat | 0x07;
|
|
splx(sps);
|
|
|
|
motoron = selected = 0;
|
|
DMA->dma_drvmode = 0;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* The following functions assume to be running as a result of a *
|
|
* disk-interrupt (e.q. spl = splbio). *
|
|
* They form the finit-state machine, the actual driver. *
|
|
* *
|
|
* fdstart()/ --> fd_xfer() -> activate hardware *
|
|
* fdopen() ^ *
|
|
* | *
|
|
* +-- not ready -<------------+ *
|
|
* | *
|
|
* fdmotoroff()/ --> fdcint() -> fd_xfer_ok() ---+ *
|
|
* h/w interrupt | *
|
|
* \|/ *
|
|
* finished ---> fdone() *
|
|
* *
|
|
****************************************************************************/
|
|
static void
|
|
fd_xfer(sc)
|
|
struct fd_softc *sc;
|
|
{
|
|
register int head = 0;
|
|
register int track, sector, hbit;
|
|
int i;
|
|
u_long phys_addr;
|
|
|
|
switch(fd_state) {
|
|
case FLP_XFER:
|
|
/*
|
|
* Calculate head/track values
|
|
*/
|
|
track = sc->sector / sc->nsectors;
|
|
head = track % sc->nheads;
|
|
track = track / sc->nheads;
|
|
#ifdef FLP_DEBUG
|
|
printf("fd_xfer: sector:%d,head:%d,track:%d\n", sc->sector,head,
|
|
track);
|
|
#endif
|
|
break;
|
|
|
|
case FLP_STAT:
|
|
/*
|
|
* FLP_STAT only wants to recalibrate
|
|
*/
|
|
sc->curtrk = INV_TRK;
|
|
break;
|
|
default:
|
|
panic("fd_xfer: wrong state (0x%x)", fd_state);
|
|
}
|
|
|
|
/*
|
|
* Select the drive.
|
|
*/
|
|
hbit = fdselect(sc->unit, head, sc->density) ? HBIT : 0;
|
|
|
|
if(sc->curtrk == INV_TRK) {
|
|
/*
|
|
* Recalibrate, since we lost track of head positioning.
|
|
* The floppy disk controller has no way of determining its
|
|
* absolute arm position (track). Instead, it steps the
|
|
* arm a track at a time and keeps track of where it
|
|
* thinks it is (in software). However, after a SEEK, the
|
|
* hardware reads information from the diskette telling
|
|
* where the arm actually is. If the arm is in the wrong place,
|
|
* a recalibration is done, which forces the arm to track 0.
|
|
* This way the controller can get back into sync with reality.
|
|
*/
|
|
fd_cmd = RESTORE;
|
|
write_fdreg(FDC_CS, RESTORE|VBIT|hbit);
|
|
timeout((FPV)fdmotoroff, (void*)sc, FLP_XFERDELAY);
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fd_xfer:Recalibrating drive %d\n", sc->unit);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
write_fdreg(FDC_TR, sc->curtrk);
|
|
|
|
/*
|
|
* Issue a SEEK command on the indicated drive unless the arm is
|
|
* already positioned on the correct track.
|
|
*/
|
|
if(track != sc->curtrk) {
|
|
sc->curtrk = track; /* be optimistic */
|
|
write_fdreg(FDC_DR, track);
|
|
write_fdreg(FDC_CS, SEEK|RATE6|VBIT|hbit);
|
|
timeout((FPV)fdmotoroff, (void*)sc, FLP_XFERDELAY);
|
|
fd_cmd = SEEK;
|
|
#ifdef FLP_DEBUG
|
|
printf("fd_xfer:Seek to track %d on drive %d\n",track,sc->unit);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The drive is now on the proper track. Read or write 1 block.
|
|
*/
|
|
sector = sc->sector % sc->nsectors;
|
|
sector++; /* start numbering at 1 */
|
|
|
|
write_fdreg(FDC_SR, sector);
|
|
|
|
phys_addr = (u_long)kvtop(sc->io_data);
|
|
if(phys_addr >= FDC_MAX_DMA_AD) {
|
|
/*
|
|
* We _must_ bounce this address
|
|
*/
|
|
phys_addr = (u_long)kvtop(sc->bounceb);
|
|
if(sc->io_dir == B_WRITE)
|
|
bcopy(sc->io_data, sc->bounceb, SECTOR_SIZE);
|
|
sc->flags |= FLPF_BOUNCE;
|
|
}
|
|
st_dmaaddr_set((caddr_t)phys_addr); /* DMA address setup */
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fd_xfer:Start io (io_addr:%x)\n", kvtop(sc->io_data));
|
|
#endif
|
|
|
|
if(sc->io_dir == B_READ) {
|
|
/* Issue the command */
|
|
st_dmacomm(DMA_FDC | DMA_SCREG, 1);
|
|
write_fdreg(FDC_CS, F_READ|hbit);
|
|
fd_cmd = F_READ;
|
|
}
|
|
else {
|
|
/* Issue the command */
|
|
st_dmacomm(DMA_WRBIT | DMA_FDC | DMA_SCREG, 1);
|
|
write_fdreg(DMA_WRBIT | FDC_CS, F_WRITE|hbit|EBIT|PBIT);
|
|
fd_cmd = F_WRITE;
|
|
}
|
|
timeout((FPV)fdmotoroff, (void*)sc, FLP_XFERDELAY);
|
|
}
|
|
|
|
/* return values of fd_xfer_ok(): */
|
|
#define X_OK 0
|
|
#define X_AGAIN 1
|
|
#define X_ERROR 2
|
|
#define X_FAIL 3
|
|
|
|
/*
|
|
* Hardware interrupt function.
|
|
*/
|
|
static void
|
|
fdcint(sc)
|
|
struct fd_softc *sc;
|
|
{
|
|
struct buf *bp;
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fdcint: unit = %d\n", sc->unit);
|
|
#endif
|
|
|
|
/*
|
|
* Cancel timeout (we made it, didn't we)
|
|
*/
|
|
untimeout((FPV)fdmotoroff, (void*)sc);
|
|
|
|
switch(fd_xfer_ok(sc)) {
|
|
case X_ERROR :
|
|
if(++(sc->errcnt) < MAX_ERRORS) {
|
|
/*
|
|
* Command failed but still retries left.
|
|
*/
|
|
break;
|
|
}
|
|
/* FALL THROUGH */
|
|
case X_FAIL :
|
|
/*
|
|
* Non recoverable error. Fall back to motor-on
|
|
* idle-state.
|
|
*/
|
|
if(fd_error != NULL) {
|
|
printf("Floppy error: %s\n", fd_error);
|
|
fd_error = NULL;
|
|
}
|
|
|
|
if(fd_state == FLP_STAT) {
|
|
sc->flags |= FLPF_EMPTY;
|
|
sc->flags &= ~FLPF_GETSTAT;
|
|
wakeup((caddr_t)sc);
|
|
fddone(sc);
|
|
return;
|
|
}
|
|
|
|
bp = sc->bufq.b_actf;
|
|
|
|
bp->b_error = EIO;
|
|
bp->b_flags |= B_ERROR;
|
|
fd_state = FLP_MON;
|
|
|
|
break;
|
|
case X_AGAIN:
|
|
/*
|
|
* Start next part of state machine.
|
|
*/
|
|
break;
|
|
case X_OK:
|
|
/*
|
|
* Command ok and finished. Reset error-counter.
|
|
* If there are no more bytes to transfer fall back
|
|
* to motor-on idle state.
|
|
*/
|
|
sc->errcnt = 0;
|
|
|
|
if(fd_state == FLP_STAT) {
|
|
sc->flags &= ~FLPF_GETSTAT;
|
|
wakeup((caddr_t)sc);
|
|
fddone(sc);
|
|
return;
|
|
}
|
|
|
|
if((sc->flags & FLPF_BOUNCE) && (sc->io_dir == B_READ))
|
|
bcopy(sc->bounceb, sc->io_data, SECTOR_SIZE);
|
|
sc->flags &= ~FLPF_BOUNCE;
|
|
|
|
sc->sector++;
|
|
sc->io_data += SECTOR_SIZE;
|
|
sc->io_bytes -= SECTOR_SIZE;
|
|
if(sc->io_bytes <= 0)
|
|
fd_state = FLP_MON;
|
|
}
|
|
if(fd_state == FLP_MON)
|
|
fddone(sc);
|
|
else fd_xfer(sc);
|
|
}
|
|
|
|
/*
|
|
* Determine status of last command. Should only be called through
|
|
* 'fdcint()'.
|
|
* Returns:
|
|
* X_ERROR : Error on command; might succeed next time.
|
|
* X_FAIL : Error on command; will never succeed.
|
|
* X_AGAIN : Part of a command succeeded, call 'fd_xfer()' to complete.
|
|
* X_OK : Command succeeded and is complete.
|
|
*
|
|
* This function only affects sc->curtrk.
|
|
*/
|
|
static int
|
|
fd_xfer_ok(sc)
|
|
register struct fd_softc *sc;
|
|
{
|
|
register int status;
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fd_xfer_ok: cmd: 0x%x, state: 0x%x\n", fd_cmd, fd_state);
|
|
#endif
|
|
switch(fd_cmd) {
|
|
case IRUPT:
|
|
/*
|
|
* Timeout. Force a recalibrate before we try again.
|
|
*/
|
|
status = read_fdreg(FDC_CS);
|
|
|
|
fd_error = "Timeout";
|
|
sc->curtrk = INV_TRK;
|
|
return(X_ERROR);
|
|
case F_READ:
|
|
/*
|
|
* Test for DMA error
|
|
*/
|
|
status = read_dmastat();
|
|
if(!(status & DMAOK)) {
|
|
fd_error = "Dma error";
|
|
return(X_ERROR);
|
|
}
|
|
/*
|
|
* Get controller status and check for errors.
|
|
*/
|
|
status = read_fdreg(FDC_CS);
|
|
if(status & (RNF | CRCERR | LD_T00)) {
|
|
fd_error = "Read error";
|
|
if(status & RNF)
|
|
sc->curtrk = INV_TRK;
|
|
return(X_ERROR);
|
|
}
|
|
break;
|
|
case F_WRITE:
|
|
/*
|
|
* Test for DMA error
|
|
*/
|
|
status = read_dmastat();
|
|
if(!(status & DMAOK)) {
|
|
fd_error = "Dma error";
|
|
return(X_ERROR);
|
|
}
|
|
/*
|
|
* Get controller status and check for errors.
|
|
*/
|
|
status = read_fdreg(FDC_CS);
|
|
if(status & WRI_PRO) {
|
|
fd_error = "Write protected";
|
|
return(X_FAIL);
|
|
}
|
|
if(status & (RNF | CRCERR | LD_T00)) {
|
|
fd_error = "Write error";
|
|
sc->curtrk = INV_TRK;
|
|
return(X_ERROR);
|
|
}
|
|
break;
|
|
case SEEK:
|
|
status = read_fdreg(FDC_CS);
|
|
if(status & (RNF | CRCERR)) {
|
|
fd_error = "Seek error";
|
|
sc->curtrk = INV_TRK;
|
|
return(X_ERROR);
|
|
}
|
|
return(X_AGAIN);
|
|
case RESTORE:
|
|
/*
|
|
* Determine if the recalibration succeeded.
|
|
*/
|
|
status = read_fdreg(FDC_CS);
|
|
if(status & RNF) {
|
|
fd_error = "Recalibrate error";
|
|
/* reset controller */
|
|
write_fdreg(FDC_CS, IRUPT);
|
|
sc->curtrk = INV_TRK;
|
|
return(X_ERROR);
|
|
}
|
|
sc->curtrk = 0;
|
|
if(fd_state == FLP_STAT) {
|
|
if(status & WRI_PRO)
|
|
sc->flags |= FLPF_WRTPROT;
|
|
break;
|
|
}
|
|
return(X_AGAIN);
|
|
default:
|
|
fd_error = "Driver error: fd_xfer_ok : Unknown state";
|
|
return(X_FAIL);
|
|
}
|
|
return(X_OK);
|
|
}
|
|
|
|
/*
|
|
* All timeouts will call this function.
|
|
*/
|
|
static void
|
|
fdmotoroff(sc)
|
|
struct fd_softc *sc;
|
|
{
|
|
int sps;
|
|
|
|
/*
|
|
* Get at harware interrupt level
|
|
*/
|
|
sps = splbio();
|
|
|
|
#if FLP_DEBUG
|
|
printf("fdmotoroff, state = 0x%x\n", fd_state);
|
|
#endif
|
|
|
|
switch(fd_state) {
|
|
case FLP_STAT :
|
|
case FLP_XFER :
|
|
/*
|
|
* Timeout during a transfer; cancel transaction
|
|
* set command to 'IRUPT'.
|
|
* A drive-interrupt is simulated to trigger the state
|
|
* machine.
|
|
*/
|
|
/*
|
|
* Cancel current transaction
|
|
*/
|
|
fd_cmd = IRUPT;
|
|
write_fdreg(FDC_CS, IRUPT);
|
|
delay(20);
|
|
(void)read_fdreg(FDC_CS);
|
|
write_fdreg(FDC_CS, RESTORE);
|
|
break;
|
|
|
|
case FLP_MON :
|
|
/*
|
|
* Turn motor off.
|
|
*/
|
|
if(selected)
|
|
fddeselect();
|
|
fd_state = FLP_IDLE;
|
|
break;
|
|
}
|
|
splx(sps);
|
|
}
|
|
|
|
/*
|
|
* min byte count to whats left of the track in question
|
|
*/
|
|
static int
|
|
fdminphys(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct fd_softc *sc;
|
|
int sec, toff, tsz;
|
|
|
|
if((sc = getsoftc(fdcd, DISKUNIT(bp->b_dev))) == NULL)
|
|
return(ENXIO);
|
|
|
|
sec = bp->b_blkno % (sc->nsectors * sc->nheads);
|
|
toff = sec * SECTOR_SIZE;
|
|
tsz = sc->nsectors * sc->nheads * SECTOR_SIZE;
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fdminphys: before %d", bp->b_bcount);
|
|
#endif
|
|
|
|
bp->b_bcount = min(bp->b_bcount, tsz - toff);
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf(" after %d\n", bp->b_bcount);
|
|
#endif
|
|
|
|
return(bp->b_bcount);
|
|
}
|
|
|
|
/*
|
|
* Used to find out wich drives are actually connected. We do this by issueing
|
|
* is 'RESTORE' command and check if the 'track-0' bit is set. This also works
|
|
* if the drive is present but no floppy is inserted.
|
|
*/
|
|
static void
|
|
fdtestdrv(fdsoftc)
|
|
struct fd_softc *fdsoftc;
|
|
{
|
|
int i, status;
|
|
|
|
/*
|
|
* Select the right unit and head.
|
|
*/
|
|
fdselect(fdsoftc->unit, 0, FLP_DD);
|
|
|
|
write_fdreg(FDC_CS, RESTORE|HBIT);
|
|
|
|
/*
|
|
* Wait for about 2 seconds.
|
|
*/
|
|
delay(2000000);
|
|
|
|
status = read_fdreg(FDC_CS);
|
|
if(status & (RNF|BUSY)) {
|
|
write_fdreg(FDC_CS, IRUPT); /* reset controller */
|
|
delay(40);
|
|
}
|
|
|
|
if(!(status & LD_T00))
|
|
fdsoftc->flags |= FLPF_NOTRESP;
|
|
|
|
fddeselect();
|
|
}
|
|
|
|
/*
|
|
* Build disk label. For now we only create a label from what we know
|
|
* from 'sc'.
|
|
*/
|
|
static int
|
|
fdgetdisklabel(sc, dev)
|
|
struct fd_softc *sc;
|
|
dev_t dev;
|
|
{
|
|
struct disklabel *lp, *dlp;
|
|
int part;
|
|
|
|
/*
|
|
* If we already got one, get out.
|
|
*/
|
|
if(sc->flags & FLPF_HAVELAB)
|
|
return(0);
|
|
|
|
#ifdef FLP_DEBUG
|
|
printf("fdgetdisklabel()\n");
|
|
#endif
|
|
|
|
part = DISKPART(dev);
|
|
lp = &sc->dkdev.dk_label;
|
|
bzero(lp, sizeof(struct disklabel));
|
|
|
|
lp->d_secsize = SECTOR_SIZE;
|
|
lp->d_ntracks = sc->nheads;
|
|
lp->d_nsectors = sc->nsectors;
|
|
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
|
|
lp->d_ncylinders = sc->nblocks / lp->d_secpercyl;
|
|
lp->d_secperunit = sc->nblocks;
|
|
|
|
lp->d_type = DTYPE_FLOPPY;
|
|
lp->d_rpm = 300; /* good guess I suppose. */
|
|
lp->d_interleave = 1; /* FIXME: is this OK? */
|
|
lp->d_bbsize = 0;
|
|
lp->d_sbsize = 0;
|
|
lp->d_npartitions = part + 1;
|
|
lp->d_trkseek = STEP_DELAY;
|
|
lp->d_magic = DISKMAGIC;
|
|
lp->d_magic2 = DISKMAGIC;
|
|
lp->d_checksum = dkcksum(lp);
|
|
lp->d_partitions[part].p_size = lp->d_secperunit;
|
|
lp->d_partitions[part].p_fstype = FS_UNUSED;
|
|
lp->d_partitions[part].p_fsize = 1024;
|
|
lp->d_partitions[part].p_frag = 8;
|
|
sc->flags |= FLPF_HAVELAB;
|
|
|
|
return(0);
|
|
}
|