44968cba76
US patent 4809168. This is a reader / writer synchronization mechanism, designed for lock-less read operations.
1288 lines
31 KiB
C
1288 lines
31 KiB
C
/* $NetBSD: kern_synch.c,v 1.290 2011/07/30 17:01:04 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
|
|
* The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
|
|
* Daniel Sieger.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1990, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.290 2011/07/30 17:01:04 christos Exp $");
|
|
|
|
#include "opt_kstack.h"
|
|
#include "opt_perfctrs.h"
|
|
#include "opt_sa.h"
|
|
#include "opt_dtrace.h"
|
|
|
|
#define __MUTEX_PRIVATE
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#if defined(PERFCTRS)
|
|
#include <sys/pmc.h>
|
|
#endif
|
|
#include <sys/cpu.h>
|
|
#include <sys/pserialize.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/syscall_stats.h>
|
|
#include <sys/sleepq.h>
|
|
#include <sys/lockdebug.h>
|
|
#include <sys/evcnt.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/lwpctl.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/simplelock.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <dev/lockstat.h>
|
|
|
|
#include <sys/dtrace_bsd.h>
|
|
int dtrace_vtime_active=0;
|
|
dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
|
|
|
|
static void sched_unsleep(struct lwp *, bool);
|
|
static void sched_changepri(struct lwp *, pri_t);
|
|
static void sched_lendpri(struct lwp *, pri_t);
|
|
static void resched_cpu(struct lwp *);
|
|
|
|
syncobj_t sleep_syncobj = {
|
|
SOBJ_SLEEPQ_SORTED,
|
|
sleepq_unsleep,
|
|
sleepq_changepri,
|
|
sleepq_lendpri,
|
|
syncobj_noowner,
|
|
};
|
|
|
|
syncobj_t sched_syncobj = {
|
|
SOBJ_SLEEPQ_SORTED,
|
|
sched_unsleep,
|
|
sched_changepri,
|
|
sched_lendpri,
|
|
syncobj_noowner,
|
|
};
|
|
|
|
/* "Lightning bolt": once a second sleep address. */
|
|
kcondvar_t lbolt __cacheline_aligned;
|
|
|
|
u_int sched_pstats_ticks __cacheline_aligned;
|
|
|
|
/* Preemption event counters. */
|
|
static struct evcnt kpreempt_ev_crit __cacheline_aligned;
|
|
static struct evcnt kpreempt_ev_klock __cacheline_aligned;
|
|
static struct evcnt kpreempt_ev_immed __cacheline_aligned;
|
|
|
|
/*
|
|
* During autoconfiguration or after a panic, a sleep will simply lower the
|
|
* priority briefly to allow interrupts, then return. The priority to be
|
|
* used (safepri) is machine-dependent, thus this value is initialized and
|
|
* maintained in the machine-dependent layers. This priority will typically
|
|
* be 0, or the lowest priority that is safe for use on the interrupt stack;
|
|
* it can be made higher to block network software interrupts after panics.
|
|
*/
|
|
int safepri;
|
|
|
|
void
|
|
synch_init(void)
|
|
{
|
|
|
|
cv_init(&lbolt, "lbolt");
|
|
|
|
evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
|
|
"kpreempt", "defer: critical section");
|
|
evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
|
|
"kpreempt", "defer: kernel_lock");
|
|
evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
|
|
"kpreempt", "immediate");
|
|
}
|
|
|
|
/*
|
|
* OBSOLETE INTERFACE
|
|
*
|
|
* General sleep call. Suspends the current LWP until a wakeup is
|
|
* performed on the specified identifier. The LWP will then be made
|
|
* runnable with the specified priority. Sleeps at most timo/hz seconds (0
|
|
* means no timeout). If pri includes PCATCH flag, signals are checked
|
|
* before and after sleeping, else signals are not checked. Returns 0 if
|
|
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
|
|
* signal needs to be delivered, ERESTART is returned if the current system
|
|
* call should be restarted if possible, and EINTR is returned if the system
|
|
* call should be interrupted by the signal (return EINTR).
|
|
*
|
|
* The interlock is held until we are on a sleep queue. The interlock will
|
|
* be locked before returning back to the caller unless the PNORELOCK flag
|
|
* is specified, in which case the interlock will always be unlocked upon
|
|
* return.
|
|
*/
|
|
int
|
|
ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
|
|
volatile struct simplelock *interlock)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
sleepq_t *sq;
|
|
kmutex_t *mp;
|
|
int error;
|
|
|
|
KASSERT((l->l_pflag & LP_INTR) == 0);
|
|
KASSERT(ident != &lbolt);
|
|
|
|
if (sleepq_dontsleep(l)) {
|
|
(void)sleepq_abort(NULL, 0);
|
|
if ((priority & PNORELOCK) != 0)
|
|
simple_unlock(interlock);
|
|
return 0;
|
|
}
|
|
|
|
l->l_kpriority = true;
|
|
sq = sleeptab_lookup(&sleeptab, ident, &mp);
|
|
sleepq_enter(sq, l, mp);
|
|
sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
|
|
|
|
if (interlock != NULL) {
|
|
KASSERT(simple_lock_held(interlock));
|
|
simple_unlock(interlock);
|
|
}
|
|
|
|
error = sleepq_block(timo, priority & PCATCH);
|
|
|
|
if (interlock != NULL && (priority & PNORELOCK) == 0)
|
|
simple_lock(interlock);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
|
|
kmutex_t *mtx)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
sleepq_t *sq;
|
|
kmutex_t *mp;
|
|
int error;
|
|
|
|
KASSERT((l->l_pflag & LP_INTR) == 0);
|
|
KASSERT(ident != &lbolt);
|
|
|
|
if (sleepq_dontsleep(l)) {
|
|
(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
|
|
return 0;
|
|
}
|
|
|
|
l->l_kpriority = true;
|
|
sq = sleeptab_lookup(&sleeptab, ident, &mp);
|
|
sleepq_enter(sq, l, mp);
|
|
sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
|
|
mutex_exit(mtx);
|
|
error = sleepq_block(timo, priority & PCATCH);
|
|
|
|
if ((priority & PNORELOCK) == 0)
|
|
mutex_enter(mtx);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* General sleep call for situations where a wake-up is not expected.
|
|
*/
|
|
int
|
|
kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
kmutex_t *mp;
|
|
sleepq_t *sq;
|
|
int error;
|
|
|
|
KASSERT(!(timo == 0 && intr == false));
|
|
|
|
if (sleepq_dontsleep(l))
|
|
return sleepq_abort(NULL, 0);
|
|
|
|
if (mtx != NULL)
|
|
mutex_exit(mtx);
|
|
l->l_kpriority = true;
|
|
sq = sleeptab_lookup(&sleeptab, l, &mp);
|
|
sleepq_enter(sq, l, mp);
|
|
sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
|
|
error = sleepq_block(timo, intr);
|
|
if (mtx != NULL)
|
|
mutex_enter(mtx);
|
|
|
|
return error;
|
|
}
|
|
|
|
#ifdef KERN_SA
|
|
/*
|
|
* sa_awaken:
|
|
*
|
|
* We believe this lwp is an SA lwp. If it's yielding,
|
|
* let it know it needs to wake up.
|
|
*
|
|
* We are called and exit with the lwp locked. We are
|
|
* called in the middle of wakeup operations, so we need
|
|
* to not touch the locks at all.
|
|
*/
|
|
void
|
|
sa_awaken(struct lwp *l)
|
|
{
|
|
/* LOCK_ASSERT(lwp_locked(l, NULL)); */
|
|
|
|
if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
|
|
l->l_flag &= ~LW_SA_IDLE;
|
|
}
|
|
#endif /* KERN_SA */
|
|
|
|
/*
|
|
* OBSOLETE INTERFACE
|
|
*
|
|
* Make all LWPs sleeping on the specified identifier runnable.
|
|
*/
|
|
void
|
|
wakeup(wchan_t ident)
|
|
{
|
|
sleepq_t *sq;
|
|
kmutex_t *mp;
|
|
|
|
if (__predict_false(cold))
|
|
return;
|
|
|
|
sq = sleeptab_lookup(&sleeptab, ident, &mp);
|
|
sleepq_wake(sq, ident, (u_int)-1, mp);
|
|
}
|
|
|
|
/*
|
|
* OBSOLETE INTERFACE
|
|
*
|
|
* Make the highest priority LWP first in line on the specified
|
|
* identifier runnable.
|
|
*/
|
|
void
|
|
wakeup_one(wchan_t ident)
|
|
{
|
|
sleepq_t *sq;
|
|
kmutex_t *mp;
|
|
|
|
if (__predict_false(cold))
|
|
return;
|
|
|
|
sq = sleeptab_lookup(&sleeptab, ident, &mp);
|
|
sleepq_wake(sq, ident, 1, mp);
|
|
}
|
|
|
|
|
|
/*
|
|
* General yield call. Puts the current LWP back on its run queue and
|
|
* performs a voluntary context switch. Should only be called when the
|
|
* current LWP explicitly requests it (eg sched_yield(2)).
|
|
*/
|
|
void
|
|
yield(void)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
|
|
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
|
|
lwp_lock(l);
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
|
|
KASSERT(l->l_stat == LSONPROC);
|
|
l->l_kpriority = false;
|
|
(void)mi_switch(l);
|
|
KERNEL_LOCK(l->l_biglocks, l);
|
|
}
|
|
|
|
/*
|
|
* General preemption call. Puts the current LWP back on its run queue
|
|
* and performs an involuntary context switch.
|
|
*/
|
|
void
|
|
preempt(void)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
|
|
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
|
|
lwp_lock(l);
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
|
|
KASSERT(l->l_stat == LSONPROC);
|
|
l->l_kpriority = false;
|
|
l->l_nivcsw++;
|
|
(void)mi_switch(l);
|
|
KERNEL_LOCK(l->l_biglocks, l);
|
|
}
|
|
|
|
/*
|
|
* Handle a request made by another agent to preempt the current LWP
|
|
* in-kernel. Usually called when l_dopreempt may be non-zero.
|
|
*
|
|
* Character addresses for lockstat only.
|
|
*/
|
|
static char in_critical_section;
|
|
static char kernel_lock_held;
|
|
static char is_softint;
|
|
static char cpu_kpreempt_enter_fail;
|
|
|
|
bool
|
|
kpreempt(uintptr_t where)
|
|
{
|
|
uintptr_t failed;
|
|
lwp_t *l;
|
|
int s, dop, lsflag;
|
|
|
|
l = curlwp;
|
|
failed = 0;
|
|
while ((dop = l->l_dopreempt) != 0) {
|
|
if (l->l_stat != LSONPROC) {
|
|
/*
|
|
* About to block (or die), let it happen.
|
|
* Doesn't really count as "preemption has
|
|
* been blocked", since we're going to
|
|
* context switch.
|
|
*/
|
|
l->l_dopreempt = 0;
|
|
return true;
|
|
}
|
|
if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
|
|
/* Can't preempt idle loop, don't count as failure. */
|
|
l->l_dopreempt = 0;
|
|
return true;
|
|
}
|
|
if (__predict_false(l->l_nopreempt != 0)) {
|
|
/* LWP holds preemption disabled, explicitly. */
|
|
if ((dop & DOPREEMPT_COUNTED) == 0) {
|
|
kpreempt_ev_crit.ev_count++;
|
|
}
|
|
failed = (uintptr_t)&in_critical_section;
|
|
break;
|
|
}
|
|
if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
|
|
/* Can't preempt soft interrupts yet. */
|
|
l->l_dopreempt = 0;
|
|
failed = (uintptr_t)&is_softint;
|
|
break;
|
|
}
|
|
s = splsched();
|
|
if (__predict_false(l->l_blcnt != 0 ||
|
|
curcpu()->ci_biglock_wanted != NULL)) {
|
|
/* Hold or want kernel_lock, code is not MT safe. */
|
|
splx(s);
|
|
if ((dop & DOPREEMPT_COUNTED) == 0) {
|
|
kpreempt_ev_klock.ev_count++;
|
|
}
|
|
failed = (uintptr_t)&kernel_lock_held;
|
|
break;
|
|
}
|
|
if (__predict_false(!cpu_kpreempt_enter(where, s))) {
|
|
/*
|
|
* It may be that the IPL is too high.
|
|
* kpreempt_enter() can schedule an
|
|
* interrupt to retry later.
|
|
*/
|
|
splx(s);
|
|
failed = (uintptr_t)&cpu_kpreempt_enter_fail;
|
|
break;
|
|
}
|
|
/* Do it! */
|
|
if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
|
|
kpreempt_ev_immed.ev_count++;
|
|
}
|
|
lwp_lock(l);
|
|
mi_switch(l);
|
|
l->l_nopreempt++;
|
|
splx(s);
|
|
|
|
/* Take care of any MD cleanup. */
|
|
cpu_kpreempt_exit(where);
|
|
l->l_nopreempt--;
|
|
}
|
|
|
|
if (__predict_true(!failed)) {
|
|
return false;
|
|
}
|
|
|
|
/* Record preemption failure for reporting via lockstat. */
|
|
atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
|
|
lsflag = 0;
|
|
LOCKSTAT_ENTER(lsflag);
|
|
if (__predict_false(lsflag)) {
|
|
if (where == 0) {
|
|
where = (uintptr_t)__builtin_return_address(0);
|
|
}
|
|
/* Preemption is on, might recurse, so make it atomic. */
|
|
if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
|
|
(void *)where) == NULL) {
|
|
LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
|
|
l->l_pfaillock = failed;
|
|
}
|
|
}
|
|
LOCKSTAT_EXIT(lsflag);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return true if preemption is explicitly disabled.
|
|
*/
|
|
bool
|
|
kpreempt_disabled(void)
|
|
{
|
|
const lwp_t *l = curlwp;
|
|
|
|
return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
|
|
(l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
|
|
}
|
|
|
|
/*
|
|
* Disable kernel preemption.
|
|
*/
|
|
void
|
|
kpreempt_disable(void)
|
|
{
|
|
|
|
KPREEMPT_DISABLE(curlwp);
|
|
}
|
|
|
|
/*
|
|
* Reenable kernel preemption.
|
|
*/
|
|
void
|
|
kpreempt_enable(void)
|
|
{
|
|
|
|
KPREEMPT_ENABLE(curlwp);
|
|
}
|
|
|
|
/*
|
|
* Compute the amount of time during which the current lwp was running.
|
|
*
|
|
* - update l_rtime unless it's an idle lwp.
|
|
*/
|
|
|
|
void
|
|
updatertime(lwp_t *l, const struct bintime *now)
|
|
{
|
|
|
|
if (__predict_false(l->l_flag & LW_IDLE))
|
|
return;
|
|
|
|
/* rtime += now - stime */
|
|
bintime_add(&l->l_rtime, now);
|
|
bintime_sub(&l->l_rtime, &l->l_stime);
|
|
}
|
|
|
|
/*
|
|
* Select next LWP from the current CPU to run..
|
|
*/
|
|
static inline lwp_t *
|
|
nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
|
|
{
|
|
lwp_t *newl;
|
|
|
|
/*
|
|
* Let sched_nextlwp() select the LWP to run the CPU next.
|
|
* If no LWP is runnable, select the idle LWP.
|
|
*
|
|
* Note that spc_lwplock might not necessary be held, and
|
|
* new thread would be unlocked after setting the LWP-lock.
|
|
*/
|
|
newl = sched_nextlwp();
|
|
if (newl != NULL) {
|
|
sched_dequeue(newl);
|
|
KASSERT(lwp_locked(newl, spc->spc_mutex));
|
|
KASSERT(newl->l_cpu == ci);
|
|
newl->l_stat = LSONPROC;
|
|
newl->l_pflag |= LP_RUNNING;
|
|
lwp_setlock(newl, spc->spc_lwplock);
|
|
} else {
|
|
newl = ci->ci_data.cpu_idlelwp;
|
|
newl->l_stat = LSONPROC;
|
|
newl->l_pflag |= LP_RUNNING;
|
|
}
|
|
|
|
/*
|
|
* Only clear want_resched if there are no pending (slow)
|
|
* software interrupts.
|
|
*/
|
|
ci->ci_want_resched = ci->ci_data.cpu_softints;
|
|
spc->spc_flags &= ~SPCF_SWITCHCLEAR;
|
|
spc->spc_curpriority = lwp_eprio(newl);
|
|
|
|
return newl;
|
|
}
|
|
|
|
/*
|
|
* The machine independent parts of context switch.
|
|
*
|
|
* Returns 1 if another LWP was actually run.
|
|
*/
|
|
int
|
|
mi_switch(lwp_t *l)
|
|
{
|
|
struct cpu_info *ci;
|
|
struct schedstate_percpu *spc;
|
|
struct lwp *newl;
|
|
int retval, oldspl;
|
|
struct bintime bt;
|
|
bool returning;
|
|
|
|
KASSERT(lwp_locked(l, NULL));
|
|
KASSERT(kpreempt_disabled());
|
|
LOCKDEBUG_BARRIER(l->l_mutex, 1);
|
|
|
|
kstack_check_magic(l);
|
|
|
|
binuptime(&bt);
|
|
|
|
KASSERT((l->l_pflag & LP_RUNNING) != 0);
|
|
KASSERT(l->l_cpu == curcpu());
|
|
ci = l->l_cpu;
|
|
spc = &ci->ci_schedstate;
|
|
returning = false;
|
|
newl = NULL;
|
|
|
|
/*
|
|
* If we have been asked to switch to a specific LWP, then there
|
|
* is no need to inspect the run queues. If a soft interrupt is
|
|
* blocking, then return to the interrupted thread without adjusting
|
|
* VM context or its start time: neither have been changed in order
|
|
* to take the interrupt.
|
|
*/
|
|
if (l->l_switchto != NULL) {
|
|
if ((l->l_pflag & LP_INTR) != 0) {
|
|
returning = true;
|
|
softint_block(l);
|
|
if ((l->l_pflag & LP_TIMEINTR) != 0)
|
|
updatertime(l, &bt);
|
|
}
|
|
newl = l->l_switchto;
|
|
l->l_switchto = NULL;
|
|
}
|
|
#ifndef __HAVE_FAST_SOFTINTS
|
|
else if (ci->ci_data.cpu_softints != 0) {
|
|
/* There are pending soft interrupts, so pick one. */
|
|
newl = softint_picklwp();
|
|
newl->l_stat = LSONPROC;
|
|
newl->l_pflag |= LP_RUNNING;
|
|
}
|
|
#endif /* !__HAVE_FAST_SOFTINTS */
|
|
|
|
/* Count time spent in current system call */
|
|
if (!returning) {
|
|
SYSCALL_TIME_SLEEP(l);
|
|
|
|
/*
|
|
* XXXSMP If we are using h/w performance counters,
|
|
* save context.
|
|
*/
|
|
#if PERFCTRS
|
|
if (PMC_ENABLED(l->l_proc)) {
|
|
pmc_save_context(l->l_proc);
|
|
}
|
|
#endif
|
|
updatertime(l, &bt);
|
|
}
|
|
|
|
/* Lock the runqueue */
|
|
KASSERT(l->l_stat != LSRUN);
|
|
mutex_spin_enter(spc->spc_mutex);
|
|
|
|
/*
|
|
* If on the CPU and we have gotten this far, then we must yield.
|
|
*/
|
|
if (l->l_stat == LSONPROC && l != newl) {
|
|
KASSERT(lwp_locked(l, spc->spc_lwplock));
|
|
if ((l->l_flag & LW_IDLE) == 0) {
|
|
l->l_stat = LSRUN;
|
|
lwp_setlock(l, spc->spc_mutex);
|
|
sched_enqueue(l, true);
|
|
/*
|
|
* Handle migration. Note that "migrating LWP" may
|
|
* be reset here, if interrupt/preemption happens
|
|
* early in idle LWP.
|
|
*/
|
|
if (l->l_target_cpu != NULL) {
|
|
KASSERT((l->l_pflag & LP_INTR) == 0);
|
|
spc->spc_migrating = l;
|
|
}
|
|
} else
|
|
l->l_stat = LSIDL;
|
|
}
|
|
|
|
/* Pick new LWP to run. */
|
|
if (newl == NULL) {
|
|
newl = nextlwp(ci, spc);
|
|
}
|
|
|
|
/* Items that must be updated with the CPU locked. */
|
|
if (!returning) {
|
|
/* Update the new LWP's start time. */
|
|
newl->l_stime = bt;
|
|
|
|
/*
|
|
* ci_curlwp changes when a fast soft interrupt occurs.
|
|
* We use cpu_onproc to keep track of which kernel or
|
|
* user thread is running 'underneath' the software
|
|
* interrupt. This is important for time accounting,
|
|
* itimers and forcing user threads to preempt (aston).
|
|
*/
|
|
ci->ci_data.cpu_onproc = newl;
|
|
}
|
|
|
|
/*
|
|
* Preemption related tasks. Must be done with the current
|
|
* CPU locked.
|
|
*/
|
|
cpu_did_resched(l);
|
|
l->l_dopreempt = 0;
|
|
if (__predict_false(l->l_pfailaddr != 0)) {
|
|
LOCKSTAT_FLAG(lsflag);
|
|
LOCKSTAT_ENTER(lsflag);
|
|
LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
|
|
LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
|
|
1, l->l_pfailtime, l->l_pfailaddr);
|
|
LOCKSTAT_EXIT(lsflag);
|
|
l->l_pfailtime = 0;
|
|
l->l_pfaillock = 0;
|
|
l->l_pfailaddr = 0;
|
|
}
|
|
|
|
if (l != newl) {
|
|
struct lwp *prevlwp;
|
|
|
|
/* Release all locks, but leave the current LWP locked */
|
|
if (l->l_mutex == spc->spc_mutex) {
|
|
/*
|
|
* Drop spc_lwplock, if the current LWP has been moved
|
|
* to the run queue (it is now locked by spc_mutex).
|
|
*/
|
|
mutex_spin_exit(spc->spc_lwplock);
|
|
} else {
|
|
/*
|
|
* Otherwise, drop the spc_mutex, we are done with the
|
|
* run queues.
|
|
*/
|
|
mutex_spin_exit(spc->spc_mutex);
|
|
}
|
|
|
|
/*
|
|
* Mark that context switch is going to be performed
|
|
* for this LWP, to protect it from being switched
|
|
* to on another CPU.
|
|
*/
|
|
KASSERT(l->l_ctxswtch == 0);
|
|
l->l_ctxswtch = 1;
|
|
l->l_ncsw++;
|
|
KASSERT((l->l_pflag & LP_RUNNING) != 0);
|
|
l->l_pflag &= ~LP_RUNNING;
|
|
|
|
/*
|
|
* Increase the count of spin-mutexes before the release
|
|
* of the last lock - we must remain at IPL_SCHED during
|
|
* the context switch.
|
|
*/
|
|
KASSERTMSG(ci->ci_mtx_count == -1,
|
|
("%s: cpu%u: ci_mtx_count (%d) != -1",
|
|
__func__, cpu_index(ci), ci->ci_mtx_count));
|
|
oldspl = MUTEX_SPIN_OLDSPL(ci);
|
|
ci->ci_mtx_count--;
|
|
lwp_unlock(l);
|
|
|
|
/* Count the context switch on this CPU. */
|
|
ci->ci_data.cpu_nswtch++;
|
|
|
|
/* Update status for lwpctl, if present. */
|
|
if (l->l_lwpctl != NULL)
|
|
l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
|
|
|
|
/*
|
|
* Save old VM context, unless a soft interrupt
|
|
* handler is blocking.
|
|
*/
|
|
if (!returning)
|
|
pmap_deactivate(l);
|
|
|
|
/*
|
|
* We may need to spin-wait if 'newl' is still
|
|
* context switching on another CPU.
|
|
*/
|
|
if (__predict_false(newl->l_ctxswtch != 0)) {
|
|
u_int count;
|
|
count = SPINLOCK_BACKOFF_MIN;
|
|
while (newl->l_ctxswtch)
|
|
SPINLOCK_BACKOFF(count);
|
|
}
|
|
|
|
/*
|
|
* If DTrace has set the active vtime enum to anything
|
|
* other than INACTIVE (0), then it should have set the
|
|
* function to call.
|
|
*/
|
|
if (__predict_false(dtrace_vtime_active)) {
|
|
(*dtrace_vtime_switch_func)(newl);
|
|
}
|
|
|
|
/* Switch to the new LWP.. */
|
|
prevlwp = cpu_switchto(l, newl, returning);
|
|
ci = curcpu();
|
|
|
|
/*
|
|
* Switched away - we have new curlwp.
|
|
* Restore VM context and IPL.
|
|
*/
|
|
pmap_activate(l);
|
|
uvm_emap_switch(l);
|
|
pcu_switchpoint(l);
|
|
|
|
if (prevlwp != NULL) {
|
|
/* Normalize the count of the spin-mutexes */
|
|
ci->ci_mtx_count++;
|
|
/* Unmark the state of context switch */
|
|
membar_exit();
|
|
prevlwp->l_ctxswtch = 0;
|
|
}
|
|
|
|
/* Update status for lwpctl, if present. */
|
|
if (l->l_lwpctl != NULL) {
|
|
l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
|
|
l->l_lwpctl->lc_pctr++;
|
|
}
|
|
|
|
/* Note trip through cpu_switchto(). */
|
|
pserialize_switchpoint();
|
|
|
|
KASSERT(l->l_cpu == ci);
|
|
splx(oldspl);
|
|
retval = 1;
|
|
} else {
|
|
/* Nothing to do - just unlock and return. */
|
|
mutex_spin_exit(spc->spc_mutex);
|
|
lwp_unlock(l);
|
|
retval = 0;
|
|
}
|
|
|
|
KASSERT(l == curlwp);
|
|
KASSERT(l->l_stat == LSONPROC);
|
|
|
|
/*
|
|
* XXXSMP If we are using h/w performance counters, restore context.
|
|
* XXXSMP preemption problem.
|
|
*/
|
|
#if PERFCTRS
|
|
if (PMC_ENABLED(l->l_proc)) {
|
|
pmc_restore_context(l->l_proc);
|
|
}
|
|
#endif
|
|
SYSCALL_TIME_WAKEUP(l);
|
|
LOCKDEBUG_BARRIER(NULL, 1);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* The machine independent parts of context switch to oblivion.
|
|
* Does not return. Call with the LWP unlocked.
|
|
*/
|
|
void
|
|
lwp_exit_switchaway(lwp_t *l)
|
|
{
|
|
struct cpu_info *ci;
|
|
struct lwp *newl;
|
|
struct bintime bt;
|
|
|
|
ci = l->l_cpu;
|
|
|
|
KASSERT(kpreempt_disabled());
|
|
KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
|
|
KASSERT(ci == curcpu());
|
|
LOCKDEBUG_BARRIER(NULL, 0);
|
|
|
|
kstack_check_magic(l);
|
|
|
|
/* Count time spent in current system call */
|
|
SYSCALL_TIME_SLEEP(l);
|
|
binuptime(&bt);
|
|
updatertime(l, &bt);
|
|
|
|
/* Must stay at IPL_SCHED even after releasing run queue lock. */
|
|
(void)splsched();
|
|
|
|
/*
|
|
* Let sched_nextlwp() select the LWP to run the CPU next.
|
|
* If no LWP is runnable, select the idle LWP.
|
|
*
|
|
* Note that spc_lwplock might not necessary be held, and
|
|
* new thread would be unlocked after setting the LWP-lock.
|
|
*/
|
|
spc_lock(ci);
|
|
#ifndef __HAVE_FAST_SOFTINTS
|
|
if (ci->ci_data.cpu_softints != 0) {
|
|
/* There are pending soft interrupts, so pick one. */
|
|
newl = softint_picklwp();
|
|
newl->l_stat = LSONPROC;
|
|
newl->l_pflag |= LP_RUNNING;
|
|
} else
|
|
#endif /* !__HAVE_FAST_SOFTINTS */
|
|
{
|
|
newl = nextlwp(ci, &ci->ci_schedstate);
|
|
}
|
|
|
|
/* Update the new LWP's start time. */
|
|
newl->l_stime = bt;
|
|
l->l_pflag &= ~LP_RUNNING;
|
|
|
|
/*
|
|
* ci_curlwp changes when a fast soft interrupt occurs.
|
|
* We use cpu_onproc to keep track of which kernel or
|
|
* user thread is running 'underneath' the software
|
|
* interrupt. This is important for time accounting,
|
|
* itimers and forcing user threads to preempt (aston).
|
|
*/
|
|
ci->ci_data.cpu_onproc = newl;
|
|
|
|
/*
|
|
* Preemption related tasks. Must be done with the current
|
|
* CPU locked.
|
|
*/
|
|
cpu_did_resched(l);
|
|
|
|
/* Unlock the run queue. */
|
|
spc_unlock(ci);
|
|
|
|
/* Count the context switch on this CPU. */
|
|
ci->ci_data.cpu_nswtch++;
|
|
|
|
/* Update status for lwpctl, if present. */
|
|
if (l->l_lwpctl != NULL)
|
|
l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
|
|
|
|
/*
|
|
* We may need to spin-wait if 'newl' is still
|
|
* context switching on another CPU.
|
|
*/
|
|
if (__predict_false(newl->l_ctxswtch != 0)) {
|
|
u_int count;
|
|
count = SPINLOCK_BACKOFF_MIN;
|
|
while (newl->l_ctxswtch)
|
|
SPINLOCK_BACKOFF(count);
|
|
}
|
|
|
|
/*
|
|
* If DTrace has set the active vtime enum to anything
|
|
* other than INACTIVE (0), then it should have set the
|
|
* function to call.
|
|
*/
|
|
if (__predict_false(dtrace_vtime_active)) {
|
|
(*dtrace_vtime_switch_func)(newl);
|
|
}
|
|
|
|
/* Switch to the new LWP.. */
|
|
(void)cpu_switchto(NULL, newl, false);
|
|
|
|
for (;;) continue; /* XXX: convince gcc about "noreturn" */
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* setrunnable: change LWP state to be runnable, placing it on the run queue.
|
|
*
|
|
* Call with the process and LWP locked. Will return with the LWP unlocked.
|
|
*/
|
|
void
|
|
setrunnable(struct lwp *l)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
struct cpu_info *ci;
|
|
|
|
KASSERT((l->l_flag & LW_IDLE) == 0);
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
KASSERT(lwp_locked(l, NULL));
|
|
KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
|
|
|
|
switch (l->l_stat) {
|
|
case LSSTOP:
|
|
/*
|
|
* If we're being traced (possibly because someone attached us
|
|
* while we were stopped), check for a signal from the debugger.
|
|
*/
|
|
if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
|
|
signotify(l);
|
|
p->p_nrlwps++;
|
|
break;
|
|
case LSSUSPENDED:
|
|
l->l_flag &= ~LW_WSUSPEND;
|
|
p->p_nrlwps++;
|
|
cv_broadcast(&p->p_lwpcv);
|
|
break;
|
|
case LSSLEEP:
|
|
KASSERT(l->l_wchan != NULL);
|
|
break;
|
|
default:
|
|
panic("setrunnable: lwp %p state was %d", l, l->l_stat);
|
|
}
|
|
|
|
#ifdef KERN_SA
|
|
if (l->l_proc->p_sa)
|
|
sa_awaken(l);
|
|
#endif /* KERN_SA */
|
|
|
|
/*
|
|
* If the LWP was sleeping, start it again.
|
|
*/
|
|
if (l->l_wchan != NULL) {
|
|
l->l_stat = LSSLEEP;
|
|
/* lwp_unsleep() will release the lock. */
|
|
lwp_unsleep(l, true);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
|
|
* about to call mi_switch(), in which case it will yield.
|
|
*/
|
|
if ((l->l_pflag & LP_RUNNING) != 0) {
|
|
l->l_stat = LSONPROC;
|
|
l->l_slptime = 0;
|
|
lwp_unlock(l);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Look for a CPU to run.
|
|
* Set the LWP runnable.
|
|
*/
|
|
ci = sched_takecpu(l);
|
|
l->l_cpu = ci;
|
|
spc_lock(ci);
|
|
lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
|
|
sched_setrunnable(l);
|
|
l->l_stat = LSRUN;
|
|
l->l_slptime = 0;
|
|
|
|
sched_enqueue(l, false);
|
|
resched_cpu(l);
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
/*
|
|
* suspendsched:
|
|
*
|
|
* Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
|
|
*/
|
|
void
|
|
suspendsched(void)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
struct lwp *l;
|
|
struct proc *p;
|
|
|
|
/*
|
|
* We do this by process in order not to violate the locking rules.
|
|
*/
|
|
mutex_enter(proc_lock);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
mutex_enter(p->p_lock);
|
|
if ((p->p_flag & PK_SYSTEM) != 0) {
|
|
mutex_exit(p->p_lock);
|
|
continue;
|
|
}
|
|
|
|
p->p_stat = SSTOP;
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
if (l == curlwp)
|
|
continue;
|
|
|
|
lwp_lock(l);
|
|
|
|
/*
|
|
* Set L_WREBOOT so that the LWP will suspend itself
|
|
* when it tries to return to user mode. We want to
|
|
* try and get to get as many LWPs as possible to
|
|
* the user / kernel boundary, so that they will
|
|
* release any locks that they hold.
|
|
*/
|
|
l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
|
|
|
|
if (l->l_stat == LSSLEEP &&
|
|
(l->l_flag & LW_SINTR) != 0) {
|
|
/* setrunnable() will release the lock. */
|
|
setrunnable(l);
|
|
continue;
|
|
}
|
|
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
mutex_exit(proc_lock);
|
|
|
|
/*
|
|
* Kick all CPUs to make them preempt any LWPs running in user mode.
|
|
* They'll trap into the kernel and suspend themselves in userret().
|
|
*/
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
spc_lock(ci);
|
|
cpu_need_resched(ci, RESCHED_IMMED);
|
|
spc_unlock(ci);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sched_unsleep:
|
|
*
|
|
* The is called when the LWP has not been awoken normally but instead
|
|
* interrupted: for example, if the sleep timed out. Because of this,
|
|
* it's not a valid action for running or idle LWPs.
|
|
*/
|
|
static void
|
|
sched_unsleep(struct lwp *l, bool cleanup)
|
|
{
|
|
|
|
lwp_unlock(l);
|
|
panic("sched_unsleep");
|
|
}
|
|
|
|
static void
|
|
resched_cpu(struct lwp *l)
|
|
{
|
|
struct cpu_info *ci = l->l_cpu;
|
|
|
|
KASSERT(lwp_locked(l, NULL));
|
|
if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
|
|
cpu_need_resched(ci, 0);
|
|
}
|
|
|
|
static void
|
|
sched_changepri(struct lwp *l, pri_t pri)
|
|
{
|
|
|
|
KASSERT(lwp_locked(l, NULL));
|
|
|
|
if (l->l_stat == LSRUN) {
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
|
|
sched_dequeue(l);
|
|
l->l_priority = pri;
|
|
sched_enqueue(l, false);
|
|
} else {
|
|
l->l_priority = pri;
|
|
}
|
|
resched_cpu(l);
|
|
}
|
|
|
|
static void
|
|
sched_lendpri(struct lwp *l, pri_t pri)
|
|
{
|
|
|
|
KASSERT(lwp_locked(l, NULL));
|
|
|
|
if (l->l_stat == LSRUN) {
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
|
|
sched_dequeue(l);
|
|
l->l_inheritedprio = pri;
|
|
sched_enqueue(l, false);
|
|
} else {
|
|
l->l_inheritedprio = pri;
|
|
}
|
|
resched_cpu(l);
|
|
}
|
|
|
|
struct lwp *
|
|
syncobj_noowner(wchan_t wchan)
|
|
{
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
|
|
const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
|
|
|
|
/*
|
|
* Constants for averages over 1, 5 and 15 minutes when sampling at
|
|
* 5 second intervals.
|
|
*/
|
|
static const fixpt_t cexp[ ] = {
|
|
0.9200444146293232 * FSCALE, /* exp(-1/12) */
|
|
0.9834714538216174 * FSCALE, /* exp(-1/60) */
|
|
0.9944598480048967 * FSCALE, /* exp(-1/180) */
|
|
};
|
|
|
|
/*
|
|
* sched_pstats:
|
|
*
|
|
* => Update process statistics and check CPU resource allocation.
|
|
* => Call scheduler-specific hook to eventually adjust LWP priorities.
|
|
* => Compute load average of a quantity on 1, 5 and 15 minute intervals.
|
|
*/
|
|
void
|
|
sched_pstats(void)
|
|
{
|
|
extern struct loadavg averunnable;
|
|
struct loadavg *avg = &averunnable;
|
|
const int clkhz = (stathz != 0 ? stathz : hz);
|
|
static bool backwards = false;
|
|
static u_int lavg_count = 0;
|
|
struct proc *p;
|
|
int nrun;
|
|
|
|
sched_pstats_ticks++;
|
|
if (++lavg_count >= 5) {
|
|
lavg_count = 0;
|
|
nrun = 0;
|
|
}
|
|
mutex_enter(proc_lock);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
struct lwp *l;
|
|
struct rlimit *rlim;
|
|
long runtm;
|
|
int sig;
|
|
|
|
/* Increment sleep time (if sleeping), ignore overflow. */
|
|
mutex_enter(p->p_lock);
|
|
runtm = p->p_rtime.sec;
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
fixpt_t lpctcpu;
|
|
u_int lcpticks;
|
|
|
|
if (__predict_false((l->l_flag & LW_IDLE) != 0))
|
|
continue;
|
|
lwp_lock(l);
|
|
runtm += l->l_rtime.sec;
|
|
l->l_swtime++;
|
|
sched_lwp_stats(l);
|
|
|
|
/* For load average calculation. */
|
|
if (__predict_false(lavg_count == 0) &&
|
|
(l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
|
|
switch (l->l_stat) {
|
|
case LSSLEEP:
|
|
if (l->l_slptime > 1) {
|
|
break;
|
|
}
|
|
case LSRUN:
|
|
case LSONPROC:
|
|
case LSIDL:
|
|
nrun++;
|
|
}
|
|
}
|
|
lwp_unlock(l);
|
|
|
|
l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
|
|
if (l->l_slptime != 0)
|
|
continue;
|
|
|
|
lpctcpu = l->l_pctcpu;
|
|
lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
|
|
lpctcpu += ((FSCALE - ccpu) *
|
|
(lcpticks * FSCALE / clkhz)) >> FSHIFT;
|
|
l->l_pctcpu = lpctcpu;
|
|
}
|
|
/* Calculating p_pctcpu only for ps(1) */
|
|
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
|
|
|
|
/*
|
|
* Check if the process exceeds its CPU resource allocation.
|
|
* If over max, kill it.
|
|
*/
|
|
rlim = &p->p_rlimit[RLIMIT_CPU];
|
|
sig = 0;
|
|
if (__predict_false(runtm >= rlim->rlim_cur)) {
|
|
if (runtm >= rlim->rlim_max)
|
|
sig = SIGKILL;
|
|
else {
|
|
sig = SIGXCPU;
|
|
if (rlim->rlim_cur < rlim->rlim_max)
|
|
rlim->rlim_cur += 5;
|
|
}
|
|
}
|
|
mutex_exit(p->p_lock);
|
|
if (__predict_false(runtm < 0)) {
|
|
if (!backwards) {
|
|
backwards = true;
|
|
printf("WARNING: negative runtime; "
|
|
"monotonic clock has gone backwards\n");
|
|
}
|
|
} else if (__predict_false(sig)) {
|
|
KASSERT((p->p_flag & PK_SYSTEM) == 0);
|
|
psignal(p, sig);
|
|
}
|
|
}
|
|
mutex_exit(proc_lock);
|
|
|
|
/* Load average calculation. */
|
|
if (__predict_false(lavg_count == 0)) {
|
|
int i;
|
|
CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
|
|
for (i = 0; i < __arraycount(cexp); i++) {
|
|
avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
|
|
nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
|
|
}
|
|
}
|
|
|
|
/* Lightning bolt. */
|
|
cv_broadcast(&lbolt);
|
|
}
|