694 lines
23 KiB
Groff
694 lines
23 KiB
Groff
.\" $NetBSD: openssl_pem.3,v 1.1 2003/07/24 14:16:52 itojun Exp $
|
|
.\"
|
|
.\" Automatically generated by Pod::Man version 1.02
|
|
.\" Thu Jul 24 13:08:08 2003
|
|
.\"
|
|
.\" Standard preamble:
|
|
.\" ======================================================================
|
|
.de Sh \" Subsection heading
|
|
.br
|
|
.if t .Sp
|
|
.ne 5
|
|
.PP
|
|
\fB\\$1\fR
|
|
.PP
|
|
..
|
|
.de Sp \" Vertical space (when we can't use .PP)
|
|
.if t .sp .5v
|
|
.if n .sp
|
|
..
|
|
.de Ip \" List item
|
|
.br
|
|
.ie \\n(.$>=3 .ne \\$3
|
|
.el .ne 3
|
|
.IP "\\$1" \\$2
|
|
..
|
|
.de Vb \" Begin verbatim text
|
|
.ft CW
|
|
.nf
|
|
.ne \\$1
|
|
..
|
|
.de Ve \" End verbatim text
|
|
.ft R
|
|
|
|
.fi
|
|
..
|
|
.\" Set up some character translations and predefined strings. \*(-- will
|
|
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
|
.\" double quote, and \*(R" will give a right double quote. | will give a
|
|
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
|
|
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
|
|
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
|
|
.tr \(*W-|\(bv\*(Tr
|
|
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
|
.ie n \{\
|
|
. ds -- \(*W-
|
|
. ds PI pi
|
|
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
|
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
|
. ds L" ""
|
|
. ds R" ""
|
|
. ds C` `
|
|
. ds C' '
|
|
'br\}
|
|
.el\{\
|
|
. ds -- \|\(em\|
|
|
. ds PI \(*p
|
|
. ds L" ``
|
|
. ds R" ''
|
|
'br\}
|
|
.\"
|
|
.\" If the F register is turned on, we'll generate index entries on stderr
|
|
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
|
|
.\" index entries marked with X<> in POD. Of course, you'll have to process
|
|
.\" the output yourself in some meaningful fashion.
|
|
.if \nF \{\
|
|
. de IX
|
|
. tm Index:\\$1\t\\n%\t"\\$2"
|
|
. .
|
|
. nr % 0
|
|
. rr F
|
|
.\}
|
|
.\"
|
|
.\" For nroff, turn off justification. Always turn off hyphenation; it
|
|
.\" makes way too many mistakes in technical documents.
|
|
.hy 0
|
|
.if n .na
|
|
.\"
|
|
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
|
.\" Fear. Run. Save yourself. No user-serviceable parts.
|
|
.bd B 3
|
|
. \" fudge factors for nroff and troff
|
|
.if n \{\
|
|
. ds #H 0
|
|
. ds #V .8m
|
|
. ds #F .3m
|
|
. ds #[ \f1
|
|
. ds #] \fP
|
|
.\}
|
|
.if t \{\
|
|
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
|
. ds #V .6m
|
|
. ds #F 0
|
|
. ds #[ \&
|
|
. ds #] \&
|
|
.\}
|
|
. \" simple accents for nroff and troff
|
|
.if n \{\
|
|
. ds ' \&
|
|
. ds ` \&
|
|
. ds ^ \&
|
|
. ds , \&
|
|
. ds ~ ~
|
|
. ds /
|
|
.\}
|
|
.if t \{\
|
|
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
|
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
|
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
|
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
|
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
|
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
|
.\}
|
|
. \" troff and (daisy-wheel) nroff accents
|
|
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
|
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
|
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
|
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
|
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
|
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
|
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
|
.ds ae a\h'-(\w'a'u*4/10)'e
|
|
.ds Ae A\h'-(\w'A'u*4/10)'E
|
|
. \" corrections for vroff
|
|
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
|
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
|
. \" for low resolution devices (crt and lpr)
|
|
.if \n(.H>23 .if \n(.V>19 \
|
|
\{\
|
|
. ds : e
|
|
. ds 8 ss
|
|
. ds o a
|
|
. ds d- d\h'-1'\(ga
|
|
. ds D- D\h'-1'\(hy
|
|
. ds th \o'bp'
|
|
. ds Th \o'LP'
|
|
. ds ae ae
|
|
. ds Ae AE
|
|
.\}
|
|
.rm #[ #] #H #V #F C
|
|
.\" ======================================================================
|
|
.\"
|
|
.IX Title "pem 3"
|
|
.TH pem 3 "0.9.7b" "2002-01-04" "OpenSSL"
|
|
.UC
|
|
.SH "NAME"
|
|
\&\s-1PEM\s0 \- \s-1PEM\s0 routines
|
|
.SH "LIBRARY"
|
|
libcrypto, -lcrypto
|
|
.SH "SYNOPSIS"
|
|
.IX Header "SYNOPSIS"
|
|
.Vb 1
|
|
\& #include <openssl/pem.h>
|
|
.Ve
|
|
.Vb 2
|
|
\& EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
|
\& unsigned char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
|
\& unsigned char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
|
\& char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
|
\& char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
|
|
\& char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
|
|
\& char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
|
|
\& int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
|
|
.Ve
|
|
.Vb 2
|
|
\& RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
|
|
\& unsigned char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
|
|
\& unsigned char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
|
|
.Ve
|
|
.Vb 2
|
|
\& RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
|
|
.Ve
|
|
.Vb 2
|
|
\& DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
|
|
\& unsigned char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
|
|
\& unsigned char *kstr, int klen,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_DSAparams(FILE *fp, DSA *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_DHparams(BIO *bp, DH *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_DHparams(FILE *fp, DH *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_X509(BIO *bp, X509 *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_X509(FILE *fp, X509 *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_X509_AUX(FILE *fp, X509 *x);
|
|
.Ve
|
|
.Vb 2
|
|
\& X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 2
|
|
\& X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
|
|
.Ve
|
|
.Vb 6
|
|
\& X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
\& X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
\& int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
|
|
\& int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
|
|
.Ve
|
|
.Vb 3
|
|
\& NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
|
|
\& NETSCAPE_CERT_SEQUENCE **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 3
|
|
\& NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
|
|
\& NETSCAPE_CERT_SEQUENCE **x,
|
|
\& pem_password_cb *cb, void *u);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
|
|
.Ve
|
|
.Vb 1
|
|
\& int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
|
|
.Ve
|
|
.SH "DESCRIPTION"
|
|
.IX Header "DESCRIPTION"
|
|
The \s-1PEM\s0 functions read or write structures in \s-1PEM\s0 format. In
|
|
this sense \s-1PEM\s0 format is simply base64 encoded data surrounded
|
|
by header lines.
|
|
.PP
|
|
For more details about the meaning of arguments see the
|
|
\&\fB\s-1PEM\s0 \s-1FUNCTION\s0 \s-1ARGUMENTS\s0\fR section.
|
|
.PP
|
|
Each operation has four functions associated with it. For
|
|
clarity the term "\fBfoobar\fR functions" will be used to collectively
|
|
refer to the \fIPEM_read_bio_foobar()\fR, \fIPEM_read_foobar()\fR,
|
|
\&\fIPEM_write_bio_foobar()\fR and \fIPEM_write_foobar()\fR functions.
|
|
.PP
|
|
The \fBPrivateKey\fR functions read or write a private key in
|
|
\&\s-1PEM\s0 format using an \s-1EVP_PKEY\s0 structure. The write routines use
|
|
\&\*(L"traditional\*(R" private key format and can handle both \s-1RSA\s0 and \s-1DSA\s0
|
|
private keys. The read functions can additionally transparently
|
|
handle PKCS#8 format encrypted and unencrypted keys too.
|
|
.PP
|
|
\&\fIPEM_write_bio_PKCS8PrivateKey()\fR and \fIPEM_write_PKCS8PrivateKey()\fR
|
|
write a private key in an \s-1EVP_PKEY\s0 structure in PKCS#8
|
|
EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption
|
|
algorithms. The \fBcipher\fR argument specifies the encryption algoritm to
|
|
use: unlike all other \s-1PEM\s0 routines the encryption is applied at the
|
|
PKCS#8 level and not in the \s-1PEM\s0 headers. If \fBcipher\fR is \s-1NULL\s0 then no
|
|
encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.
|
|
.PP
|
|
\&\fIPEM_write_bio_PKCS8PrivateKey_nid()\fR and \fIPEM_write_PKCS8PrivateKey_nid()\fR
|
|
also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
|
|
it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
|
|
to use is specified in the \fBnid\fR parameter and should be the \s-1NID\s0 of the
|
|
corresponding \s-1OBJECT\s0 \s-1IDENTIFIER\s0 (see \s-1NOTES\s0 section).
|
|
.PP
|
|
The \fB\s-1PUBKEY\s0\fR functions process a public key using an \s-1EVP_PKEY\s0
|
|
structure. The public key is encoded as a SubjectPublicKeyInfo
|
|
structure.
|
|
.PP
|
|
The \fBRSAPrivateKey\fR functions process an \s-1RSA\s0 private key using an
|
|
\&\s-1RSA\s0 structure. It handles the same formats as the \fBPrivateKey\fR
|
|
functions but an error occurs if the private key is not \s-1RSA\s0.
|
|
.PP
|
|
The \fBRSAPublicKey\fR functions process an \s-1RSA\s0 public key using an
|
|
\&\s-1RSA\s0 structure. The public key is encoded using a PKCS#1 RSAPublicKey
|
|
structure.
|
|
.PP
|
|
The \fB\s-1RSA_PUBKEY\s0\fR functions also process an \s-1RSA\s0 public key using
|
|
an \s-1RSA\s0 structure. However the public key is encoded using a
|
|
SubjectPublicKeyInfo structure and an error occurs if the public
|
|
key is not \s-1RSA\s0.
|
|
.PP
|
|
The \fBDSAPrivateKey\fR functions process a \s-1DSA\s0 private key using a
|
|
\&\s-1DSA\s0 structure. It handles the same formats as the \fBPrivateKey\fR
|
|
functions but an error occurs if the private key is not \s-1DSA\s0.
|
|
.PP
|
|
The \fB\s-1DSA_PUBKEY\s0\fR functions process a \s-1DSA\s0 public key using
|
|
a \s-1DSA\s0 structure. The public key is encoded using a
|
|
SubjectPublicKeyInfo structure and an error occurs if the public
|
|
key is not \s-1DSA\s0.
|
|
.PP
|
|
The \fBDSAparams\fR functions process \s-1DSA\s0 parameters using a \s-1DSA\s0
|
|
structure. The parameters are encoded using a foobar structure.
|
|
.PP
|
|
The \fBDHparams\fR functions process \s-1DH\s0 parameters using a \s-1DH\s0
|
|
structure. The parameters are encoded using a PKCS#3 DHparameter
|
|
structure.
|
|
.PP
|
|
The \fBX509\fR functions process an X509 certificate using an X509
|
|
structure. They will also process a trusted X509 certificate but
|
|
any trust settings are discarded.
|
|
.PP
|
|
The \fBX509_AUX\fR functions process a trusted X509 certificate using
|
|
an X509 structure.
|
|
.PP
|
|
The \fBX509_REQ\fR and \fBX509_REQ_NEW\fR functions process a PKCS#10
|
|
certificate request using an X509_REQ structure. The \fBX509_REQ\fR
|
|
write functions use \fB\s-1CERTIFICATE\s0 \s-1REQUEST\s0\fR in the header whereas
|
|
the \fBX509_REQ_NEW\fR functions use \fB\s-1NEW\s0 \s-1CERTIFICATE\s0 \s-1REQUEST\s0\fR
|
|
(as required by some CAs). The \fBX509_REQ\fR read functions will
|
|
handle either form so there are no \fBX509_REQ_NEW\fR read functions.
|
|
.PP
|
|
The \fBX509_CRL\fR functions process an X509 \s-1CRL\s0 using an X509_CRL
|
|
structure.
|
|
.PP
|
|
The \fB\s-1PKCS7\s0\fR functions process a PKCS#7 ContentInfo using a \s-1PKCS7\s0
|
|
structure.
|
|
.PP
|
|
The \fB\s-1NETSCAPE_CERT_SEQUENCE\s0\fR functions process a Netscape Certificate
|
|
Sequence using a \s-1NETSCAPE_CERT_SEQUENCE\s0 structure.
|
|
.SH "PEM FUNCTION ARGUMENTS"
|
|
.IX Header "PEM FUNCTION ARGUMENTS"
|
|
The \s-1PEM\s0 functions have many common arguments.
|
|
.PP
|
|
The \fBbp\fR \s-1BIO\s0 parameter (if present) specifies the \s-1BIO\s0 to read from
|
|
or write to.
|
|
.PP
|
|
The \fBfp\fR \s-1FILE\s0 parameter (if present) specifies the \s-1FILE\s0 pointer to
|
|
read from or write to.
|
|
.PP
|
|
The \s-1PEM\s0 read functions all take an argument \fB\s-1TYPE\s0 **x\fR and return
|
|
a \fB\s-1TYPE\s0 *\fR pointer. Where \fB\s-1TYPE\s0\fR is whatever structure the function
|
|
uses. If \fBx\fR is \s-1NULL\s0 then the parameter is ignored. If \fBx\fR is not
|
|
\&\s-1NULL\s0 but \fB*x\fR is \s-1NULL\s0 then the structure returned will be written
|
|
to \fB*x\fR. If neither \fBx\fR nor \fB*x\fR is \s-1NULL\s0 then an attempt is made
|
|
to reuse the structure at \fB*x\fR (but see \s-1BUGS\s0 and \s-1EXAMPLES\s0 sections).
|
|
Irrespective of the value of \fBx\fR a pointer to the structure is always
|
|
returned (or \s-1NULL\s0 if an error occurred).
|
|
.PP
|
|
The \s-1PEM\s0 functions which write private keys take an \fBenc\fR parameter
|
|
which specifies the encryption algorithm to use, encryption is done
|
|
at the \s-1PEM\s0 level. If this parameter is set to \s-1NULL\s0 then the private
|
|
key is written in unencrypted form.
|
|
.PP
|
|
The \fBcb\fR argument is the callback to use when querying for the pass
|
|
phrase used for encrypted \s-1PEM\s0 structures (normally only private keys).
|
|
.PP
|
|
For the \s-1PEM\s0 write routines if the \fBkstr\fR parameter is not \s-1NULL\s0 then
|
|
\&\fBklen\fR bytes at \fBkstr\fR are used as the passphrase and \fBcb\fR is
|
|
ignored.
|
|
.PP
|
|
If the \fBcb\fR parameters is set to \s-1NULL\s0 and the \fBu\fR parameter is not
|
|
\&\s-1NULL\s0 then the \fBu\fR parameter is interpreted as a null terminated string
|
|
to use as the passphrase. If both \fBcb\fR and \fBu\fR are \s-1NULL\s0 then the
|
|
default callback routine is used which will typically prompt for the
|
|
passphrase on the current terminal with echoing turned off.
|
|
.PP
|
|
The default passphrase callback is sometimes inappropriate (for example
|
|
in a \s-1GUI\s0 application) so an alternative can be supplied. The callback
|
|
routine has the following form:
|
|
.PP
|
|
.Vb 1
|
|
\& int cb(char *buf, int size, int rwflag, void *u);
|
|
.Ve
|
|
\&\fBbuf\fR is the buffer to write the passphrase to. \fBsize\fR is the maximum
|
|
length of the passphrase (i.e. the size of buf). \fBrwflag\fR is a flag
|
|
which is set to 0 when reading and 1 when writing. A typical routine
|
|
will ask the user to verify the passphrase (for example by prompting
|
|
for it twice) if \fBrwflag\fR is 1. The \fBu\fR parameter has the same
|
|
value as the \fBu\fR parameter passed to the \s-1PEM\s0 routine. It allows
|
|
arbitrary data to be passed to the callback by the application
|
|
(for example a window handle in a \s-1GUI\s0 application). The callback
|
|
\&\fBmust\fR return the number of characters in the passphrase or 0 if
|
|
an error occurred.
|
|
.SH "EXAMPLES"
|
|
.IX Header "EXAMPLES"
|
|
Although the \s-1PEM\s0 routines take several arguments in almost all applications
|
|
most of them are set to 0 or \s-1NULL\s0.
|
|
.PP
|
|
Read a certificate in \s-1PEM\s0 format from a \s-1BIO:\s0
|
|
.PP
|
|
.Vb 6
|
|
\& X509 *x;
|
|
\& x = PEM_read_bio(bp, NULL, 0, NULL);
|
|
\& if (x == NULL)
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Alternative method:
|
|
.PP
|
|
.Vb 5
|
|
\& X509 *x = NULL;
|
|
\& if (!PEM_read_bio_X509(bp, &x, 0, NULL))
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Write a certificate to a \s-1BIO:\s0
|
|
.PP
|
|
.Vb 4
|
|
\& if (!PEM_write_bio_X509(bp, x))
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Write an unencrypted private key to a \s-1FILE\s0 pointer:
|
|
.PP
|
|
.Vb 4
|
|
\& if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Write a private key (using traditional format) to a \s-1BIO\s0 using
|
|
triple \s-1DES\s0 encryption, the pass phrase is prompted for:
|
|
.PP
|
|
.Vb 4
|
|
\& if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Write a private key (using PKCS#8 format) to a \s-1BIO\s0 using triple
|
|
\&\s-1DES\s0 encryption, using the pass phrase \*(L"hello\*(R":
|
|
.PP
|
|
.Vb 4
|
|
\& if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Read a private key from a \s-1BIO\s0 using the pass phrase \*(L"hello\*(R":
|
|
.PP
|
|
.Vb 5
|
|
\& key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
|
|
\& if (key == NULL)
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Read a private key from a \s-1BIO\s0 using a pass phrase callback:
|
|
.PP
|
|
.Vb 5
|
|
\& key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
|
|
\& if (key == NULL)
|
|
\& {
|
|
\& /* Error */
|
|
\& }
|
|
.Ve
|
|
Skeleton pass phrase callback:
|
|
.PP
|
|
.Vb 6
|
|
\& int pass_cb(char *buf, int size, int rwflag, void *u);
|
|
\& {
|
|
\& int len;
|
|
\& char *tmp;
|
|
\& /* We'd probably do something else if 'rwflag' is 1 */
|
|
\& printf("Enter pass phrase for \e"%s\e"\en", u);
|
|
.Ve
|
|
.Vb 3
|
|
\& /* get pass phrase, length 'len' into 'tmp' */
|
|
\& tmp = "hello";
|
|
\& len = strlen(tmp);
|
|
.Ve
|
|
.Vb 6
|
|
\& if (len <= 0) return 0;
|
|
\& /* if too long, truncate */
|
|
\& if (len > size) len = size;
|
|
\& memcpy(buf, tmp, len);
|
|
\& return len;
|
|
\& }
|
|
.Ve
|
|
.SH "NOTES"
|
|
.IX Header "NOTES"
|
|
The old \fBPrivateKey\fR write routines are retained for compatibility.
|
|
New applications should write private keys using the
|
|
\&\fIPEM_write_bio_PKCS8PrivateKey()\fR or \fIPEM_write_PKCS8PrivateKey()\fR routines
|
|
because they are more secure (they use an iteration count of 2048 whereas
|
|
the traditional routines use a count of 1) unless compatibility with older
|
|
versions of OpenSSL is important.
|
|
.PP
|
|
The \fBPrivateKey\fR read routines can be used in all applications because
|
|
they handle all formats transparently.
|
|
.PP
|
|
A frequent cause of problems is attempting to use the \s-1PEM\s0 routines like
|
|
this:
|
|
.PP
|
|
.Vb 2
|
|
\& X509 *x;
|
|
\& PEM_read_bio_X509(bp, &x, 0, NULL);
|
|
.Ve
|
|
this is a bug because an attempt will be made to reuse the data at \fBx\fR
|
|
which is an uninitialised pointer.
|
|
.SH "PEM ENCRYPTION FORMAT"
|
|
.IX Header "PEM ENCRYPTION FORMAT"
|
|
This old \fBPrivateKey\fR routines use a non standard technique for encryption.
|
|
.PP
|
|
The private key (or other data) takes the following form:
|
|
.PP
|
|
.Vb 3
|
|
\& -----BEGIN RSA PRIVATE KEY-----
|
|
\& Proc-Type: 4,ENCRYPTED
|
|
\& DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
|
|
.Ve
|
|
.Vb 2
|
|
\& ...base64 encoded data...
|
|
\& -----END RSA PRIVATE KEY-----
|
|
.Ve
|
|
The line beginning DEK-Info contains two comma separated pieces of information:
|
|
the encryption algorithm name as used by \fIEVP_get_cipherbyname()\fR and an 8
|
|
byte \fBsalt\fR encoded as a set of hexadecimal digits.
|
|
.PP
|
|
After this is the base64 encoded encrypted data.
|
|
.PP
|
|
The encryption key is determined using \fIEVP_bytestokey()\fR, using \fBsalt\fR and an
|
|
iteration count of 1. The \s-1IV\s0 used is the value of \fBsalt\fR and *not* the \s-1IV\s0
|
|
returned by \fIEVP_bytestokey()\fR.
|
|
.SH "BUGS"
|
|
.IX Header "BUGS"
|
|
The \s-1PEM\s0 read routines in some versions of OpenSSL will not correctly reuse
|
|
an existing structure. Therefore the following:
|
|
.PP
|
|
.Vb 1
|
|
\& PEM_read_bio(bp, &x, 0, NULL);
|
|
.Ve
|
|
where \fBx\fR already contains a valid certificate, may not work, whereas:
|
|
.PP
|
|
.Vb 2
|
|
\& X509_free(x);
|
|
\& x = PEM_read_bio(bp, NULL, 0, NULL);
|
|
.Ve
|
|
is guaranteed to work.
|
|
.SH "RETURN CODES"
|
|
.IX Header "RETURN CODES"
|
|
The read routines return either a pointer to the structure read or \s-1NULL\s0
|
|
is an error occurred.
|
|
.PP
|
|
The write routines return 1 for success or 0 for failure.
|