NetBSD/lib/libcrypto/man/EVP_SealInit.3

223 lines
7.1 KiB
Groff

.\" $NetBSD: EVP_SealInit.3,v 1.12 2003/07/24 14:16:41 itojun Exp $
.\"
.\" Automatically generated by Pod::Man version 1.02
.\" Thu Jul 24 13:07:57 2003
.\"
.\" Standard preamble:
.\" ======================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Ip \" List item
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` `
. ds C' '
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
.\" index entries marked with X<> in POD. Of course, you'll have to process
.\" the output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
. .
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it
.\" makes way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ======================================================================
.\"
.IX Title "EVP_SealInit 3"
.TH EVP_SealInit 3 "0.9.7b" "2003-01-26" "OpenSSL"
.UC
.SH "NAME"
EVP_SealInit, EVP_SealUpdate, EVP_SealFinal \- \s-1EVP\s0 envelope encryption
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/evp.h>
.Ve
.Vb 6
\& int EVP_SealInit(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type, unsigned char **ek,
\& int *ekl, unsigned char *iv,EVP_PKEY **pubk, int npubk);
\& int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
\& int *outl, unsigned char *in, int inl);
\& int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
\& int *outl);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The \s-1EVP\s0 envelope routines are a high level interface to envelope
encryption. They generate a random key and \s-1IV\s0 (if required) then
\&\*(L"envelope\*(R" it by using public key encryption. Data can then be
encrypted using this key.
.PP
\&\fIEVP_SealInit()\fR initializes a cipher context \fBctx\fR for encryption
with cipher \fBtype\fR using a random secret key and \s-1IV\s0. \fBtype\fR is normally
supplied by a function such as \fIEVP_des_cbc()\fR. The secret key is encrypted
using one or more public keys, this allows the same encrypted data to be
decrypted using any of the corresponding private keys. \fBek\fR is an array of
buffers where the public key encrypted secret key will be written, each buffer
must contain enough room for the corresponding encrypted key: that is
\&\fBek[i]\fR must have room for \fBEVP_PKEY_size(pubk[i])\fR bytes. The actual
size of each encrypted secret key is written to the array \fBekl\fR. \fBpubk\fR is
an array of \fBnpubk\fR public keys.
.PP
The \fBiv\fR parameter is a buffer where the generated \s-1IV\s0 is written to. It must
contain enough room for the corresponding cipher's \s-1IV\s0, as determined by (for
example) EVP_CIPHER_iv_length(type).
.PP
If the cipher does not require an \s-1IV\s0 then the \fBiv\fR parameter is ignored
and can be \fB\s-1NULL\s0\fR.
.PP
\&\fIEVP_SealUpdate()\fR and \fIEVP_SealFinal()\fR have exactly the same properties
as the \fIEVP_EncryptUpdate()\fR and \fIEVP_EncryptFinal()\fR routines, as
documented on the EVP_EncryptInit(3) manual
page.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fIEVP_SealInit()\fR returns 0 on error or \fBnpubk\fR if successful.
.PP
\&\fIEVP_SealUpdate()\fR and \fIEVP_SealFinal()\fR return 1 for success and 0 for
failure.
.SH "NOTES"
.IX Header "NOTES"
Because a random secret key is generated the random number generator
must be seeded before calling \fIEVP_SealInit()\fR.
.PP
The public key must be \s-1RSA\s0 because it is the only OpenSSL public key
algorithm that supports key transport.
.PP
Envelope encryption is the usual method of using public key encryption
on large amounts of data, this is because public key encryption is slow
but symmetric encryption is fast. So symmetric encryption is used for
bulk encryption and the small random symmetric key used is transferred
using public key encryption.
.PP
It is possible to call \fIEVP_SealInit()\fR twice in the same way as
\&\fIEVP_EncryptInit()\fR. The first call should have \fBnpubk\fR set to 0
and (after setting any cipher parameters) it should be called again
with \fBtype\fR set to \s-1NULL\s0.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
openssl_evp(3), openssl_rand(3),
EVP_EncryptInit(3),
EVP_OpenInit(3)
.SH "HISTORY"
.IX Header "HISTORY"
\&\fIEVP_SealFinal()\fR did not return a value before OpenSSL 0.9.7.