NetBSD/sys/dev/pci/if_msk.c
joerg 58e867556f Push the bpf_ops usage back into bpf.h. Push the common ifp->if_bpf
check into the inline functions as well the fourth argument for
bpf_attach.
2010-04-05 07:19:28 +00:00

2438 lines
65 KiB
C

/* $NetBSD: if_msk.c,v 1.35 2010/04/05 07:20:26 joerg Exp $ */
/* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
*/
/*
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.35 2010/04/05 07:20:26 joerg Exp $");
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#ifdef __NetBSD__
#define letoh16 htole16
#define letoh32 htole32
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/bpf.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_skreg.h>
#include <dev/pci/if_mskvar.h>
int mskc_probe(device_t, cfdata_t, void *);
void mskc_attach(device_t, device_t, void *);
static bool mskc_suspend(device_t, const pmf_qual_t *);
static bool mskc_resume(device_t, const pmf_qual_t *);
int msk_probe(device_t, cfdata_t, void *);
void msk_attach(device_t, device_t, void *);
int mskcprint(void *, const char *);
int msk_intr(void *);
void msk_intr_yukon(struct sk_if_softc *);
__inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
void msk_txeof(struct sk_if_softc *, int);
int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
void msk_start(struct ifnet *);
int msk_ioctl(struct ifnet *, u_long, void *);
int msk_init(struct ifnet *);
void msk_init_yukon(struct sk_if_softc *);
void msk_stop(struct ifnet *, int);
void msk_watchdog(struct ifnet *);
void msk_reset(struct sk_softc *);
int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
int msk_alloc_jumbo_mem(struct sk_if_softc *);
void *msk_jalloc(struct sk_if_softc *);
void msk_jfree(struct mbuf *, void *, size_t, void *);
int msk_init_rx_ring(struct sk_if_softc *);
int msk_init_tx_ring(struct sk_if_softc *);
void msk_update_int_mod(struct sk_softc *, int);
int msk_miibus_readreg(device_t, int, int);
void msk_miibus_writereg(device_t, int, int, int);
void msk_miibus_statchg(device_t);
void msk_setfilt(struct sk_if_softc *, void *, int);
void msk_setmulti(struct sk_if_softc *);
void msk_setpromisc(struct sk_if_softc *);
void msk_tick(void *);
/* #define MSK_DEBUG 1 */
#ifdef MSK_DEBUG
#define DPRINTF(x) if (mskdebug) printf x
#define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
int mskdebug = MSK_DEBUG;
void msk_dump_txdesc(struct msk_tx_desc *, int);
void msk_dump_mbuf(struct mbuf *);
void msk_dump_bytes(const char *, int);
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
static int msk_sysctl_handler(SYSCTLFN_PROTO);
static int msk_root_num;
/* supported device vendors */
static const struct msk_product {
pci_vendor_id_t msk_vendor;
pci_product_id_t msk_product;
} msk_products[] = {
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
};
static inline u_int32_t
sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
{
return CSR_READ_4(sc, reg);
}
static inline u_int16_t
sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
{
return CSR_READ_2(sc, reg);
}
static inline u_int8_t
sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
{
return CSR_READ_1(sc, reg);
}
static inline void
sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
{
CSR_WRITE_4(sc, reg, x);
}
static inline void
sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
{
CSR_WRITE_2(sc, reg, x);
}
static inline void
sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
{
CSR_WRITE_1(sc, reg, x);
}
int
msk_miibus_readreg(device_t dev, int phy, int reg)
{
struct sk_if_softc *sc_if = device_private(dev);
u_int16_t val;
int i;
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
if (val & YU_SMICR_READ_VALID)
break;
}
if (i == SK_TIMEOUT) {
aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
return (0);
}
DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
SK_TIMEOUT));
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
phy, reg, val));
return (val);
}
void
msk_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct sk_if_softc *sc_if = device_private(dev);
int i;
DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
phy, reg, val));
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
break;
}
if (i == SK_TIMEOUT)
aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
}
void
msk_miibus_statchg(device_t dev)
{
struct sk_if_softc *sc_if = device_private(dev);
struct mii_data *mii = &sc_if->sk_mii;
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
int gpcr;
gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
/* Set speed. */
gpcr |= YU_GPCR_SPEED_DIS;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_LX:
case IFM_1000_CX:
case IFM_1000_T:
gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
break;
case IFM_100_TX:
gpcr |= YU_GPCR_SPEED;
break;
}
/* Set duplex. */
gpcr |= YU_GPCR_DPLX_DIS;
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
gpcr |= YU_GPCR_DUPLEX;
/* Disable flow control. */
gpcr |= YU_GPCR_FCTL_DIS;
gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
}
SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
}
#define HASH_BITS 6
void
msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
{
char *addr = addrv;
int base = XM_RXFILT_ENTRY(slot);
SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
}
void
msk_setmulti(struct sk_if_softc *sc_if)
{
struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
u_int32_t hashes[2] = { 0, 0 };
int h;
struct ethercom *ec = &sc_if->sk_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
u_int16_t reg;
/* First, zot all the existing filters. */
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
/* Now program new ones. */
reg = SK_YU_READ_2(sc_if, YUKON_RCR);
reg |= YU_RCR_UFLEN;
allmulti:
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
}
} else {
/* First find the tail of the list. */
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
goto allmulti;
}
h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
((1 << HASH_BITS) - 1);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
reg |= YU_RCR_MUFLEN;
}
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
}
void
msk_setpromisc(struct sk_if_softc *sc_if)
{
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
if (ifp->if_flags & IFF_PROMISC)
SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
else
SK_YU_SETBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
}
int
msk_init_rx_ring(struct sk_if_softc *sc_if)
{
struct msk_chain_data *cd = &sc_if->sk_cdata;
struct msk_ring_data *rd = sc_if->sk_rdata;
int i, nexti;
memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
for (i = 0; i < MSK_RX_RING_CNT; i++) {
cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
if (i == (MSK_RX_RING_CNT - 1))
nexti = 0;
else
nexti = i + 1;
cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
}
for (i = 0; i < MSK_RX_RING_CNT; i++) {
if (msk_newbuf(sc_if, i, NULL,
sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
return (ENOBUFS);
}
}
sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
sc_if->sk_cdata.sk_rx_cons = 0;
return (0);
}
int
msk_init_tx_ring(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct msk_chain_data *cd = &sc_if->sk_cdata;
struct msk_ring_data *rd = sc_if->sk_rdata;
bus_dmamap_t dmamap;
struct sk_txmap_entry *entry;
int i, nexti;
memset(sc_if->sk_rdata->sk_tx_ring, 0,
sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
SIMPLEQ_INIT(&sc_if->sk_txmap_head);
for (i = 0; i < MSK_TX_RING_CNT; i++) {
cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
if (i == (MSK_TX_RING_CNT - 1))
nexti = 0;
else
nexti = i + 1;
cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
return (ENOBUFS);
entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
if (!entry) {
bus_dmamap_destroy(sc->sc_dmatag, dmamap);
return (ENOBUFS);
}
entry->dmamap = dmamap;
SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
}
sc_if->sk_cdata.sk_tx_prod = 0;
sc_if->sk_cdata.sk_tx_cons = 0;
sc_if->sk_cdata.sk_tx_cnt = 0;
MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return (0);
}
int
msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct mbuf *m_new = NULL;
struct sk_chain *c;
struct msk_rx_desc *r;
if (m == NULL) {
void *buf = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return (ENOBUFS);
/* Allocate the jumbo buffer */
buf = msk_jalloc(sc_if);
if (buf == NULL) {
m_freem(m_new);
DPRINTFN(1, ("%s jumbo allocation failed -- packet "
"dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
return (ENOBUFS);
}
/* Attach the buffer to the mbuf */
m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c = &sc_if->sk_cdata.sk_rx_chain[i];
r = c->sk_le;
c->sk_mbuf = m_new;
r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
(((vaddr_t)m_new->m_data
- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
r->sk_len = htole16(SK_JLEN);
r->sk_ctl = 0;
r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return (0);
}
/*
* Memory management for jumbo frames.
*/
int
msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
char *ptr, *kva;
bus_dma_segment_t seg;
int i, rseg, state, error;
struct sk_jpool_entry *entry;
state = error = 0;
/* Grab a big chunk o' storage. */
if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error(": can't alloc rx buffers");
return (ENOBUFS);
}
state = 1;
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
BUS_DMA_NOWAIT)) {
aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
error = ENOBUFS;
goto out;
}
state = 2;
if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
aprint_error(": can't create dma map");
error = ENOBUFS;
goto out;
}
state = 3;
if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
aprint_error(": can't load dma map");
error = ENOBUFS;
goto out;
}
state = 4;
sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
LIST_INIT(&sc_if->sk_jfree_listhead);
LIST_INIT(&sc_if->sk_jinuse_listhead);
mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc_if->sk_cdata.sk_jumbo_buf;
for (i = 0; i < MSK_JSLOTS; i++) {
sc_if->sk_cdata.sk_jslots[i] = ptr;
ptr += SK_JLEN;
entry = malloc(sizeof(struct sk_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
sc_if->sk_cdata.sk_jumbo_buf = NULL;
aprint_error(": no memory for jumbo buffer queue!");
error = ENOBUFS;
goto out;
}
entry->slot = i;
LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
entry, jpool_entries);
}
out:
if (error != 0) {
switch (state) {
case 4:
bus_dmamap_unload(sc->sc_dmatag,
sc_if->sk_cdata.sk_rx_jumbo_map);
case 3:
bus_dmamap_destroy(sc->sc_dmatag,
sc_if->sk_cdata.sk_rx_jumbo_map);
case 2:
bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
case 1:
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
break;
default:
break;
}
}
return (error);
}
/*
* Allocate a jumbo buffer.
*/
void *
msk_jalloc(struct sk_if_softc *sc_if)
{
struct sk_jpool_entry *entry;
mutex_enter(&sc_if->sk_jpool_mtx);
entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
if (entry == NULL) {
mutex_exit(&sc_if->sk_jpool_mtx);
return NULL;
}
LIST_REMOVE(entry, jpool_entries);
LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
mutex_exit(&sc_if->sk_jpool_mtx);
return (sc_if->sk_cdata.sk_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
void
msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
{
struct sk_jpool_entry *entry;
struct sk_if_softc *sc;
int i;
/* Extract the softc struct pointer. */
sc = (struct sk_if_softc *)arg;
if (sc == NULL)
panic("msk_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vaddr_t)buf
- (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
if ((i < 0) || (i >= MSK_JSLOTS))
panic("msk_jfree: asked to free buffer that we don't manage!");
mutex_enter(&sc->sk_jpool_mtx);
entry = LIST_FIRST(&sc->sk_jinuse_listhead);
if (entry == NULL)
panic("msk_jfree: buffer not in use!");
entry->slot = i;
LIST_REMOVE(entry, jpool_entries);
LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
mutex_exit(&sc->sk_jpool_mtx);
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
}
int
msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct sk_if_softc *sc_if = ifp->if_softc;
int s, error = 0;
s = splnet();
DPRINTFN(2, ("msk_ioctl ETHER\n"));
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
error = 0;
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
msk_setmulti(sc_if);
}
}
splx(s);
return (error);
}
void
msk_update_int_mod(struct sk_softc *sc, int verbose)
{
u_int32_t imtimer_ticks;
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents one tick, so to specify a timeout in
* microseconds, we have to multiply by the correct number of
* ticks-per-microsecond.
*/
switch (sc->sk_type) {
case SK_YUKON_EC:
case SK_YUKON_EC_U:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
break;
case SK_YUKON_FE:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
break;
case SK_YUKON_XL:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
break;
default:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
}
if (verbose)
aprint_verbose_dev(sc->sk_dev,
"interrupt moderation is %d us\n", sc->sk_int_mod);
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
sc->sk_int_mod_pending = 0;
}
static int
msk_lookup(const struct pci_attach_args *pa)
{
const struct msk_product *pmsk;
for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
return 1;
}
return 0;
}
/*
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
int
mskc_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
return msk_lookup(pa);
}
/*
* Force the GEnesis into reset, then bring it out of reset.
*/
void msk_reset(struct sk_softc *sc)
{
u_int32_t imtimer_ticks, reg1;
int reg;
DPRINTFN(2, ("msk_reset\n"));
CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
DELAY(1000);
CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
DELAY(2);
CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
sk_win_write_1(sc, SK_TESTCTL1, 2);
reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
else
reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
if (sc->sk_type == SK_YUKON_EC_U) {
uint32_t our;
CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
/* enable all clocks. */
sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
/* Set all bits to 0 except bits 15..12 */
sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
/* Set to default value */
sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
}
/* release PHY from PowerDown/Coma mode. */
sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
sk_win_write_1(sc, SK_Y2_CLKGATE,
SK_Y2_CLKGATE_LINK1_GATE_DIS |
SK_Y2_CLKGATE_LINK2_GATE_DIS |
SK_Y2_CLKGATE_LINK1_CORE_DIS |
SK_Y2_CLKGATE_LINK2_CORE_DIS |
SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
else
sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
DELAY(1000);
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
sk_win_write_1(sc, SK_TESTCTL1, 1);
DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
CSR_READ_2(sc, SK_LINK_CTRL)));
/* Disable ASF */
CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
/* Clear I2C IRQ noise */
CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
/* Disable hardware timer */
CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
/* Disable descriptor polling */
CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
/* Disable time stamps */
CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
/* Enable RAM interface */
sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
for (reg = SK_TO0;reg <= SK_TO11; reg++)
sk_win_write_1(sc, reg, 36);
sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
for (reg = SK_TO0;reg <= SK_TO11; reg++)
sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents one tick, so to specify a timeout in
* microseconds, we have to multiply by the correct number of
* ticks-per-microsecond.
*/
switch (sc->sk_type) {
case SK_YUKON_EC:
case SK_YUKON_EC_U:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
break;
case SK_YUKON_FE:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
break;
case SK_YUKON_XL:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
break;
default:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
}
/* Reset status ring. */
memset(sc->sk_status_ring, 0,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
sc->sk_status_idx = 0;
sc->sk_status_own_idx = 0;
sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
sc->sk_status_map->dm_segs[0].ds_addr);
sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
(u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
} else {
sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
}
#if 0
sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
#endif
sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
msk_update_int_mod(sc, 0);
}
int
msk_probe(device_t parent, cfdata_t match, void *aux)
{
struct skc_attach_args *sa = aux;
if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
return (0);
switch (sa->skc_type) {
case SK_YUKON_XL:
case SK_YUKON_EC_U:
case SK_YUKON_EC:
case SK_YUKON_FE:
return (1);
}
return (0);
}
static bool
msk_resume(device_t dv, const pmf_qual_t *qual)
{
struct sk_if_softc *sc_if = device_private(dv);
msk_init_yukon(sc_if);
return true;
}
/*
* Each XMAC chip is attached as a separate logical IP interface.
* Single port cards will have only one logical interface of course.
*/
void
msk_attach(device_t parent, device_t self, void *aux)
{
struct sk_if_softc *sc_if = device_private(self);
struct sk_softc *sc = device_private(parent);
struct skc_attach_args *sa = aux;
struct ifnet *ifp;
void *kva;
bus_dma_segment_t seg;
int i, rseg;
u_int32_t chunk, val;
sc_if->sk_dev = self;
sc_if->sk_port = sa->skc_port;
sc_if->sk_softc = sc;
sc->sk_if[sa->skc_port] = sc_if;
DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc_if->sk_enaddr[i] =
sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
aprint_normal(": Ethernet address %s\n",
ether_sprintf(sc_if->sk_enaddr));
/*
* Set up RAM buffer addresses. The NIC will have a certain
* amount of SRAM on it, somewhere between 512K and 2MB. We
* need to divide this up a) between the transmitter and
* receiver and b) between the two XMACs, if this is a
* dual port NIC. Our algorithm is to divide up the memory
* evenly so that everyone gets a fair share.
*
* Just to be contrary, Yukon2 appears to have separate memory
* for each MAC.
*/
chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
val = sc->sk_rboff / sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
chunk = sc->sk_ramsize - chunk;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
" tx_ramstart=%#x tx_ramend=%#x\n",
sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
/* Allocate the descriptor queues. */
if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error(": can't alloc rx buffers\n");
goto fail;
}
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
aprint_error(": can't map dma buffers (%zu bytes)\n",
sizeof(struct msk_ring_data));
goto fail_1;
}
if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
&sc_if->sk_ring_map)) {
aprint_error(": can't create dma map\n");
goto fail_2;
}
if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
aprint_error(": can't load dma map\n");
goto fail_3;
}
sc_if->sk_rdata = (struct msk_ring_data *)kva;
memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
ifp = &sc_if->sk_ethercom.ec_if;
/* Try to allocate memory for jumbo buffers. */
if (msk_alloc_jumbo_mem(sc_if)) {
aprint_error(": jumbo buffer allocation failed\n");
goto fail_3;
}
sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
if (sc->sk_type != SK_YUKON_FE)
sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
ifp->if_softc = sc_if;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = msk_ioctl;
ifp->if_start = msk_start;
ifp->if_stop = msk_stop;
ifp->if_init = msk_init;
ifp->if_watchdog = msk_watchdog;
ifp->if_baudrate = 1000000000;
IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
/*
* Do miibus setup.
*/
msk_init_yukon(sc_if);
DPRINTFN(2, ("msk_attach: 1\n"));
sc_if->sk_mii.mii_ifp = ifp;
sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
ifmedia_init(&sc_if->sk_mii.mii_media, 0,
ether_mediachange, ether_mediastatus);
mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
0, NULL);
ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
} else
ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
callout_init(&sc_if->sk_tick_ch, 0);
callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
callout_schedule(&sc_if->sk_tick_ch, hz);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp, sc_if->sk_enaddr);
if (pmf_device_register(self, NULL, msk_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
#if NRND > 0
rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
RND_TYPE_NET, 0);
#endif
DPRINTFN(2, ("msk_attach: end\n"));
return;
fail_3:
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
fail_2:
bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
fail_1:
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
fail:
sc->sk_if[sa->skc_port] = NULL;
}
int
mskcprint(void *aux, const char *pnp)
{
struct skc_attach_args *sa = aux;
if (pnp)
aprint_normal("sk port %c at %s",
(sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
else
aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
return (UNCONF);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
mskc_attach(device_t parent, device_t self, void *aux)
{
struct sk_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct skc_attach_args skca;
pci_chipset_tag_t pc = pa->pa_pc;
pcireg_t command, memtype;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_size_t size;
int rc, sk_nodenum;
u_int8_t hw, skrs;
const char *revstr = NULL;
const struct sysctlnode *node;
void *kva;
bus_dma_segment_t seg;
int rseg;
DPRINTFN(2, ("begin mskc_attach\n"));
sc->sk_dev = self;
/*
* Handle power management nonsense.
*/
command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
if (command & SK_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
/* Reset the power state. */
aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
"mode -- setting to D0\n",
command & SK_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(pc, pa->pa_tag,
SK_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, SK_PCI_LOMEM,
memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
NULL, &size) == 0) {
break;
}
default:
aprint_error(": can't map mem space\n");
return;
}
sc->sc_dmatag = pa->pa_dmat;
sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
/* bail out here if chip is not recognized */
if (!(SK_IS_YUKON2(sc))) {
aprint_error(": unknown chip type: %d\n", sc->sk_type);
goto fail_1;
}
DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
aprint_error(": couldn't map interrupt\n");
goto fail_1;
}
intrstr = pci_intr_string(pc, ih);
sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
if (sc->sk_intrhand == NULL) {
aprint_error(": couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail_1;
}
if (bus_dmamem_alloc(sc->sc_dmatag,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error(": can't alloc status buffers\n");
goto fail_2;
}
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
&kva, BUS_DMA_NOWAIT)) {
aprint_error(": can't map dma buffers (%zu bytes)\n",
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
goto fail_3;
}
if (bus_dmamap_create(sc->sc_dmatag,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
BUS_DMA_NOWAIT, &sc->sk_status_map)) {
aprint_error(": can't create dma map\n");
goto fail_4;
}
if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
NULL, BUS_DMA_NOWAIT)) {
aprint_error(": can't load dma map\n");
goto fail_5;
}
sc->sk_status_ring = (struct msk_status_desc *)kva;
sc->sk_int_mod = SK_IM_DEFAULT;
sc->sk_int_mod_pending = 0;
/* Reset the adapter. */
msk_reset(sc);
skrs = sk_win_read_1(sc, SK_EPROM0);
if (skrs == 0x00)
sc->sk_ramsize = 0x20000;
else
sc->sk_ramsize = skrs * (1<<12);
sc->sk_rboff = SK_RBOFF_0;
DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
sc->sk_ramsize, sc->sk_ramsize / 1024,
sc->sk_rboff));
switch (sc->sk_type) {
case SK_YUKON_XL:
sc->sk_name = "Yukon-2 XL";
break;
case SK_YUKON_EC_U:
sc->sk_name = "Yukon-2 EC Ultra";
break;
case SK_YUKON_EC:
sc->sk_name = "Yukon-2 EC";
break;
case SK_YUKON_FE:
sc->sk_name = "Yukon-2 FE";
break;
default:
sc->sk_name = "Yukon (Unknown)";
}
if (sc->sk_type == SK_YUKON_XL) {
switch (sc->sk_rev) {
case SK_YUKON_XL_REV_A0:
sc->sk_workaround = 0;
revstr = "A0";
break;
case SK_YUKON_XL_REV_A1:
sc->sk_workaround = SK_WA_4109;
revstr = "A1";
break;
case SK_YUKON_XL_REV_A2:
sc->sk_workaround = SK_WA_4109;
revstr = "A2";
break;
case SK_YUKON_XL_REV_A3:
sc->sk_workaround = SK_WA_4109;
revstr = "A3";
break;
default:
sc->sk_workaround = 0;
break;
}
}
if (sc->sk_type == SK_YUKON_EC) {
switch (sc->sk_rev) {
case SK_YUKON_EC_REV_A1:
sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
revstr = "A1";
break;
case SK_YUKON_EC_REV_A2:
sc->sk_workaround = SK_WA_4109;
revstr = "A2";
break;
case SK_YUKON_EC_REV_A3:
sc->sk_workaround = SK_WA_4109;
revstr = "A3";
break;
default:
sc->sk_workaround = 0;
break;
}
}
if (sc->sk_type == SK_YUKON_FE) {
sc->sk_workaround = SK_WA_4109;
switch (sc->sk_rev) {
case SK_YUKON_FE_REV_A1:
revstr = "A1";
break;
case SK_YUKON_FE_REV_A2:
revstr = "A2";
break;
default:
sc->sk_workaround = 0;
break;
}
}
if (sc->sk_type == SK_YUKON_EC_U) {
sc->sk_workaround = SK_WA_4109;
switch (sc->sk_rev) {
case SK_YUKON_EC_U_REV_A0:
revstr = "A0";
break;
case SK_YUKON_EC_U_REV_A1:
revstr = "A1";
break;
case SK_YUKON_EC_U_REV_B0:
revstr = "B0";
break;
default:
sc->sk_workaround = 0;
break;
}
}
/* Announce the product name. */
aprint_normal(", %s", sc->sk_name);
if (revstr != NULL)
aprint_normal(" rev. %s", revstr);
aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
sc->sk_macs = 1;
hw = sk_win_read_1(sc, SK_Y2_HWRES);
if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
sc->sk_macs++;
}
skca.skc_port = SK_PORT_A;
skca.skc_type = sc->sk_type;
skca.skc_rev = sc->sk_rev;
(void)config_found(sc->sk_dev, &skca, mskcprint);
if (sc->sk_macs > 1) {
skca.skc_port = SK_PORT_B;
skca.skc_type = sc->sk_type;
skca.skc_rev = sc->sk_rev;
(void)config_found(sc->sk_dev, &skca, mskcprint);
}
/* Turn on the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
/* skc sysctl setup */
if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
0, CTLTYPE_NODE, device_xname(sc->sk_dev),
SYSCTL_DESCR("mskc per-controller controls"),
NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
CTL_EOL)) != 0) {
aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
goto fail_6;
}
sk_nodenum = node->sysctl_num;
/* interrupt moderation time in usecs */
if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "int_mod",
SYSCTL_DESCR("msk interrupt moderation timer"),
msk_sysctl_handler, 0, sc,
0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
CTL_EOL)) != 0) {
aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
goto fail_6;
}
if (!pmf_device_register(self, mskc_suspend, mskc_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail_6:
bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
fail_5:
bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
fail_4:
bus_dmamem_unmap(sc->sc_dmatag, kva,
MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
fail_3:
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
fail_2:
pci_intr_disestablish(pc, sc->sk_intrhand);
fail_1:
bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
}
int
msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
{
struct sk_softc *sc = sc_if->sk_softc;
struct msk_tx_desc *f = NULL;
u_int32_t frag, cur;
int i;
struct sk_txmap_entry *entry;
bus_dmamap_t txmap;
DPRINTFN(2, ("msk_encap\n"));
entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
if (entry == NULL) {
DPRINTFN(2, ("msk_encap: no txmap available\n"));
return (ENOBUFS);
}
txmap = entry->dmamap;
cur = frag = *txidx;
#ifdef MSK_DEBUG
if (mskdebug >= 2)
msk_dump_mbuf(m_head);
#endif
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
BUS_DMA_NOWAIT)) {
DPRINTFN(2, ("msk_encap: dmamap failed\n"));
return (ENOBUFS);
}
if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
bus_dmamap_unload(sc->sc_dmatag, txmap);
return (ENOBUFS);
}
DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
for (i = 0; i < txmap->dm_nsegs; i++) {
f = &sc_if->sk_rdata->sk_tx_ring[frag];
f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
f->sk_len = htole16(txmap->dm_segs[i].ds_len);
f->sk_ctl = 0;
if (i == 0)
f->sk_opcode = SK_Y2_TXOPC_PACKET;
else
f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
cur = frag;
SK_INC(frag, MSK_TX_RING_CNT);
}
sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
sc_if->sk_cdata.sk_tx_map[cur] = entry;
sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
/* Sync descriptors before handing to chip */
MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
/* Sync first descriptor to hand it off */
MSK_CDTXSYNC(sc_if, *txidx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
#ifdef MSK_DEBUG
if (mskdebug >= 2) {
struct msk_tx_desc *le;
u_int32_t idx;
for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
le = &sc_if->sk_rdata->sk_tx_ring[idx];
msk_dump_txdesc(le, idx);
}
}
#endif
*txidx = frag;
DPRINTFN(2, ("msk_encap: completed successfully\n"));
return (0);
}
void
msk_start(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct mbuf *m_head = NULL;
u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
int pkts = 0;
DPRINTFN(2, ("msk_start\n"));
while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (msk_encap(sc_if, m_head, &idx)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* now we are committed to transmit the packet */
IFQ_DEQUEUE(&ifp->if_snd, m_head);
pkts++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head);
}
if (pkts == 0)
return;
/* Transmit */
if (idx != sc_if->sk_cdata.sk_tx_prod) {
sc_if->sk_cdata.sk_tx_prod = idx;
SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = 5;
}
}
void
msk_watchdog(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
u_int32_t reg;
int idx;
/*
* Reclaim first as there is a possibility of losing Tx completion
* interrupts.
*/
if (sc_if->sk_port == SK_PORT_A)
reg = SK_STAT_BMU_TXA1_RIDX;
else
reg = SK_STAT_BMU_TXA2_RIDX;
idx = sk_win_read_2(sc_if->sk_softc, reg);
if (sc_if->sk_cdata.sk_tx_cons != idx) {
msk_txeof(sc_if, idx);
if (sc_if->sk_cdata.sk_tx_cnt != 0) {
aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
ifp->if_oerrors++;
/* XXX Resets both ports; we shouldn't do that. */
msk_reset(sc_if->sk_softc);
msk_init(ifp);
}
}
}
static bool
mskc_suspend(device_t dv, const pmf_qual_t *qual)
{
struct sk_softc *sc = device_private(dv);
DPRINTFN(2, ("mskc_suspend\n"));
/* Turn off the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
return true;
}
static bool
mskc_resume(device_t dv, const pmf_qual_t *qual)
{
struct sk_softc *sc = device_private(dv);
DPRINTFN(2, ("mskc_resume\n"));
msk_reset(sc);
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
return true;
}
__inline int
msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
{
if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
YU_RXSTAT_JABBER)) != 0 ||
(stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
YU_RXSTAT_BYTES(stat) != len)
return (0);
return (1);
}
void
msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
struct mbuf *m;
struct sk_chain *cur_rx;
int cur, total_len = len;
bus_dmamap_t dmamap;
DPRINTFN(2, ("msk_rxeof\n"));
cur = sc_if->sk_cdata.sk_rx_cons;
SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
/* Sync the descriptor */
MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = cur_rx->sk_mbuf;
cur_rx->sk_mbuf = NULL;
if (total_len < SK_MIN_FRAMELEN ||
total_len > ETHER_MAX_LEN_JUMBO ||
msk_rxvalid(sc, rxstat, total_len) == 0) {
ifp->if_ierrors++;
msk_newbuf(sc_if, cur, m, dmamap);
return;
}
/*
* Try to allocate a new jumbo buffer. If that fails, copy the
* packet to mbufs and put the jumbo buffer back in the ring
* so it can be re-used. If allocating mbufs fails, then we
* have to drop the packet.
*/
if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
struct mbuf *m0;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
msk_newbuf(sc_if, cur, m, dmamap);
if (m0 == NULL) {
ifp->if_ierrors++;
return;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
bpf_mtap(ifp, m);
/* pass it on. */
(*ifp->if_input)(ifp, m);
}
void
msk_txeof(struct sk_if_softc *sc_if, int idx)
{
struct sk_softc *sc = sc_if->sk_softc;
struct msk_tx_desc *cur_tx;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
u_int32_t sk_ctl;
struct sk_txmap_entry *entry;
int cons, prog;
DPRINTFN(2, ("msk_txeof\n"));
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
cons = sc_if->sk_cdata.sk_tx_cons;
prog = 0;
while (cons != idx) {
if (sc_if->sk_cdata.sk_tx_cnt <= 0)
break;
prog++;
cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
MSK_CDTXSYNC(sc_if, cons, 1,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
sk_ctl = cur_tx->sk_ctl;
MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
#ifdef MSK_DEBUG
if (mskdebug >= 2)
msk_dump_txdesc(cur_tx, cons);
#endif
if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
ifp->if_opackets++;
if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
entry = sc_if->sk_cdata.sk_tx_map[cons];
bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
link);
sc_if->sk_cdata.sk_tx_map[cons] = NULL;
m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
}
sc_if->sk_cdata.sk_tx_cnt--;
SK_INC(cons, MSK_TX_RING_CNT);
}
ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
ifp->if_flags &= ~IFF_OACTIVE;
if (prog > 0)
sc_if->sk_cdata.sk_tx_cons = cons;
}
void
msk_tick(void *xsc_if)
{
struct sk_if_softc *sc_if = xsc_if;
struct mii_data *mii = &sc_if->sk_mii;
uint16_t gpsr;
int s;
s = splnet();
gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
mii_tick(mii);
}
splx(s);
callout_schedule(&sc_if->sk_tick_ch, hz);
}
void
msk_intr_yukon(struct sk_if_softc *sc_if)
{
u_int8_t status;
status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
/* RX overrun */
if ((status & SK_GMAC_INT_RX_OVER) != 0) {
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
SK_RFCTL_RX_FIFO_OVER);
}
/* TX underrun */
if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
SK_TFCTL_TX_FIFO_UNDER);
}
DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
}
int
msk_intr(void *xsc)
{
struct sk_softc *sc = xsc;
struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
int claimed = 0;
u_int32_t status;
uint32_t st_status;
uint16_t st_len;
uint8_t st_opcode, st_link;
struct msk_status_desc *cur_st;
status = CSR_READ_4(sc, SK_Y2_ISSR2);
if (status == 0) {
CSR_WRITE_4(sc, SK_Y2_ICR, 2);
return (0);
}
status = CSR_READ_4(sc, SK_ISR);
if (sc_if0 != NULL)
ifp0 = &sc_if0->sk_ethercom.ec_if;
if (sc_if1 != NULL)
ifp1 = &sc_if1->sk_ethercom.ec_if;
if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
(ifp0->if_flags & IFF_RUNNING)) {
msk_intr_yukon(sc_if0);
}
if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
(ifp1->if_flags & IFF_RUNNING)) {
msk_intr_yukon(sc_if1);
}
for (;;) {
cur_st = &sc->sk_status_ring[sc->sk_status_idx];
MSK_CDSTSYNC(sc, sc->sk_status_idx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
st_opcode = cur_st->sk_opcode;
if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
MSK_CDSTSYNC(sc, sc->sk_status_idx,
BUS_DMASYNC_PREREAD);
break;
}
st_status = le32toh(cur_st->sk_status);
st_len = le16toh(cur_st->sk_len);
st_link = cur_st->sk_link;
st_opcode &= ~SK_Y2_STOPC_OWN;
switch (st_opcode) {
case SK_Y2_STOPC_RXSTAT:
msk_rxeof(sc->sk_if[st_link], st_len, st_status);
SK_IF_WRITE_2(sc->sk_if[st_link], 0,
SK_RXQ1_Y2_PREF_PUTIDX,
sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
break;
case SK_Y2_STOPC_TXSTAT:
if (sc_if0)
msk_txeof(sc_if0, st_status
& SK_Y2_ST_TXA1_MSKL);
if (sc_if1)
msk_txeof(sc_if1,
((st_status & SK_Y2_ST_TXA2_MSKL)
>> SK_Y2_ST_TXA2_SHIFTL)
| ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
break;
default:
aprint_error("opcode=0x%x\n", st_opcode);
break;
}
SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
}
#define MSK_STATUS_RING_OWN_CNT(sc) \
(((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
(sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
}
if (status & SK_Y2_IMR_BMU) {
CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
claimed = 1;
}
CSR_WRITE_4(sc, SK_Y2_ICR, 2);
if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
msk_start(ifp0);
if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
msk_start(ifp1);
#if NRND > 0
if (RND_ENABLED(&sc->rnd_source))
rnd_add_uint32(&sc->rnd_source, status);
#endif
if (sc->sk_int_mod_pending)
msk_update_int_mod(sc, 1);
return claimed;
}
void
msk_init_yukon(struct sk_if_softc *sc_if)
{
u_int32_t v;
u_int16_t reg;
struct sk_softc *sc;
int i;
sc = sc_if->sk_softc;
DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
CSR_READ_4(sc_if->sk_softc, SK_CSR)));
DPRINTFN(6, ("msk_init_yukon: 1\n"));
/* GMAC and GPHY Reset */
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
DELAY(1000);
DPRINTFN(6, ("msk_init_yukon: 2\n"));
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
DPRINTFN(6, ("msk_init_yukon: 3\n"));
/* unused read of the interrupt source register */
DPRINTFN(6, ("msk_init_yukon: 4\n"));
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
DPRINTFN(6, ("msk_init_yukon: 4a\n"));
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
/* MIB Counter Clear Mode set */
reg |= YU_PAR_MIB_CLR;
DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
DPRINTFN(6, ("msk_init_yukon: 4b\n"));
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* MIB Counter Clear Mode clear */
DPRINTFN(6, ("msk_init_yukon: 5\n"));
reg &= ~YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* receive control reg */
DPRINTFN(6, ("msk_init_yukon: 7\n"));
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
/* transmit control register */
SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
/* transmit flow control register */
SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
/* transmit parameter register */
DPRINTFN(6, ("msk_init_yukon: 8\n"));
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
/* serial mode register */
DPRINTFN(6, ("msk_init_yukon: 9\n"));
reg = YU_SMR_DATA_BLIND(0x1c) |
YU_SMR_MFL_VLAN |
YU_SMR_IPG_DATA(0x1e);
if (sc->sk_type != SK_YUKON_FE)
reg |= YU_SMR_MFL_JUMBO;
SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
DPRINTFN(6, ("msk_init_yukon: 10\n"));
/* Setup Yukon's address */
for (i = 0; i < 3; i++) {
/* Write Source Address 1 (unicast filter) */
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
sc_if->sk_enaddr[i * 2] |
sc_if->sk_enaddr[i * 2 + 1] << 8);
}
for (i = 0; i < 3; i++) {
reg = sk_win_read_2(sc_if->sk_softc,
SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
}
/* Set promiscuous mode */
msk_setpromisc(sc_if);
/* Set multicast filter */
DPRINTFN(6, ("msk_init_yukon: 11\n"));
msk_setmulti(sc_if);
/* enable interrupt mask for counter overflows */
DPRINTFN(6, ("msk_init_yukon: 12\n"));
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
/* Configure RX MAC FIFO Flush Mask */
v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
YU_RXSTAT_JABBER;
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
/* Configure RX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
SK_RFCTL_FIFO_FLUSH_ON);
/* Increase flush threshould to 64 bytes */
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
SK_RFCTL_FIFO_THRESHOLD + 1);
/* Configure TX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
#if 1
SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
#endif
DPRINTFN(6, ("msk_init_yukon: end\n"));
}
/*
* Note that to properly initialize any part of the GEnesis chip,
* you first have to take it out of reset mode.
*/
int
msk_init(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
int rc = 0, s;
uint32_t imr, imtimer_ticks;
DPRINTFN(2, ("msk_init\n"));
s = splnet();
/* Cancel pending I/O and free all RX/TX buffers. */
msk_stop(ifp,0);
/* Configure I2C registers */
/* Configure XMAC(s) */
msk_init_yukon(sc_if);
if ((rc = ether_mediachange(ifp)) != 0)
goto out;
/* Configure transmit arbiter(s) */
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
#if 0
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
#endif
/* Configure RAMbuffers */
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
/* Configure BMUs */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
/* Make sure the sync transmit queue is disabled. */
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
/* Init descriptors */
if (msk_init_rx_ring(sc_if) == ENOBUFS) {
aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
"memory for rx buffers\n");
msk_stop(ifp,0);
splx(s);
return ENOBUFS;
}
if (msk_init_tx_ring(sc_if) == ENOBUFS) {
aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
"memory for tx buffers\n");
msk_stop(ifp,0);
splx(s);
return ENOBUFS;
}
/* Set interrupt moderation if changed via sysctl. */
switch (sc->sk_type) {
case SK_YUKON_EC:
case SK_YUKON_EC_U:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
break;
case SK_YUKON_FE:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
break;
case SK_YUKON_XL:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
break;
default:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
}
imr = sk_win_read_4(sc, SK_IMTIMERINIT);
if (imr != SK_IM_USECS(sc->sk_int_mod)) {
sk_win_write_4(sc, SK_IMTIMERINIT,
SK_IM_USECS(sc->sk_int_mod));
aprint_verbose_dev(sc->sk_dev,
"interrupt moderation is %d us\n", sc->sk_int_mod);
}
/* Initialize prefetch engine. */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
MSK_RX_RING_ADDR(sc_if, 0));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
(u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
MSK_TX_RING_ADDR(sc_if, 0));
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
(u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
sc_if->sk_cdata.sk_rx_prod);
/* Configure interrupt handling */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask |= SK_Y2_INTRS1;
else
sc->sk_intrmask |= SK_Y2_INTRS2;
sc->sk_intrmask |= SK_Y2_IMR_BMU;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_schedule(&sc_if->sk_tick_ch, hz);
out:
splx(s);
return rc;
}
void
msk_stop(struct ifnet *ifp, int disable)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
struct sk_txmap_entry *dma;
int i;
DPRINTFN(2, ("msk_stop\n"));
callout_stop(&sc_if->sk_tick_ch);
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
/* Stop transfer of Tx descriptors */
/* Stop transfer of Rx descriptors */
/* Turn off various components of this interface. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
/* Disable interrupts */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask &= ~SK_Y2_INTRS1;
else
sc->sk_intrmask &= ~SK_Y2_INTRS2;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
SK_XM_READ_2(sc_if, XM_ISR);
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Free RX and TX mbufs still in the queues. */
for (i = 0; i < MSK_RX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
}
}
for (i = 0; i < MSK_TX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
#if 1
SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
sc_if->sk_cdata.sk_tx_map[i], link);
sc_if->sk_cdata.sk_tx_map[i] = 0;
#endif
}
}
#if 1
while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
free(dma, M_DEVBUF);
}
#endif
}
CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
NULL, NULL);
CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
NULL, NULL);
#ifdef MSK_DEBUG
void
msk_dump_txdesc(struct msk_tx_desc *le, int idx)
{
#define DESC_PRINT(X) \
if (X) \
printf("txdesc[%d]." #X "=%#x\n", \
idx, X);
DESC_PRINT(letoh32(le->sk_addr));
DESC_PRINT(letoh16(le->sk_len));
DESC_PRINT(le->sk_ctl);
DESC_PRINT(le->sk_opcode);
#undef DESC_PRINT
}
void
msk_dump_bytes(const char *data, int len)
{
int c, i, j;
for (i = 0; i < len; i += 16) {
printf("%08x ", i);
c = len - i;
if (c > 16) c = 16;
for (j = 0; j < c; j++) {
printf("%02x ", data[i + j] & 0xff);
if ((j & 0xf) == 7 && j > 0)
printf(" ");
}
for (; j < 16; j++)
printf(" ");
printf(" ");
for (j = 0; j < c; j++) {
int ch = data[i + j] & 0xff;
printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
}
printf("\n");
if (c < 16)
break;
}
}
void
msk_dump_mbuf(struct mbuf *m)
{
int count = m->m_pkthdr.len;
printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
while (count > 0 && m) {
printf("m=%p, m->m_data=%p, m->m_len=%d\n",
m, m->m_data, m->m_len);
msk_dump_bytes(mtod(m, char *), m->m_len);
count -= m->m_len;
m = m->m_next;
}
}
#endif
static int
msk_sysctl_handler(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
struct sk_softc *sc;
node = *rnode;
sc = node.sysctl_data;
t = sc->sk_int_mod;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < SK_IM_MIN || t > SK_IM_MAX)
return EINVAL;
/* update the softc with sysctl-changed value, and mark
for hardware update */
sc->sk_int_mod = t;
sc->sk_int_mod_pending = 1;
return 0;
}
/*
* Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
* set up in skc_attach()
*/
SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
{
int rc;
const struct sysctlnode *node;
if ((rc = sysctl_createv(clog, 0, NULL, NULL,
0, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
goto err;
}
if ((rc = sysctl_createv(clog, 0, NULL, &node,
0, CTLTYPE_NODE, "msk",
SYSCTL_DESCR("msk interface controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
msk_root_num = node->sysctl_num;
return;
err:
aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
}