NetBSD/sys/netinet6/in6_src.c
dyoung f583dae6cb Restore historical kernel behavior: let an application bind(2) an
IPv6 interface address (e.g., sin6_addr fe80::200:24ff:fec3:4bac
sin6_scope_id 1), set a multicast interface with
setsockopt(,IPPROTO_IPV6,IPV6_MULTICAST_IF,), and sendto(2) multicast
destinations with "wildcard" scope ID, 0, without error EHOSTUNREACH.

Prior to this patch, sendto(2) would exit with EHOSTUNREACH, even
though the scope ID was unambiguously specified both by bind(2)
and setsockopt(2).  This was a bug because it broke old applications.

Thanks JINMEI Tatuya for the patch!
2006-09-01 01:59:56 +00:00

1235 lines
33 KiB
C

/* $KAME: in6_src.c,v 1.159 2005/10/19 01:40:32 t-momose Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: in6_src.c,v 1.28 2006/09/01 01:59:56 dyoung Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#ifndef __FreeBSD__
#include <sys/ioctl.h>
#else
#include <sys/sockio.h>
#endif
#ifdef __FreeBSD__
#include <sys/sysctl.h>
#endif
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#ifdef RADIX_MPATH
#include <net/radix_mpath.h>
#endif
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#ifndef __OpenBSD__
#include <netinet6/in6_pcb.h>
#endif
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#include <netinet6/scope6_var.h>
#include <net/net_osdep.h>
#ifdef MIP6
#include <netinet6/mip6.h>
#include <netinet6/mip6_var.h>
#include "mip.h"
#if NMIP > 0
#include <net/if_mip.h>
#endif /* NMIP > 0 */
#endif /* MIP6 */
#ifndef __OpenBSD__
#include "loop.h"
#endif
#ifdef __NetBSD__
extern struct ifnet loif[NLOOP];
#endif
#define ADDR_LABEL_NOTAPP (-1)
struct in6_addrpolicy defaultaddrpolicy;
#ifdef notyet /* until introducing ND extensions and address selection */
int ip6_prefer_tempaddr = 0;
#endif
static int selectroute __P((struct sockaddr_in6 *, struct ip6_pktopts *,
struct ip6_moptions *, struct route_in6 *, struct ifnet **,
struct rtentry **, int, int));
static int in6_selectif __P((struct sockaddr_in6 *, struct ip6_pktopts *,
struct ip6_moptions *, struct route_in6 *, struct ifnet **));
static struct in6_addrpolicy *lookup_addrsel_policy __P((struct sockaddr_in6 *));
static void init_policy_queue __P((void));
static int add_addrsel_policyent __P((struct in6_addrpolicy *));
static int delete_addrsel_policyent __P((struct in6_addrpolicy *));
static int walk_addrsel_policy __P((int (*)(struct in6_addrpolicy *, void *),
void *));
static int dump_addrsel_policyent __P((struct in6_addrpolicy *, void *));
static struct in6_addrpolicy *match_addrsel_policy __P((struct sockaddr_in6 *));
/*
* Return an IPv6 address, which is the most appropriate for a given
* destination and user specified options.
* If necessary, this function lookups the routing table and returns
* an entry to the caller for later use.
*/
#if 0 /* diabled ad-hoc */
#define REPLACE(r) do {\
if ((r) < sizeof(ip6stat.ip6s_sources_rule) / \
sizeof(ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
ip6stat.ip6s_sources_rule[(r)]++; \
/* printf("in6_selectsrc: replace %s with %s by %d\n", ia_best ? ip6_sprintf(&ia_best->ia_addr.sin6_addr) : "none", ip6_sprintf(&ia->ia_addr.sin6_addr), (r)); */ \
goto replace; \
} while(0)
#define NEXT(r) do {\
if ((r) < sizeof(ip6stat.ip6s_sources_rule) / \
sizeof(ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
ip6stat.ip6s_sources_rule[(r)]++; \
/* printf("in6_selectsrc: keep %s against %s by %d\n", ia_best ? ip6_sprintf(&ia_best->ia_addr.sin6_addr) : "none", ip6_sprintf(&ia->ia_addr.sin6_addr), (r)); */ \
goto next; /* XXX: we can't use 'continue' here */ \
} while(0)
#define BREAK(r) do { \
if ((r) < sizeof(ip6stat.ip6s_sources_rule) / \
sizeof(ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
ip6stat.ip6s_sources_rule[(r)]++; \
goto out; /* XXX: we can't use 'break' here */ \
} while(0)
#else
#define REPLACE(r) goto replace
#define NEXT(r) goto next
#define BREAK(r) goto out
#endif
struct in6_addr *
in6_selectsrc(dstsock, opts, mopts, ro, laddr, ifpp, errorp)
struct sockaddr_in6 *dstsock;
struct ip6_pktopts *opts;
struct ip6_moptions *mopts;
struct route_in6 *ro;
struct in6_addr *laddr;
struct ifnet **ifpp;
int *errorp;
{
struct in6_addr dst;
struct ifnet *ifp = NULL;
struct in6_ifaddr *ia = NULL, *ia_best = NULL;
struct in6_pktinfo *pi = NULL;
int dst_scope = -1, best_scope = -1, best_matchlen = -1;
struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL;
u_int32_t odstzone;
int error;
#ifdef notyet /* until introducing ND extensions and address selection */
int prefer_tempaddr;
#endif
#if defined(MIP6) && NMIP > 0
u_int8_t ip6po_usecoa = 0;
#endif /* MIP6 && NMIP > 0 */
dst = dstsock->sin6_addr; /* make a copy for local operation */
*errorp = 0;
if (ifpp)
*ifpp = NULL;
/*
* Try to determine the outgoing interface for the given destination.
* We do this regardless of whether the socket is bound, since the
* caller may need this information as a side effect of the call
* to this function (e.g., for identifying the appropriate scope zone
* ID).
*/
error = in6_selectif(dstsock, opts, mopts, ro, &ifp);
if (ifpp)
*ifpp = ifp;
/*
* If the source address is explicitly specified by the caller,
* check if the requested source address is indeed a unicast address
* assigned to the node, and can be used as the packet's source
* address. If everything is okay, use the address as source.
*/
if (opts && (pi = opts->ip6po_pktinfo) &&
!IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) {
struct sockaddr_in6 srcsock;
struct in6_ifaddr *ia6;
/*
* Determine the appropriate zone id of the source based on
* the zone of the destination and the outgoing interface.
* If the specified address is ambiguous wrt the scope zone,
* the interface must be specified; otherwise, ifa_ifwithaddr()
* will fail matching the address.
*/
bzero(&srcsock, sizeof(srcsock));
srcsock.sin6_family = AF_INET6;
srcsock.sin6_len = sizeof(srcsock);
srcsock.sin6_addr = pi->ipi6_addr;
if (ifp) {
*errorp = in6_setscope(&srcsock.sin6_addr, ifp, NULL);
if (*errorp != 0)
return (NULL);
}
ia6 = (struct in6_ifaddr *)ifa_ifwithaddr((struct sockaddr *)(&srcsock));
if (ia6 == NULL ||
(ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY))) {
*errorp = EADDRNOTAVAIL;
return (NULL);
}
pi->ipi6_addr = srcsock.sin6_addr; /* XXX: this overrides pi */
if (ifpp)
*ifpp = ifp;
return (&ia6->ia_addr.sin6_addr);
}
/*
* If the socket has already bound the source, just use it. We don't
* care at the moment whether in6_selectif() succeeded above, even
* though it would eventually cause an error.
*/
if (laddr && !IN6_IS_ADDR_UNSPECIFIED(laddr))
return (laddr);
/*
* The outgoing interface is crucial in the general selection procedure
* below. If it is not known at this point, we fail.
*/
if (ifp == NULL) {
*errorp = error;
return (NULL);
}
/*
* If the address is not yet determined, choose the best one based on
* the outgoing interface and the destination address.
*/
#if defined(MIP6) && NMIP > 0
/*
* a caller can specify IP6PO_USECOA to not to use a home
* address. for example, the case that the neighbour
* unreachability detection to the global address.
*/
if (opts != NULL &&
(opts->ip6po_flags & IP6PO_USECOA) != 0) {
ip6po_usecoa = 1;
}
#endif /* MIP6 && NMIP > 0 */
#ifdef DIAGNOSTIC
if (ifp == NULL) /* this should not happen */
panic("in6_selectsrc: NULL ifp");
#endif
*errorp = in6_setscope(&dst, ifp, &odstzone);
if (*errorp != 0)
return (NULL);
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
int new_scope = -1, new_matchlen = -1;
struct in6_addrpolicy *new_policy = NULL;
u_int32_t srczone, osrczone, dstzone;
struct in6_addr src;
struct ifnet *ifp1 = ia->ia_ifp;
/*
* We'll never take an address that breaks the scope zone
* of the destination. We also skip an address if its zone
* does not contain the outgoing interface.
* XXX: we should probably use sin6_scope_id here.
*/
if (in6_setscope(&dst, ifp1, &dstzone) ||
odstzone != dstzone) {
continue;
}
src = ia->ia_addr.sin6_addr;
if (in6_setscope(&src, ifp, &osrczone) ||
in6_setscope(&src, ifp1, &srczone) ||
osrczone != srczone) {
continue;
}
/* avoid unusable addresses */
if ((ia->ia6_flags &
(IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) {
continue;
}
if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia))
continue;
#if defined(MIP6) && NMIP > 0
/* avoid unusable home addresses. */
if ((ia->ia6_flags & IN6_IFF_HOME) &&
!mip6_ifa6_is_addr_valid_hoa(ia))
continue;
#endif /* MIP6 && NMIP > 0 */
/* Rule 1: Prefer same address */
if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr)) {
ia_best = ia;
BREAK(1); /* there should be no better candidate */
}
if (ia_best == NULL)
REPLACE(0);
/* Rule 2: Prefer appropriate scope */
if (dst_scope < 0)
dst_scope = in6_addrscope(&dst);
new_scope = in6_addrscope(&ia->ia_addr.sin6_addr);
if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) {
if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0)
REPLACE(2);
NEXT(2);
} else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) {
if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0)
NEXT(2);
REPLACE(2);
}
/*
* Rule 3: Avoid deprecated addresses. Note that the case of
* !ip6_use_deprecated is already rejected above.
*/
if (!IFA6_IS_DEPRECATED(ia_best) && IFA6_IS_DEPRECATED(ia))
NEXT(3);
if (IFA6_IS_DEPRECATED(ia_best) && !IFA6_IS_DEPRECATED(ia))
REPLACE(3);
/* Rule 4: Prefer home addresses */
#if defined(MIP6) && NMIP > 0
if (!MIP6_IS_MN)
goto skip_rule4;
if ((ia_best->ia6_flags & IN6_IFF_HOME) == 0 &&
(ia->ia6_flags & IN6_IFF_HOME) == 0) {
/* both address are not home addresses. */
goto skip_rule4;
}
/*
* If SA is simultaneously a home address and care-of
* address and SB is not, then prefer SA. Similarly,
* if SB is simultaneously a home address and care-of
* address and SA is not, then prefer SB.
*/
if (((ia_best->ia6_flags & IN6_IFF_HOME) != 0 &&
ia_best->ia_ifp->if_type != IFT_MIP)
&&
((ia->ia6_flags & IN6_IFF_HOME) != 0 &&
ia->ia_ifp->if_type == IFT_MIP))
NEXT(4);
if (((ia_best->ia6_flags & IN6_IFF_HOME) != 0 &&
ia_best->ia_ifp->if_type == IFT_MIP)
&&
((ia->ia6_flags & IN6_IFF_HOME) != 0 &&
ia->ia_ifp->if_type != IFT_MIP))
REPLACE(4);
if (ip6po_usecoa == 0) {
/*
* If SA is just a home address and SB is just
* a care-of address, then prefer
* SA. Similarly, if SB is just a home address
* and SA is just a care-of address, then
* prefer SB.
*/
if ((ia_best->ia6_flags & IN6_IFF_HOME) != 0 &&
(ia->ia6_flags & IN6_IFF_HOME) == 0) {
NEXT(4);
}
if ((ia_best->ia6_flags & IN6_IFF_HOME) == 0 &&
(ia->ia6_flags & IN6_IFF_HOME) != 0) {
REPLACE(4);
}
} else {
/*
* a sender don't want to use a home address
* because:
*
* 1) we cannot use. (ex. NS or NA to global
* addresses.)
*
* 2) a user specified not to use.
* (ex. mip6control -u)
*/
if ((ia_best->ia6_flags & IN6_IFF_HOME) == 0 &&
(ia->ia6_flags & IN6_IFF_HOME) != 0) {
/* XXX breaks stat */
NEXT(0);
}
if ((ia_best->ia6_flags & IN6_IFF_HOME) != 0 &&
(ia->ia6_flags & IN6_IFF_HOME) == 0) {
/* XXX breaks stat */
REPLACE(0);
}
}
skip_rule4:
#endif /* MIP6 && NMIP > 0 */
/* Rule 5: Prefer outgoing interface */
if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp)
NEXT(5);
if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp)
REPLACE(5);
/*
* Rule 6: Prefer matching label
* Note that best_policy should be non-NULL here.
*/
if (dst_policy == NULL)
dst_policy = lookup_addrsel_policy(dstsock);
if (dst_policy->label != ADDR_LABEL_NOTAPP) {
new_policy = lookup_addrsel_policy(&ia->ia_addr);
if (dst_policy->label == best_policy->label &&
dst_policy->label != new_policy->label)
NEXT(6);
if (dst_policy->label != best_policy->label &&
dst_policy->label == new_policy->label)
REPLACE(6);
}
/*
* Rule 7: Prefer public addresses.
* We allow users to reverse the logic by configuring
* a sysctl variable, so that privacy conscious users can
* always prefer temporary addresses.
*/
#ifdef notyet /* until introducing ND extensions and address selection */
if (opts == NULL ||
opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) {
prefer_tempaddr = ip6_prefer_tempaddr;
} else if (opts->ip6po_prefer_tempaddr ==
IP6PO_TEMPADDR_NOTPREFER) {
prefer_tempaddr = 0;
} else
prefer_tempaddr = 1;
if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
if (prefer_tempaddr)
REPLACE(7);
else
NEXT(7);
}
if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
!(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
if (prefer_tempaddr)
NEXT(7);
else
REPLACE(7);
}
#endif
/*
* Rule 8: prefer addresses on alive interfaces.
* This is a KAME specific rule.
*/
if ((ia_best->ia_ifp->if_flags & IFF_UP) &&
!(ia->ia_ifp->if_flags & IFF_UP))
NEXT(8);
if (!(ia_best->ia_ifp->if_flags & IFF_UP) &&
(ia->ia_ifp->if_flags & IFF_UP))
REPLACE(8);
/*
* Rule 9: prefer addresses on "preferred" interfaces.
* This is a KAME specific rule.
*/
#ifdef notyet /* until introducing address selection */
#define NDI_BEST ND_IFINFO(ia_best->ia_ifp)
#define NDI_NEW ND_IFINFO(ia->ia_ifp)
if ((NDI_BEST->flags & ND6_IFF_PREFER_SOURCE) &&
!(NDI_NEW->flags & ND6_IFF_PREFER_SOURCE))
NEXT(9);
if (!(NDI_BEST->flags & ND6_IFF_PREFER_SOURCE) &&
(NDI_NEW->flags & ND6_IFF_PREFER_SOURCE))
REPLACE(9);
#undef NDI_BEST
#undef NDI_NEW
#endif
/*
* Rule 14: Use longest matching prefix.
* Note: in the address selection draft, this rule is
* documented as "Rule 8". However, since it is also
* documented that this rule can be overridden, we assign
* a large number so that it is easy to assign smaller numbers
* to more preferred rules.
*/
new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst);
if (best_matchlen < new_matchlen)
REPLACE(14);
if (new_matchlen < best_matchlen)
NEXT(14);
/* Rule 15 is reserved. */
/*
* Last resort: just keep the current candidate.
* Or, do we need more rules?
*/
continue;
replace:
ia_best = ia;
best_scope = (new_scope >= 0 ? new_scope :
in6_addrscope(&ia_best->ia_addr.sin6_addr));
best_policy = (new_policy ? new_policy :
lookup_addrsel_policy(&ia_best->ia_addr));
best_matchlen = (new_matchlen >= 0 ? new_matchlen :
in6_matchlen(&ia_best->ia_addr.sin6_addr,
&dst));
next:
continue;
out:
break;
}
if ((ia = ia_best) == NULL) {
*errorp = EADDRNOTAVAIL;
return (NULL);
}
return (&ia->ia_addr.sin6_addr);
}
#undef REPLACE
#undef BREAK
#undef NEXT
static int
selectroute(dstsock, opts, mopts, ro, retifp, retrt, clone, norouteok)
struct sockaddr_in6 *dstsock;
struct ip6_pktopts *opts;
struct ip6_moptions *mopts;
#ifdef NEW_STRUCT_ROUTE
struct route *ro;
#else
struct route_in6 *ro;
#endif
struct ifnet **retifp;
struct rtentry **retrt;
int clone;
int norouteok;
{
int error = 0;
struct ifnet *ifp = NULL;
struct rtentry *rt = NULL;
struct sockaddr_in6 *sin6_next;
struct in6_pktinfo *pi = NULL;
struct in6_addr *dst;
dst = &dstsock->sin6_addr;
#if 0
if (dstsock->sin6_addr.s6_addr32[0] == 0 &&
dstsock->sin6_addr.s6_addr32[1] == 0 &&
!IN6_IS_ADDR_LOOPBACK(&dstsock->sin6_addr)) {
printf("in6_selectroute: strange destination %s\n",
ip6_sprintf(&dstsock->sin6_addr));
} else {
printf("in6_selectroute: destination = %s%%%d\n",
ip6_sprintf(&dstsock->sin6_addr),
dstsock->sin6_scope_id); /* for debug */
}
#endif
/* If the caller specify the outgoing interface explicitly, use it. */
if (opts && (pi = opts->ip6po_pktinfo) != NULL && pi->ipi6_ifindex) {
/* XXX boundary check is assumed to be already done. */
#ifdef __FreeBSD__
ifp = ifnet_byindex(pi->ipi6_ifindex);
#else
ifp = ifindex2ifnet[pi->ipi6_ifindex];
#endif
if (ifp != NULL &&
(norouteok || retrt == NULL ||
IN6_IS_ADDR_MULTICAST(dst))) {
/*
* we do not have to check or get the route for
* multicast.
*/
goto done;
} else
goto getroute;
}
/*
* If the destination address is a multicast address and the outgoing
* interface for the address is specified by the caller, use it.
*/
if (IN6_IS_ADDR_MULTICAST(dst) &&
mopts != NULL && (ifp = mopts->im6o_multicast_ifp) != NULL) {
goto done; /* we do not need a route for multicast. */
}
getroute:
/*
* If the next hop address for the packet is specified by the caller,
* use it as the gateway.
*/
if (opts && opts->ip6po_nexthop) {
struct route_in6 *ron;
sin6_next = satosin6(opts->ip6po_nexthop);
/* at this moment, we only support AF_INET6 next hops */
if (sin6_next->sin6_family != AF_INET6) {
error = EAFNOSUPPORT; /* or should we proceed? */
goto done;
}
/*
* If the next hop is an IPv6 address, then the node identified
* by that address must be a neighbor of the sending host.
*/
ron = &opts->ip6po_nextroute;
if ((ron->ro_rt &&
(ron->ro_rt->rt_flags & (RTF_UP | RTF_GATEWAY)) !=
RTF_UP) ||
!IN6_ARE_ADDR_EQUAL(&satosin6(&ron->ro_dst)->sin6_addr,
&sin6_next->sin6_addr)) {
if (ron->ro_rt) {
RTFREE(ron->ro_rt);
ron->ro_rt = NULL;
}
*satosin6(&ron->ro_dst) = *sin6_next;
}
if (ron->ro_rt == NULL) {
rtalloc((struct route *)ron); /* multi path case? */
if (ron->ro_rt == NULL ||
(ron->ro_rt->rt_flags & RTF_GATEWAY)) {
if (ron->ro_rt) {
RTFREE(ron->ro_rt);
ron->ro_rt = NULL;
}
error = EHOSTUNREACH;
goto done;
}
}
if (!nd6_is_addr_neighbor(sin6_next, ron->ro_rt->rt_ifp)) {
RTFREE(ron->ro_rt);
ron->ro_rt = NULL;
error = EHOSTUNREACH;
goto done;
}
rt = ron->ro_rt;
ifp = rt->rt_ifp;
/*
* When cloning is required, try to allocate a route to the
* destination so that the caller can store path MTU
* information.
*/
if (!clone)
goto done;
}
/*
* Use a cached route if it exists and is valid, else try to allocate
* a new one. Note that we should check the address family of the
* cached destination, in case of sharing the cache with IPv4.
*/
if (ro) {
if (ro->ro_rt &&
(!(ro->ro_rt->rt_flags & RTF_UP) ||
((struct sockaddr *)(&ro->ro_dst))->sa_family != AF_INET6 ||
!IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr,
dst))) {
RTFREE(ro->ro_rt);
ro->ro_rt = (struct rtentry *)NULL;
}
if (ro->ro_rt == (struct rtentry *)NULL) {
struct sockaddr_in6 *sa6;
/* No route yet, so try to acquire one */
bzero(&ro->ro_dst, sizeof(struct sockaddr_in6));
sa6 = (struct sockaddr_in6 *)&ro->ro_dst;
*sa6 = *dstsock;
sa6->sin6_scope_id = 0;
if (clone) {
#ifdef RADIX_MPATH
rtalloc_mpath((struct route *)ro,
ntohl(sa6->sin6_addr.s6_addr32[3]));
#else
rtalloc((struct route *)ro);
#endif /* RADIX_MPATH */
} else {
#ifdef RADIX_MPATH
rtalloc_mpath((struct route *)ro,
ntohl(sa6->sin6_addr.s6_addr32[3]));
#else
ro->ro_rt = rtalloc1(&((struct route *)ro)
->ro_dst, 0);
#endif /* RADIX_MPATH */
}
}
/*
* do not care about the result if we have the nexthop
* explicitly specified.
*/
if (opts && opts->ip6po_nexthop)
goto done;
if (ro->ro_rt) {
ifp = ro->ro_rt->rt_ifp;
if (ifp == NULL) { /* can this really happen? */
RTFREE(ro->ro_rt);
ro->ro_rt = NULL;
}
}
if (ro->ro_rt == NULL)
error = EHOSTUNREACH;
rt = ro->ro_rt;
/*
* Check if the outgoing interface conflicts with
* the interface specified by ipi6_ifindex (if specified).
* Note that loopback interface is always okay.
* (this may happen when we are sending a packet to one of
* our own addresses.)
*/
if (opts && opts->ip6po_pktinfo &&
opts->ip6po_pktinfo->ipi6_ifindex) {
if (!(ifp->if_flags & IFF_LOOPBACK) &&
ifp->if_index !=
opts->ip6po_pktinfo->ipi6_ifindex) {
error = EHOSTUNREACH;
goto done;
}
}
}
done:
if (ifp == NULL && rt == NULL) {
/*
* This can happen if the caller did not pass a cached route
* nor any other hints. We treat this case an error.
*/
error = EHOSTUNREACH;
}
if (error == EHOSTUNREACH)
ip6stat.ip6s_noroute++;
if (retifp != NULL)
*retifp = ifp;
if (retrt != NULL)
*retrt = rt; /* rt may be NULL */
return (error);
}
static int
in6_selectif(dstsock, opts, mopts, ro, retifp)
struct sockaddr_in6 *dstsock;
struct ip6_pktopts *opts;
struct ip6_moptions *mopts;
struct route_in6 *ro;
struct ifnet **retifp;
{
int error, clone;
struct rtentry *rt = NULL;
clone = IN6_IS_ADDR_MULTICAST(&dstsock->sin6_addr) ? 0 : 1;
if ((error = selectroute(dstsock, opts, mopts, ro, retifp,
&rt, clone, 1)) != 0) {
return (error);
}
/*
* do not use a rejected or black hole route.
* XXX: this check should be done in the L2 output routine.
* However, if we skipped this check here, we'd see the following
* scenario:
* - install a rejected route for a scoped address prefix
* (like fe80::/10)
* - send a packet to a destination that matches the scoped prefix,
* with ambiguity about the scope zone.
* - pick the outgoing interface from the route, and disambiguate the
* scope zone with the interface.
* - ip6_output() would try to get another route with the "new"
* destination, which may be valid.
* - we'd see no error on output.
* Although this may not be very harmful, it should still be confusing.
* We thus reject the case here.
*/
if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE)))
return (rt->rt_flags & RTF_HOST ? EHOSTUNREACH : ENETUNREACH);
/*
* Adjust the "outgoing" interface. If we're going to loop the packet
* back to ourselves, the ifp would be the loopback interface.
* However, we'd rather know the interface associated to the
* destination address (which should probably be one of our own
* addresses.)
*/
if (rt && rt->rt_ifa && rt->rt_ifa->ifa_ifp)
*retifp = rt->rt_ifa->ifa_ifp;
return (0);
}
int
in6_selectroute(dstsock, opts, mopts, ro, retifp, retrt, clone)
struct sockaddr_in6 *dstsock;
struct ip6_pktopts *opts;
struct ip6_moptions *mopts;
struct route_in6 *ro;
struct ifnet **retifp;
struct rtentry **retrt;
int clone; /* meaningful only for bsdi and freebsd. */
{
return (selectroute(dstsock, opts, mopts, ro, retifp,
retrt, clone, 0));
}
/*
* Default hop limit selection. The precedence is as follows:
* 1. Hoplimit value specified via ioctl.
* 2. (If the outgoing interface is detected) the current
* hop limit of the interface specified by router advertisement.
* 3. The system default hoplimit.
*/
int
in6_selecthlim(in6p, ifp)
struct in6pcb *in6p;
struct ifnet *ifp;
{
if (in6p && in6p->in6p_hops >= 0)
return (in6p->in6p_hops);
else if (ifp)
return (ND_IFINFO(ifp)->chlim);
else
return (ip6_defhlim);
}
/*
* Find an empty port and set it to the specified PCB.
*/
int
in6_pcbsetport(laddr, in6p, l)
struct in6_addr *laddr;
struct in6pcb *in6p;
struct lwp *l;
{
struct socket *so = in6p->in6p_socket;
struct inpcbtable *table = in6p->in6p_table;
int cnt;
u_int16_t minport, maxport;
u_int16_t lport, *lastport;
int wild = 0;
void *t;
/* XXX: this is redundant when called from in6_pcbbind */
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
(so->so_options & SO_ACCEPTCONN) == 0))
wild = 1;
if (in6p->in6p_flags & IN6P_LOWPORT) {
#ifndef IPNOPRIVPORTS
if (l == 0 || (kauth_authorize_generic(l->l_cred,
KAUTH_GENERIC_ISSUSER, &l->l_acflag) != 0))
return (EACCES);
#endif
minport = ip6_lowportmin;
maxport = ip6_lowportmax;
lastport = &table->inpt_lastlow;
} else {
minport = ip6_anonportmin;
maxport = ip6_anonportmax;
lastport = &table->inpt_lastport;
}
if (minport > maxport) { /* sanity check */
u_int16_t swp;
swp = minport;
minport = maxport;
maxport = swp;
}
lport = *lastport - 1;
for (cnt = maxport - minport + 1; cnt; cnt--, lport--) {
if (lport < minport || lport > maxport)
lport = maxport;
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(laddr)) {
t = in_pcblookup_port(table,
*(struct in_addr *)&laddr->s6_addr32[3],
lport, wild);
} else
#endif
{
t = in6_pcblookup_port(table, laddr, lport, wild);
}
if (t == 0)
goto found;
}
return (EAGAIN);
found:
in6p->in6p_flags |= IN6P_ANONPORT;
*lastport = lport;
in6p->in6p_lport = htons(lport);
in6_pcbstate(in6p, IN6P_BOUND);
return (0); /* success */
}
void
addrsel_policy_init()
{
init_policy_queue();
/* initialize the "last resort" policy */
bzero(&defaultaddrpolicy, sizeof(defaultaddrpolicy));
defaultaddrpolicy.label = ADDR_LABEL_NOTAPP;
}
static struct in6_addrpolicy *
lookup_addrsel_policy(key)
struct sockaddr_in6 *key;
{
struct in6_addrpolicy *match = NULL;
match = match_addrsel_policy(key);
if (match == NULL)
match = &defaultaddrpolicy;
else
match->use++;
return (match);
}
/*
* Subroutines to manage the address selection policy table via sysctl.
*/
struct walkarg {
size_t w_total;
size_t w_given;
caddr_t w_where;
caddr_t w_limit;
};
int
in6_src_sysctl(oldp, oldlenp, newp, newlen)
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
{
int error = 0;
int s;
s = splsoftnet();
if (newp) {
error = EPERM;
goto end;
}
if (oldp && oldlenp == NULL) {
error = EINVAL;
goto end;
}
if (oldp || oldlenp) {
struct walkarg w;
size_t oldlen = *oldlenp;
bzero(&w, sizeof(w));
w.w_given = oldlen;
w.w_where = oldp;
if (oldp)
w.w_limit = (caddr_t)oldp + oldlen;
error = walk_addrsel_policy(dump_addrsel_policyent, &w);
*oldlenp = w.w_total;
if (oldp && w.w_total > oldlen && error == 0)
error = ENOMEM;
}
end:
splx(s);
return (error);
}
int
in6_src_ioctl(cmd, data)
u_long cmd;
caddr_t data;
{
int i;
struct in6_addrpolicy ent0;
if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY)
return (EOPNOTSUPP); /* check for safety */
ent0 = *(struct in6_addrpolicy *)data;
if (ent0.label == ADDR_LABEL_NOTAPP)
return (EINVAL);
/* check if the prefix mask is consecutive. */
if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0)
return (EINVAL);
/* clear trailing garbages (if any) of the prefix address. */
for (i = 0; i < 4; i++) {
ent0.addr.sin6_addr.s6_addr32[i] &=
ent0.addrmask.sin6_addr.s6_addr32[i];
}
ent0.use = 0;
switch (cmd) {
case SIOCAADDRCTL_POLICY:
return (add_addrsel_policyent(&ent0));
case SIOCDADDRCTL_POLICY:
return (delete_addrsel_policyent(&ent0));
}
return (0); /* XXX: compromise compilers */
}
/*
* The followings are implementation of the policy table using a
* simple tail queue.
* XXX such details should be hidden.
* XXX implementation using binary tree should be more efficient.
*/
struct addrsel_policyent {
TAILQ_ENTRY(addrsel_policyent) ape_entry;
struct in6_addrpolicy ape_policy;
};
TAILQ_HEAD(addrsel_policyhead, addrsel_policyent);
struct addrsel_policyhead addrsel_policytab;
static void
init_policy_queue()
{
TAILQ_INIT(&addrsel_policytab);
}
static int
add_addrsel_policyent(newpolicy)
struct in6_addrpolicy *newpolicy;
{
struct addrsel_policyent *new, *pol;
/* duplication check */
for (pol = TAILQ_FIRST(&addrsel_policytab); pol;
pol = TAILQ_NEXT(pol, ape_entry)) {
if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr,
&pol->ape_policy.addr.sin6_addr) &&
IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr,
&pol->ape_policy.addrmask.sin6_addr)) {
return (EEXIST); /* or override it? */
}
}
MALLOC(new, struct addrsel_policyent *, sizeof(*new), M_IFADDR,
M_WAITOK);
bzero(new, sizeof(*new));
/* XXX: should validate entry */
new->ape_policy = *newpolicy;
TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry);
return (0);
}
static int
delete_addrsel_policyent(key)
struct in6_addrpolicy *key;
{
struct addrsel_policyent *pol;
/* search for the entry in the table */
for (pol = TAILQ_FIRST(&addrsel_policytab); pol;
pol = TAILQ_NEXT(pol, ape_entry)) {
if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr,
&pol->ape_policy.addr.sin6_addr) &&
IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr,
&pol->ape_policy.addrmask.sin6_addr)) {
break;
}
}
if (pol == NULL) {
return (ESRCH);
}
TAILQ_REMOVE(&addrsel_policytab, pol, ape_entry);
return (0);
}
static int
walk_addrsel_policy(callback, w)
int (*callback) __P((struct in6_addrpolicy *, void *));
void *w;
{
struct addrsel_policyent *pol;
int error = 0;
for (pol = TAILQ_FIRST(&addrsel_policytab); pol;
pol = TAILQ_NEXT(pol, ape_entry)) {
if ((error = (*callback)(&pol->ape_policy, w)) != 0) {
return (error);
}
}
return (error);
}
static int
dump_addrsel_policyent(pol, arg)
struct in6_addrpolicy *pol;
void *arg;
{
int error = 0;
struct walkarg *w = arg;
if (w->w_where && w->w_where + sizeof(*pol) <= w->w_limit) {
if ((error = copyout(pol, w->w_where, sizeof(*pol))) != 0)
return (error);
w->w_where += sizeof(*pol);
}
w->w_total += sizeof(*pol);
return (error);
}
static struct in6_addrpolicy *
match_addrsel_policy(key)
struct sockaddr_in6 *key;
{
struct addrsel_policyent *pent;
struct in6_addrpolicy *bestpol = NULL, *pol;
int matchlen, bestmatchlen = -1;
u_char *mp, *ep, *k, *p, m;
for (pent = TAILQ_FIRST(&addrsel_policytab); pent;
pent = TAILQ_NEXT(pent, ape_entry)) {
matchlen = 0;
pol = &pent->ape_policy;
mp = (u_char *)&pol->addrmask.sin6_addr;
ep = mp + 16; /* XXX: scope field? */
k = (u_char *)&key->sin6_addr;
p = (u_char *)&pol->addr.sin6_addr;
for (; mp < ep && *mp; mp++, k++, p++) {
m = *mp;
if ((*k & m) != *p)
goto next; /* not match */
if (m == 0xff) /* short cut for a typical case */
matchlen += 8;
else {
while (m >= 0x80) {
matchlen++;
m <<= 1;
}
}
}
/* matched. check if this is better than the current best. */
if (bestpol == NULL ||
matchlen > bestmatchlen) {
bestpol = pol;
bestmatchlen = matchlen;
}
next:
continue;
}
return (bestpol);
}