NetBSD/sys/dev/raidframe/rf_dagffwr.c

2150 lines
78 KiB
C

/* $NetBSD: rf_dagffwr.c,v 1.3 1999/02/05 00:06:07 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* rf_dagff.c
*
* code for creating fault-free DAGs
*
*/
#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_threadid.h"
#include "rf_debugMem.h"
#include "rf_dagffrd.h"
#include "rf_memchunk.h"
#include "rf_general.h"
#include "rf_dagffwr.h"
/******************************************************************************
*
* General comments on DAG creation:
*
* All DAGs in this file use roll-away error recovery. Each DAG has a single
* commit node, usually called "Cmt." If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
* backward through the graph, executing the undo functions. Assuming that
* each node in the graph prior to the Cmt node are undoable and atomic - or -
* does not make changes to permanent state, the graph will fail atomically.
* If an error occurs after the Cmt node executes, the engine will roll-forward
* through the graph, blindly executing nodes until it reaches the end.
* If a graph reaches the end, it is assumed to have completed successfully.
*
* A graph has only 1 Cmt node.
*
*/
/******************************************************************************
*
* The following wrappers map the standard DAG creation interface to the
* DAG creation routines. Additionally, these wrappers enable experimentation
* with new DAG structures by providing an extra level of indirection, allowing
* the DAG creation routines to be replaced at this single point.
*/
void
rf_CreateNonRedundantWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_IoType_t type)
{
rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
RF_IO_TYPE_WRITE);
}
void
rf_CreateRAID0WriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_IoType_t type)
{
rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
RF_IO_TYPE_WRITE);
}
void
rf_CreateSmallWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
#if RF_FORWARD > 0
rf_CommonCreateSmallWriteDAGFwd(raidPtr, asmap, dag_h, bp, flags, allocList,
&rf_xorFuncs, NULL);
#else /* RF_FORWARD > 0 */
#if RF_BACKWARD > 0
rf_CommonCreateSmallWriteDAGFwd(raidPtr, asmap, dag_h, bp, flags, allocList,
&rf_xorFuncs, NULL);
#else /* RF_BACKWARD > 0 */
/* "normal" rollaway */
rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
&rf_xorFuncs, NULL);
#endif /* RF_BACKWARD > 0 */
#endif /* RF_FORWARD > 0 */
}
void
rf_CreateLargeWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
#if RF_FORWARD > 0
rf_CommonCreateLargeWriteDAGFwd(raidPtr, asmap, dag_h, bp, flags, allocList,
1, rf_RegularXorFunc, RF_TRUE);
#else /* RF_FORWARD > 0 */
#if RF_BACKWARD > 0
rf_CommonCreateLargeWriteDAGFwd(raidPtr, asmap, dag_h, bp, flags, allocList,
1, rf_RegularXorFunc, RF_TRUE);
#else /* RF_BACKWARD > 0 */
/* "normal" rollaway */
rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
1, rf_RegularXorFunc, RF_TRUE);
#endif /* RF_BACKWARD > 0 */
#endif /* RF_FORWARD > 0 */
}
/******************************************************************************
*
* DAG creation code begins here
*/
/******************************************************************************
*
* creates a DAG to perform a large-write operation:
*
* / Rod \ / Wnd \
* H -- block- Rod - Xor - Cmt - Wnd --- T
* \ Rod / \ Wnp /
* \[Wnq]/
*
* The XOR node also does the Q calculation in the P+Q architecture.
* All nodes are before the commit node (Cmt) are assumed to be atomic and
* undoable - or - they make no changes to permanent state.
*
* Rod = read old data
* Cmt = commit node
* Wnp = write new parity
* Wnd = write new data
* Wnq = write new "q"
* [] denotes optional segments in the graph
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
* nfaults - number of faults array can tolerate
* (equal to # redundancy units in stripe)
* redfuncs - list of redundancy generating functions
*
*****************************************************************************/
void
rf_CommonCreateLargeWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
int nfaults,
int (*redFunc) (RF_DagNode_t *),
int allowBufferRecycle)
{
RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
int nWndNodes, nRodNodes, i, nodeNum, asmNum;
RF_AccessStripeMapHeader_t *new_asm_h[2];
RF_StripeNum_t parityStripeID;
char *sosBuffer, *eosBuffer;
RF_ReconUnitNum_t which_ru;
RF_RaidLayout_t *layoutPtr;
RF_PhysDiskAddr_t *pda;
layoutPtr = &(raidPtr->Layout);
parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
&which_ru);
if (rf_dagDebug) {
printf("[Creating large-write DAG]\n");
}
dag_h->creator = "LargeWriteDAG";
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
nWndNodes = asmap->numStripeUnitsAccessed;
RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
wndNodes = &nodes[i];
i += nWndNodes;
xorNode = &nodes[i];
i += 1;
wnpNode = &nodes[i];
i += 1;
blockNode = &nodes[i];
i += 1;
commitNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
if (nfaults == 2) {
wnqNode = &nodes[i];
i += 1;
} else {
wnqNode = NULL;
}
rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
&nRodNodes, &sosBuffer, &eosBuffer, allocList);
if (nRodNodes > 0) {
RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
} else {
rodNodes = NULL;
}
/* begin node initialization */
if (nRodNodes > 0) {
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
} else {
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
}
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
/* initialize the Rod nodes */
for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
if (new_asm_h[asmNum]) {
pda = new_asm_h[asmNum]->stripeMap->physInfo;
while (pda) {
rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Rod", allocList);
rodNodes[nodeNum].params[0].p = pda;
rodNodes[nodeNum].params[1].p = pda->bufPtr;
rodNodes[nodeNum].params[2].v = parityStripeID;
rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, 0, which_ru);
nodeNum++;
pda = pda->next;
}
}
}
RF_ASSERT(nodeNum == nRodNodes);
/* initialize the wnd nodes */
pda = asmap->physInfo;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
RF_ASSERT(pda != NULL);
wndNodes[i].params[0].p = pda;
wndNodes[i].params[1].p = pda->bufPtr;
wndNodes[i].params[2].v = parityStripeID;
wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
pda = pda->next;
}
/* initialize the redundancy node */
if (nRodNodes > 0) {
rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
"Xr ", allocList);
} else {
rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
}
xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
for (i = 0; i < nWndNodes; i++) {
xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
}
for (i = 0; i < nRodNodes; i++) {
xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
}
/* xor node needs to get at RAID information */
xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
/*
* Look for an Rod node that reads a complete SU. If none, alloc a buffer
* to receive the parity info. Note that we can't use a new data buffer
* because it will not have gotten written when the xor occurs.
*/
if (allowBufferRecycle) {
for (i = 0; i < nRodNodes; i++) {
if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
break;
}
}
if ((!allowBufferRecycle) || (i == nRodNodes)) {
RF_CallocAndAdd(xorNode->results[0], 1,
rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
(void *), allocList);
} else {
xorNode->results[0] = rodNodes[i].params[1].p;
}
/* initialize the Wnp node */
rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
wnpNode->params[0].p = asmap->parityInfo;
wnpNode->params[1].p = xorNode->results[0];
wnpNode->params[2].v = parityStripeID;
wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
/* parityInfo must describe entire parity unit */
RF_ASSERT(asmap->parityInfo->next == NULL);
if (nfaults == 2) {
/*
* We never try to recycle a buffer for the Q calcuation
* in addition to the parity. This would cause two buffers
* to get smashed during the P and Q calculation, guaranteeing
* one would be wrong.
*/
RF_CallocAndAdd(xorNode->results[1], 1,
rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
(void *), allocList);
rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
wnqNode->params[0].p = asmap->qInfo;
wnqNode->params[1].p = xorNode->results[1];
wnqNode->params[2].v = parityStripeID;
wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
/* parityInfo must describe entire parity unit */
RF_ASSERT(asmap->parityInfo->next == NULL);
}
/*
* Connect nodes to form graph.
*/
/* connect dag header to block node */
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
if (nRodNodes > 0) {
/* connect the block node to the Rod nodes */
RF_ASSERT(blockNode->numSuccedents == nRodNodes);
RF_ASSERT(xorNode->numAntecedents == nRodNodes);
for (i = 0; i < nRodNodes; i++) {
RF_ASSERT(rodNodes[i].numAntecedents == 1);
blockNode->succedents[i] = &rodNodes[i];
rodNodes[i].antecedents[0] = blockNode;
rodNodes[i].antType[0] = rf_control;
/* connect the Rod nodes to the Xor node */
RF_ASSERT(rodNodes[i].numSuccedents == 1);
rodNodes[i].succedents[0] = xorNode;
xorNode->antecedents[i] = &rodNodes[i];
xorNode->antType[i] = rf_trueData;
}
} else {
/* connect the block node to the Xor node */
RF_ASSERT(blockNode->numSuccedents == 1);
RF_ASSERT(xorNode->numAntecedents == 1);
blockNode->succedents[0] = xorNode;
xorNode->antecedents[0] = blockNode;
xorNode->antType[0] = rf_control;
}
/* connect the xor node to the commit node */
RF_ASSERT(xorNode->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 1);
xorNode->succedents[0] = commitNode;
commitNode->antecedents[0] = xorNode;
commitNode->antType[0] = rf_control;
/* connect the commit node to the write nodes */
RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numAntecedents == 1);
commitNode->succedents[i] = &wndNodes[i];
wndNodes[i].antecedents[0] = commitNode;
wndNodes[i].antType[0] = rf_control;
}
RF_ASSERT(wnpNode->numAntecedents == 1);
commitNode->succedents[nWndNodes] = wnpNode;
wnpNode->antecedents[0] = commitNode;
wnpNode->antType[0] = rf_trueData;
if (nfaults == 2) {
RF_ASSERT(wnqNode->numAntecedents == 1);
commitNode->succedents[nWndNodes + 1] = wnqNode;
wnqNode->antecedents[0] = commitNode;
wnqNode->antType[0] = rf_trueData;
}
/* connect the write nodes to the term node */
RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
RF_ASSERT(termNode->numSuccedents == 0);
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numSuccedents == 1);
wndNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &wndNodes[i];
termNode->antType[i] = rf_control;
}
RF_ASSERT(wnpNode->numSuccedents == 1);
wnpNode->succedents[0] = termNode;
termNode->antecedents[nWndNodes] = wnpNode;
termNode->antType[nWndNodes] = rf_control;
if (nfaults == 2) {
RF_ASSERT(wnqNode->numSuccedents == 1);
wnqNode->succedents[0] = termNode;
termNode->antecedents[nWndNodes + 1] = wnqNode;
termNode->antType[nWndNodes + 1] = rf_control;
}
}
/******************************************************************************
*
* creates a DAG to perform a small-write operation (either raid 5 or pq),
* which is as follows:
*
* Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
* \- Rod X / \----> Wnd [Und]-/
* [\- Rod X / \---> Wnd [Und]-/]
* [\- Roq -> Q / \--> Wnq [Unq]-/]
*
* Rop = read old parity
* Rod = read old data
* Roq = read old "q"
* Cmt = commit node
* Und = unlock data disk
* Unp = unlock parity disk
* Unq = unlock q disk
* Wnp = write new parity
* Wnd = write new data
* Wnq = write new "q"
* [ ] denotes optional segments in the graph
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
* pfuncs - list of parity generating functions
* qfuncs - list of q generating functions
*
* A null qfuncs indicates single fault tolerant
*****************************************************************************/
void
rf_CommonCreateSmallWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_RedFuncs_t * pfuncs,
RF_RedFuncs_t * qfuncs)
{
RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
int i, j, nNodes, totalNumNodes, lu_flag;
RF_ReconUnitNum_t which_ru;
int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
int (*qfunc) (RF_DagNode_t *);
int numDataNodes, numParityNodes;
RF_StripeNum_t parityStripeID;
RF_PhysDiskAddr_t *pda;
char *name, *qname;
long nfaults;
nfaults = qfuncs ? 2 : 1;
lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
pda = asmap->physInfo;
numDataNodes = asmap->numStripeUnitsAccessed;
numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
if (rf_dagDebug) {
printf("[Creating small-write DAG]\n");
}
RF_ASSERT(numDataNodes > 0);
dag_h->creator = "SmallWriteDAG";
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/*
* DAG creation occurs in four steps:
* 1. count the number of nodes in the DAG
* 2. create the nodes
* 3. initialize the nodes
* 4. connect the nodes
*/
/*
* Step 1. compute number of nodes in the graph
*/
/* number of nodes: a read and write for each data unit a redundancy
* computation node for each parity node (nfaults * nparity) a read
* and write for each parity unit a block and commit node (2) a
* terminate node if atomic RMW an unlock node for each data unit,
* redundancy unit */
totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
+ (nfaults * 2 * numParityNodes) + 3;
if (lu_flag) {
totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
}
/*
* Step 2. create the nodes
*/
RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
blockNode = &nodes[i];
i += 1;
commitNode = &nodes[i];
i += 1;
readDataNodes = &nodes[i];
i += numDataNodes;
readParityNodes = &nodes[i];
i += numParityNodes;
writeDataNodes = &nodes[i];
i += numDataNodes;
writeParityNodes = &nodes[i];
i += numParityNodes;
xorNodes = &nodes[i];
i += numParityNodes;
termNode = &nodes[i];
i += 1;
if (lu_flag) {
unlockDataNodes = &nodes[i];
i += numDataNodes;
unlockParityNodes = &nodes[i];
i += numParityNodes;
} else {
unlockDataNodes = unlockParityNodes = NULL;
}
if (nfaults == 2) {
readQNodes = &nodes[i];
i += numParityNodes;
writeQNodes = &nodes[i];
i += numParityNodes;
qNodes = &nodes[i];
i += numParityNodes;
if (lu_flag) {
unlockQNodes = &nodes[i];
i += numParityNodes;
} else {
unlockQNodes = NULL;
}
} else {
readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
}
RF_ASSERT(i == totalNumNodes);
/*
* Step 3. initialize the nodes
*/
/* initialize block node (Nil) */
nNodes = numDataNodes + (nfaults * numParityNodes);
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
/* initialize commit node (Cmt) */
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
/* initialize terminate node (Trm) */
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
/* initialize nodes which read old data (Rod) */
for (i = 0; i < numDataNodes; i++) {
rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
"Rod", allocList);
RF_ASSERT(pda != NULL);
/* physical disk addr desc */
readDataNodes[i].params[0].p = pda;
/* buffer to hold old data */
readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
dag_h, pda, allocList);
readDataNodes[i].params[2].v = parityStripeID;
readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
lu_flag, 0, which_ru);
pda = pda->next;
for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
readDataNodes[i].propList[j] = NULL;
}
}
/* initialize nodes which read old parity (Rop) */
pda = asmap->parityInfo;
i = 0;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
0, dag_h, "Rop", allocList);
readParityNodes[i].params[0].p = pda;
/* buffer to hold old parity */
readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
dag_h, pda, allocList);
readParityNodes[i].params[2].v = parityStripeID;
readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
lu_flag, 0, which_ru);
pda = pda->next;
for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
readParityNodes[i].propList[0] = NULL;
}
}
/* initialize nodes which read old Q (Roq) */
if (nfaults == 2) {
pda = asmap->qInfo;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
readQNodes[i].params[0].p = pda;
/* buffer to hold old Q */
readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
allocList);
readQNodes[i].params[2].v = parityStripeID;
readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
lu_flag, 0, which_ru);
pda = pda->next;
for (j = 0; j < readQNodes[i].numSuccedents; j++) {
readQNodes[i].propList[0] = NULL;
}
}
}
/* initialize nodes which write new data (Wnd) */
pda = asmap->physInfo;
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Wnd", allocList);
/* physical disk addr desc */
writeDataNodes[i].params[0].p = pda;
/* buffer holding new data to be written */
writeDataNodes[i].params[1].p = pda->bufPtr;
writeDataNodes[i].params[2].v = parityStripeID;
writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, 0, which_ru);
if (lu_flag) {
/* initialize node to unlock the disk queue */
rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
"Und", allocList);
/* physical disk addr desc */
unlockDataNodes[i].params[0].p = pda;
unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, lu_flag, which_ru);
}
pda = pda->next;
}
/*
* Initialize nodes which compute new parity and Q.
*/
/*
* We use the simple XOR func in the double-XOR case, and when
* we're accessing only a portion of one stripe unit. The distinction
* between the two is that the regular XOR func assumes that the targbuf
* is a full SU in size, and examines the pda associated with the buffer
* to decide where within the buffer to XOR the data, whereas
* the simple XOR func just XORs the data into the start of the buffer.
*/
if ((numParityNodes == 2) || ((numDataNodes == 1)
&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
func = pfuncs->simple;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->SimpleName;
if (qfuncs) {
qfunc = qfuncs->simple;
qname = qfuncs->SimpleName;
} else {
qfunc = NULL;
qname = NULL;
}
} else {
func = pfuncs->regular;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->RegularName;
if (qfuncs) {
qfunc = qfuncs->regular;
qname = qfuncs->RegularName;
} else {
qfunc = NULL;
qname = NULL;
}
}
/*
* Initialize the xor nodes: params are {pda,buf}
* from {Rod,Wnd,Rop} nodes, and raidPtr
*/
if (numParityNodes == 2) {
/* double-xor case */
for (i = 0; i < numParityNodes; i++) {
/* note: no wakeup func for xor */
rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
xorNodes[i].params[0] = readDataNodes[i].params[0];
xorNodes[i].params[1] = readDataNodes[i].params[1];
xorNodes[i].params[2] = readParityNodes[i].params[0];
xorNodes[i].params[3] = readParityNodes[i].params[1];
xorNodes[i].params[4] = writeDataNodes[i].params[0];
xorNodes[i].params[5] = writeDataNodes[i].params[1];
xorNodes[i].params[6].p = raidPtr;
/* use old parity buf as target buf */
xorNodes[i].results[0] = readParityNodes[i].params[1].p;
if (nfaults == 2) {
/* note: no wakeup func for qor */
rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
(numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
qNodes[i].params[0] = readDataNodes[i].params[0];
qNodes[i].params[1] = readDataNodes[i].params[1];
qNodes[i].params[2] = readQNodes[i].params[0];
qNodes[i].params[3] = readQNodes[i].params[1];
qNodes[i].params[4] = writeDataNodes[i].params[0];
qNodes[i].params[5] = writeDataNodes[i].params[1];
qNodes[i].params[6].p = raidPtr;
/* use old Q buf as target buf */
qNodes[i].results[0] = readQNodes[i].params[1].p;
}
}
} else {
/* there is only one xor node in this case */
rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
(numDataNodes + numParityNodes),
(2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
for (i = 0; i < numDataNodes + 1; i++) {
/* set up params related to Rod and Rop nodes */
xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
}
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd and Wnp nodes */
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
writeDataNodes[i].params[0];
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
writeDataNodes[i].params[1];
}
/* xor node needs to get at RAID information */
xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
xorNodes[0].results[0] = readParityNodes[0].params[1].p;
if (nfaults == 2) {
rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
(numDataNodes + numParityNodes),
(2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
qname, allocList);
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Rod */
qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
}
/* and read old q */
qNodes[0].params[2 * numDataNodes + 0] = /* pda */
readQNodes[0].params[0];
qNodes[0].params[2 * numDataNodes + 1] = /* buffer ptr */
readQNodes[0].params[1];
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd nodes */
qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
writeDataNodes[i].params[0];
qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
writeDataNodes[i].params[1];
}
/* xor node needs to get at RAID information */
qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
qNodes[0].results[0] = readQNodes[0].params[1].p;
}
}
/* initialize nodes which write new parity (Wnp) */
pda = asmap->parityInfo;
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Wnp", allocList);
RF_ASSERT(pda != NULL);
writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr)
* filled in by xor node */
writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for
* parity write
* operation */
writeParityNodes[i].params[2].v = parityStripeID;
writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, 0, which_ru);
if (lu_flag) {
/* initialize node to unlock the disk queue */
rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
"Unp", allocList);
unlockParityNodes[i].params[0].p = pda; /* physical disk addr
* desc */
unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, lu_flag, which_ru);
}
pda = pda->next;
}
/* initialize nodes which write new Q (Wnq) */
if (nfaults == 2) {
pda = asmap->qInfo;
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Wnq", allocList);
RF_ASSERT(pda != NULL);
writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr)
* filled in by xor node */
writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for
* parity write
* operation */
writeQNodes[i].params[2].v = parityStripeID;
writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, 0, which_ru);
if (lu_flag) {
/* initialize node to unlock the disk queue */
rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
"Unq", allocList);
unlockQNodes[i].params[0].p = pda; /* physical disk addr
* desc */
unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
0, lu_flag, which_ru);
}
pda = pda->next;
}
}
/*
* Step 4. connect the nodes.
*/
/* connect header to block node */
dag_h->succedents[0] = blockNode;
/* connect block node to read old data nodes */
RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
for (i = 0; i < numDataNodes; i++) {
blockNode->succedents[i] = &readDataNodes[i];
RF_ASSERT(readDataNodes[i].numAntecedents == 1);
readDataNodes[i].antecedents[0] = blockNode;
readDataNodes[i].antType[0] = rf_control;
}
/* connect block node to read old parity nodes */
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
RF_ASSERT(readParityNodes[i].numAntecedents == 1);
readParityNodes[i].antecedents[0] = blockNode;
readParityNodes[i].antType[0] = rf_control;
}
/* connect block node to read old Q nodes */
if (nfaults == 2) {
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
RF_ASSERT(readQNodes[i].numAntecedents == 1);
readQNodes[i].antecedents[0] = blockNode;
readQNodes[i].antType[0] = rf_control;
}
}
/* connect read old data nodes to xor nodes */
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
readDataNodes[i].succedents[j] = &xorNodes[j];
xorNodes[j].antecedents[i] = &readDataNodes[i];
xorNodes[j].antType[i] = rf_trueData;
}
}
/* connect read old data nodes to q nodes */
if (nfaults == 2) {
for (i = 0; i < numDataNodes; i++) {
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
qNodes[j].antecedents[i] = &readDataNodes[i];
qNodes[j].antType[i] = rf_trueData;
}
}
}
/* connect read old parity nodes to xor nodes */
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
for (j = 0; j < numParityNodes; j++) {
readParityNodes[i].succedents[j] = &xorNodes[j];
xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
xorNodes[j].antType[numDataNodes + i] = rf_trueData;
}
}
/* connect read old q nodes to q nodes */
if (nfaults == 2) {
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
for (j = 0; j < numParityNodes; j++) {
readQNodes[i].succedents[j] = &qNodes[j];
qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
qNodes[j].antType[numDataNodes + i] = rf_trueData;
}
}
}
/* connect xor nodes to commit node */
RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(xorNodes[i].numSuccedents == 1);
xorNodes[i].succedents[0] = commitNode;
commitNode->antecedents[i] = &xorNodes[i];
commitNode->antType[i] = rf_control;
}
/* connect q nodes to commit node */
if (nfaults == 2) {
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(qNodes[i].numSuccedents == 1);
qNodes[i].succedents[0] = commitNode;
commitNode->antecedents[i + numParityNodes] = &qNodes[i];
commitNode->antType[i + numParityNodes] = rf_control;
}
}
/* connect commit node to write nodes */
RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
commitNode->succedents[i] = &writeDataNodes[i];
writeDataNodes[i].antecedents[0] = commitNode;
writeDataNodes[i].antType[0] = rf_trueData;
}
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
writeParityNodes[i].antecedents[0] = commitNode;
writeParityNodes[i].antType[0] = rf_trueData;
}
if (nfaults == 2) {
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(writeQNodes[i].numAntecedents == 1);
commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
writeQNodes[i].antecedents[0] = commitNode;
writeQNodes[i].antType[0] = rf_trueData;
}
}
RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
RF_ASSERT(termNode->numSuccedents == 0);
for (i = 0; i < numDataNodes; i++) {
if (lu_flag) {
/* connect write new data nodes to unlock nodes */
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
unlockDataNodes[i].antType[0] = rf_control;
/* connect unlock nodes to term node */
RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
unlockDataNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &unlockDataNodes[i];
termNode->antType[i] = rf_control;
} else {
/* connect write new data nodes to term node */
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
writeDataNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &writeDataNodes[i];
termNode->antType[i] = rf_control;
}
}
for (i = 0; i < numParityNodes; i++) {
if (lu_flag) {
/* connect write new parity nodes to unlock nodes */
RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
unlockParityNodes[i].antType[0] = rf_control;
/* connect unlock nodes to term node */
RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
unlockParityNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
termNode->antType[numDataNodes + i] = rf_control;
} else {
RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
writeParityNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
termNode->antType[numDataNodes + i] = rf_control;
}
}
if (nfaults == 2) {
for (i = 0; i < numParityNodes; i++) {
if (lu_flag) {
/* connect write new Q nodes to unlock nodes */
RF_ASSERT(writeQNodes[i].numSuccedents == 1);
RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
writeQNodes[i].succedents[0] = &unlockQNodes[i];
unlockQNodes[i].antecedents[0] = &writeQNodes[i];
unlockQNodes[i].antType[0] = rf_control;
/* connect unlock nodes to unblock node */
RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
unlockQNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
} else {
RF_ASSERT(writeQNodes[i].numSuccedents == 1);
writeQNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
}
}
}
}
/******************************************************************************
* create a write graph (fault-free or degraded) for RAID level 1
*
* Hdr -> Commit -> Wpd -> Nil -> Trm
* -> Wsd ->
*
* The "Wpd" node writes data to the primary copy in the mirror pair
* The "Wsd" node writes data to the secondary copy in the mirror pair
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
*****************************************************************************/
void
rf_CreateRaidOneWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
RF_DagNode_t *unblockNode, *termNode, *commitNode;
RF_DagNode_t *nodes, *wndNode, *wmirNode;
int nWndNodes, nWmirNodes, i;
RF_ReconUnitNum_t which_ru;
RF_PhysDiskAddr_t *pda, *pdaP;
RF_StripeNum_t parityStripeID;
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
if (rf_dagDebug) {
printf("[Creating RAID level 1 write DAG]\n");
}
dag_h->creator = "RaidOneWriteDAG";
/* 2 implies access not SU aligned */
nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
nWndNodes = (asmap->physInfo->next) ? 2 : 1;
/* alloc the Wnd nodes and the Wmir node */
if (asmap->numDataFailed == 1)
nWndNodes--;
if (asmap->numParityFailed == 1)
nWmirNodes--;
/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
* + terminator) */
RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
wndNode = &nodes[i];
i += nWndNodes;
wmirNode = &nodes[i];
i += nWmirNodes;
commitNode = &nodes[i];
i += 1;
unblockNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
/* this dag can commit immediately */
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* initialize the commit, unblock, and term nodes */
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
/* initialize the wnd nodes */
if (nWndNodes > 0) {
pda = asmap->physInfo;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
RF_ASSERT(pda != NULL);
wndNode[i].params[0].p = pda;
wndNode[i].params[1].p = pda->bufPtr;
wndNode[i].params[2].v = parityStripeID;
wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
pda = pda->next;
}
RF_ASSERT(pda == NULL);
}
/* initialize the mirror nodes */
if (nWmirNodes > 0) {
pda = asmap->physInfo;
pdaP = asmap->parityInfo;
for (i = 0; i < nWmirNodes; i++) {
rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
RF_ASSERT(pda != NULL);
wmirNode[i].params[0].p = pdaP;
wmirNode[i].params[1].p = pda->bufPtr;
wmirNode[i].params[2].v = parityStripeID;
wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
pda = pda->next;
pdaP = pdaP->next;
}
RF_ASSERT(pda == NULL);
RF_ASSERT(pdaP == NULL);
}
/* link the header node to the commit node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 0);
dag_h->succedents[0] = commitNode;
/* link the commit node to the write nodes */
RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNode[i].numAntecedents == 1);
commitNode->succedents[i] = &wndNode[i];
wndNode[i].antecedents[0] = commitNode;
wndNode[i].antType[0] = rf_control;
}
for (i = 0; i < nWmirNodes; i++) {
RF_ASSERT(wmirNode[i].numAntecedents == 1);
commitNode->succedents[i + nWndNodes] = &wmirNode[i];
wmirNode[i].antecedents[0] = commitNode;
wmirNode[i].antType[0] = rf_control;
}
/* link the write nodes to the unblock node */
RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNode[i].numSuccedents == 1);
wndNode[i].succedents[0] = unblockNode;
unblockNode->antecedents[i] = &wndNode[i];
unblockNode->antType[i] = rf_control;
}
for (i = 0; i < nWmirNodes; i++) {
RF_ASSERT(wmirNode[i].numSuccedents == 1);
wmirNode[i].succedents[0] = unblockNode;
unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
unblockNode->antType[i + nWndNodes] = rf_control;
}
/* link the unblock node to the term node */
RF_ASSERT(unblockNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
unblockNode->succedents[0] = termNode;
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
}
/* DAGs which have no commit points.
*
* The following DAGs are used in forward and backward error recovery experiments.
* They are identical to the DAGs above this comment with the exception that the
* the commit points have been removed.
*/
void
rf_CommonCreateLargeWriteDAGFwd(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
int nfaults,
int (*redFunc) (RF_DagNode_t *),
int allowBufferRecycle)
{
RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
int nWndNodes, nRodNodes, i, nodeNum, asmNum;
RF_AccessStripeMapHeader_t *new_asm_h[2];
RF_StripeNum_t parityStripeID;
char *sosBuffer, *eosBuffer;
RF_ReconUnitNum_t which_ru;
RF_RaidLayout_t *layoutPtr;
RF_PhysDiskAddr_t *pda;
layoutPtr = &(raidPtr->Layout);
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
if (rf_dagDebug)
printf("[Creating large-write DAG]\n");
dag_h->creator = "LargeWriteDAGFwd";
dag_h->numCommitNodes = 0;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
nWndNodes = asmap->numStripeUnitsAccessed;
RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
i = 0;
wndNodes = &nodes[i];
i += nWndNodes;
xorNode = &nodes[i];
i += 1;
wnpNode = &nodes[i];
i += 1;
blockNode = &nodes[i];
i += 1;
syncNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
if (nfaults == 2) {
wnqNode = &nodes[i];
i += 1;
} else {
wnqNode = NULL;
}
rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
if (nRodNodes > 0) {
RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
} else {
rodNodes = NULL;
}
/* begin node initialization */
if (nRodNodes > 0) {
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
} else {
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
}
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
/* initialize the Rod nodes */
for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
if (new_asm_h[asmNum]) {
pda = new_asm_h[asmNum]->stripeMap->physInfo;
while (pda) {
rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
rodNodes[nodeNum].params[0].p = pda;
rodNodes[nodeNum].params[1].p = pda->bufPtr;
rodNodes[nodeNum].params[2].v = parityStripeID;
rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
nodeNum++;
pda = pda->next;
}
}
}
RF_ASSERT(nodeNum == nRodNodes);
/* initialize the wnd nodes */
pda = asmap->physInfo;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
RF_ASSERT(pda != NULL);
wndNodes[i].params[0].p = pda;
wndNodes[i].params[1].p = pda->bufPtr;
wndNodes[i].params[2].v = parityStripeID;
wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
pda = pda->next;
}
/* initialize the redundancy node */
rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
for (i = 0; i < nWndNodes; i++) {
xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
}
for (i = 0; i < nRodNodes; i++) {
xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
}
xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
* at RAID information */
/* look for an Rod node that reads a complete SU. If none, alloc a
* buffer to receive the parity info. Note that we can't use a new
* data buffer because it will not have gotten written when the xor
* occurs. */
if (allowBufferRecycle) {
for (i = 0; i < nRodNodes; i++)
if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
break;
}
if ((!allowBufferRecycle) || (i == nRodNodes)) {
RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
} else
xorNode->results[0] = rodNodes[i].params[1].p;
/* initialize the Wnp node */
rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
wnpNode->params[0].p = asmap->parityInfo;
wnpNode->params[1].p = xorNode->results[0];
wnpNode->params[2].v = parityStripeID;
wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
* describe entire
* parity unit */
if (nfaults == 2) {
/* we never try to recycle a buffer for the Q calcuation in
* addition to the parity. This would cause two buffers to get
* smashed during the P and Q calculation, guaranteeing one
* would be wrong. */
RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
wnqNode->params[0].p = asmap->qInfo;
wnqNode->params[1].p = xorNode->results[1];
wnqNode->params[2].v = parityStripeID;
wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
* describe entire
* parity unit */
}
/* connect nodes to form graph */
/* connect dag header to block node */
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
if (nRodNodes > 0) {
/* connect the block node to the Rod nodes */
RF_ASSERT(blockNode->numSuccedents == nRodNodes);
RF_ASSERT(syncNode->numAntecedents == nRodNodes);
for (i = 0; i < nRodNodes; i++) {
RF_ASSERT(rodNodes[i].numAntecedents == 1);
blockNode->succedents[i] = &rodNodes[i];
rodNodes[i].antecedents[0] = blockNode;
rodNodes[i].antType[0] = rf_control;
/* connect the Rod nodes to the Nil node */
RF_ASSERT(rodNodes[i].numSuccedents == 1);
rodNodes[i].succedents[0] = syncNode;
syncNode->antecedents[i] = &rodNodes[i];
syncNode->antType[i] = rf_trueData;
}
} else {
/* connect the block node to the Nil node */
RF_ASSERT(blockNode->numSuccedents == 1);
RF_ASSERT(syncNode->numAntecedents == 1);
blockNode->succedents[0] = syncNode;
syncNode->antecedents[0] = blockNode;
syncNode->antType[0] = rf_control;
}
/* connect the sync node to the Wnd nodes */
RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numAntecedents == 1);
syncNode->succedents[i] = &wndNodes[i];
wndNodes[i].antecedents[0] = syncNode;
wndNodes[i].antType[0] = rf_control;
}
/* connect the sync node to the Xor node */
RF_ASSERT(xorNode->numAntecedents == 1);
syncNode->succedents[nWndNodes] = xorNode;
xorNode->antecedents[0] = syncNode;
xorNode->antType[0] = rf_control;
/* connect the xor node to the write parity node */
RF_ASSERT(xorNode->numSuccedents == nfaults);
RF_ASSERT(wnpNode->numAntecedents == 1);
xorNode->succedents[0] = wnpNode;
wnpNode->antecedents[0] = xorNode;
wnpNode->antType[0] = rf_trueData;
if (nfaults == 2) {
RF_ASSERT(wnqNode->numAntecedents == 1);
xorNode->succedents[1] = wnqNode;
wnqNode->antecedents[0] = xorNode;
wnqNode->antType[0] = rf_trueData;
}
/* connect the write nodes to the term node */
RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
RF_ASSERT(termNode->numSuccedents == 0);
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numSuccedents == 1);
wndNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &wndNodes[i];
termNode->antType[i] = rf_control;
}
RF_ASSERT(wnpNode->numSuccedents == 1);
wnpNode->succedents[0] = termNode;
termNode->antecedents[nWndNodes] = wnpNode;
termNode->antType[nWndNodes] = rf_control;
if (nfaults == 2) {
RF_ASSERT(wnqNode->numSuccedents == 1);
wnqNode->succedents[0] = termNode;
termNode->antecedents[nWndNodes + 1] = wnqNode;
termNode->antType[nWndNodes + 1] = rf_control;
}
}
/******************************************************************************
*
* creates a DAG to perform a small-write operation (either raid 5 or pq),
* which is as follows:
*
* Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
* \- Rod X- Wnd [Und] -------/
* [\- Rod X- Wnd [Und] ------/]
* [\- Roq - Q --> Wnq [Unq]-/]
*
* Rop = read old parity
* Rod = read old data
* Roq = read old "q"
* Cmt = commit node
* Und = unlock data disk
* Unp = unlock parity disk
* Unq = unlock q disk
* Wnp = write new parity
* Wnd = write new data
* Wnq = write new "q"
* [ ] denotes optional segments in the graph
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
* pfuncs - list of parity generating functions
* qfuncs - list of q generating functions
*
* A null qfuncs indicates single fault tolerant
*****************************************************************************/
void
rf_CommonCreateSmallWriteDAGFwd(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_RedFuncs_t * pfuncs,
RF_RedFuncs_t * qfuncs)
{
RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
int i, j, nNodes, totalNumNodes, lu_flag;
RF_ReconUnitNum_t which_ru;
int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
int (*qfunc) (RF_DagNode_t *);
int numDataNodes, numParityNodes;
RF_StripeNum_t parityStripeID;
RF_PhysDiskAddr_t *pda;
char *name, *qname;
long nfaults;
nfaults = qfuncs ? 2 : 1;
lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
pda = asmap->physInfo;
numDataNodes = asmap->numStripeUnitsAccessed;
numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
if (rf_dagDebug)
printf("[Creating small-write DAG]\n");
RF_ASSERT(numDataNodes > 0);
dag_h->creator = "SmallWriteDAGFwd";
dag_h->numCommitNodes = 0;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
qfunc = NULL;
qname = NULL;
/* DAG creation occurs in four steps: 1. count the number of nodes in
* the DAG 2. create the nodes 3. initialize the nodes 4. connect the
* nodes */
/* Step 1. compute number of nodes in the graph */
/* number of nodes: a read and write for each data unit a redundancy
* computation node for each parity node (nfaults * nparity) a read
* and write for each parity unit a block node a terminate node if
* atomic RMW an unlock node for each data unit, redundancy unit */
totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
if (lu_flag)
totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
/* Step 2. create the nodes */
RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
i = 0;
blockNode = &nodes[i];
i += 1;
readDataNodes = &nodes[i];
i += numDataNodes;
readParityNodes = &nodes[i];
i += numParityNodes;
writeDataNodes = &nodes[i];
i += numDataNodes;
writeParityNodes = &nodes[i];
i += numParityNodes;
xorNodes = &nodes[i];
i += numParityNodes;
termNode = &nodes[i];
i += 1;
if (lu_flag) {
unlockDataNodes = &nodes[i];
i += numDataNodes;
unlockParityNodes = &nodes[i];
i += numParityNodes;
} else {
unlockDataNodes = unlockParityNodes = NULL;
}
if (nfaults == 2) {
readQNodes = &nodes[i];
i += numParityNodes;
writeQNodes = &nodes[i];
i += numParityNodes;
qNodes = &nodes[i];
i += numParityNodes;
if (lu_flag) {
unlockQNodes = &nodes[i];
i += numParityNodes;
} else {
unlockQNodes = NULL;
}
} else {
readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
}
RF_ASSERT(i == totalNumNodes);
/* Step 3. initialize the nodes */
/* initialize block node (Nil) */
nNodes = numDataNodes + (nfaults * numParityNodes);
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
/* initialize terminate node (Trm) */
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
/* initialize nodes which read old data (Rod) */
for (i = 0; i < numDataNodes; i++) {
rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
RF_ASSERT(pda != NULL);
readDataNodes[i].params[0].p = pda; /* physical disk addr
* desc */
readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
* data */
readDataNodes[i].params[2].v = parityStripeID;
readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
pda = pda->next;
for (j = 0; j < readDataNodes[i].numSuccedents; j++)
readDataNodes[i].propList[j] = NULL;
}
/* initialize nodes which read old parity (Rop) */
pda = asmap->parityInfo;
i = 0;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
readParityNodes[i].params[0].p = pda;
readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
* parity */
readParityNodes[i].params[2].v = parityStripeID;
readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
for (j = 0; j < readParityNodes[i].numSuccedents; j++)
readParityNodes[i].propList[0] = NULL;
pda = pda->next;
}
/* initialize nodes which read old Q (Roq) */
if (nfaults == 2) {
pda = asmap->qInfo;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
readQNodes[i].params[0].p = pda;
readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old Q */
readQNodes[i].params[2].v = parityStripeID;
readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
for (j = 0; j < readQNodes[i].numSuccedents; j++)
readQNodes[i].propList[0] = NULL;
pda = pda->next;
}
}
/* initialize nodes which write new data (Wnd) */
pda = asmap->physInfo;
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
writeDataNodes[i].params[0].p = pda; /* physical disk addr
* desc */
writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
* data to be written */
writeDataNodes[i].params[2].v = parityStripeID;
writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
if (lu_flag) {
/* initialize node to unlock the disk queue */
rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
unlockDataNodes[i].params[0].p = pda; /* physical disk addr
* desc */
unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
}
pda = pda->next;
}
/* initialize nodes which compute new parity and Q */
/* we use the simple XOR func in the double-XOR case, and when we're
* accessing only a portion of one stripe unit. the distinction
* between the two is that the regular XOR func assumes that the
* targbuf is a full SU in size, and examines the pda associated with
* the buffer to decide where within the buffer to XOR the data,
* whereas the simple XOR func just XORs the data into the start of
* the buffer. */
if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
func = pfuncs->simple;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->SimpleName;
if (qfuncs) {
qfunc = qfuncs->simple;
qname = qfuncs->SimpleName;
}
} else {
func = pfuncs->regular;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->RegularName;
if (qfuncs) {
qfunc = qfuncs->regular;
qname = qfuncs->RegularName;
}
}
/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
* nodes, and raidPtr */
if (numParityNodes == 2) { /* double-xor case */
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
* xor */
xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
xorNodes[i].params[0] = readDataNodes[i].params[0];
xorNodes[i].params[1] = readDataNodes[i].params[1];
xorNodes[i].params[2] = readParityNodes[i].params[0];
xorNodes[i].params[3] = readParityNodes[i].params[1];
xorNodes[i].params[4] = writeDataNodes[i].params[0];
xorNodes[i].params[5] = writeDataNodes[i].params[1];
xorNodes[i].params[6].p = raidPtr;
xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
* target buf */
if (nfaults == 2) {
rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList); /* no wakeup func for
* xor */
qNodes[i].params[0] = readDataNodes[i].params[0];
qNodes[i].params[1] = readDataNodes[i].params[1];
qNodes[i].params[2] = readQNodes[i].params[0];
qNodes[i].params[3] = readQNodes[i].params[1];
qNodes[i].params[4] = writeDataNodes[i].params[0];
qNodes[i].params[5] = writeDataNodes[i].params[1];
qNodes[i].params[6].p = raidPtr;
qNodes[i].results[0] = readQNodes[i].params[1].p; /* use old Q buf as
* target buf */
}
}
} else {
/* there is only one xor node in this case */
rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
for (i = 0; i < numDataNodes + 1; i++) {
/* set up params related to Rod and Rop nodes */
xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
}
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd and Wnp nodes */
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
}
xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
* at RAID information */
xorNodes[0].results[0] = readParityNodes[0].params[1].p;
if (nfaults == 2) {
rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Rod */
qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
}
/* and read old q */
qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0]; /* pda */
qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1]; /* buffer pointer */
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd nodes */
qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
}
qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
* at RAID information */
qNodes[0].results[0] = readQNodes[0].params[1].p;
}
}
/* initialize nodes which write new parity (Wnp) */
pda = asmap->parityInfo;
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
RF_ASSERT(pda != NULL);
writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr)
* filled in by xor node */
writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for
* parity write
* operation */
writeParityNodes[i].params[2].v = parityStripeID;
writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
if (lu_flag) {
/* initialize node to unlock the disk queue */
rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
unlockParityNodes[i].params[0].p = pda; /* physical disk addr
* desc */
unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
}
pda = pda->next;
}
/* initialize nodes which write new Q (Wnq) */
if (nfaults == 2) {
pda = asmap->qInfo;
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
RF_ASSERT(pda != NULL);
writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr)
* filled in by xor node */
writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for
* parity write
* operation */
writeQNodes[i].params[2].v = parityStripeID;
writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
if (lu_flag) {
/* initialize node to unlock the disk queue */
rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
unlockQNodes[i].params[0].p = pda; /* physical disk addr
* desc */
unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
}
pda = pda->next;
}
}
/* Step 4. connect the nodes */
/* connect header to block node */
dag_h->succedents[0] = blockNode;
/* connect block node to read old data nodes */
RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
for (i = 0; i < numDataNodes; i++) {
blockNode->succedents[i] = &readDataNodes[i];
RF_ASSERT(readDataNodes[i].numAntecedents == 1);
readDataNodes[i].antecedents[0] = blockNode;
readDataNodes[i].antType[0] = rf_control;
}
/* connect block node to read old parity nodes */
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
RF_ASSERT(readParityNodes[i].numAntecedents == 1);
readParityNodes[i].antecedents[0] = blockNode;
readParityNodes[i].antType[0] = rf_control;
}
/* connect block node to read old Q nodes */
if (nfaults == 2)
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
RF_ASSERT(readQNodes[i].numAntecedents == 1);
readQNodes[i].antecedents[0] = blockNode;
readQNodes[i].antType[0] = rf_control;
}
/* connect read old data nodes to write new data nodes */
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
readDataNodes[i].succedents[0] = &writeDataNodes[i];
writeDataNodes[i].antecedents[0] = &readDataNodes[i];
writeDataNodes[i].antType[0] = rf_antiData;
}
/* connect read old data nodes to xor nodes */
for (i = 0; i < numDataNodes; i++) {
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
readDataNodes[i].succedents[1 + j] = &xorNodes[j];
xorNodes[j].antecedents[i] = &readDataNodes[i];
xorNodes[j].antType[i] = rf_trueData;
}
}
/* connect read old data nodes to q nodes */
if (nfaults == 2)
for (i = 0; i < numDataNodes; i++)
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
qNodes[j].antecedents[i] = &readDataNodes[i];
qNodes[j].antType[i] = rf_trueData;
}
/* connect read old parity nodes to xor nodes */
for (i = 0; i < numParityNodes; i++) {
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
readParityNodes[i].succedents[j] = &xorNodes[j];
xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
xorNodes[j].antType[numDataNodes + i] = rf_trueData;
}
}
/* connect read old q nodes to q nodes */
if (nfaults == 2)
for (i = 0; i < numParityNodes; i++) {
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
readQNodes[i].succedents[j] = &qNodes[j];
qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
qNodes[j].antType[numDataNodes + i] = rf_trueData;
}
}
/* connect xor nodes to the write new parity nodes */
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
xorNodes[i].succedents[j] = &writeParityNodes[j];
writeParityNodes[j].antecedents[i] = &xorNodes[i];
writeParityNodes[j].antType[i] = rf_trueData;
}
}
/* connect q nodes to the write new q nodes */
if (nfaults == 2)
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(qNodes[j].numSuccedents == 1);
qNodes[i].succedents[j] = &writeQNodes[j];
writeQNodes[j].antecedents[i] = &qNodes[i];
writeQNodes[j].antType[i] = rf_trueData;
}
}
RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
RF_ASSERT(termNode->numSuccedents == 0);
for (i = 0; i < numDataNodes; i++) {
if (lu_flag) {
/* connect write new data nodes to unlock nodes */
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
unlockDataNodes[i].antType[0] = rf_control;
/* connect unlock nodes to term node */
RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
unlockDataNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &unlockDataNodes[i];
termNode->antType[i] = rf_control;
} else {
/* connect write new data nodes to term node */
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
writeDataNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &writeDataNodes[i];
termNode->antType[i] = rf_control;
}
}
for (i = 0; i < numParityNodes; i++) {
if (lu_flag) {
/* connect write new parity nodes to unlock nodes */
RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
unlockParityNodes[i].antType[0] = rf_control;
/* connect unlock nodes to term node */
RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
unlockParityNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
termNode->antType[numDataNodes + i] = rf_control;
} else {
RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
writeParityNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
termNode->antType[numDataNodes + i] = rf_control;
}
}
if (nfaults == 2)
for (i = 0; i < numParityNodes; i++) {
if (lu_flag) {
/* connect write new Q nodes to unlock nodes */
RF_ASSERT(writeQNodes[i].numSuccedents == 1);
RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
writeQNodes[i].succedents[0] = &unlockQNodes[i];
unlockQNodes[i].antecedents[0] = &writeQNodes[i];
unlockQNodes[i].antType[0] = rf_control;
/* connect unlock nodes to unblock node */
RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
unlockQNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
} else {
RF_ASSERT(writeQNodes[i].numSuccedents == 1);
writeQNodes[i].succedents[0] = termNode;
termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
}
}
}
/******************************************************************************
* create a write graph (fault-free or degraded) for RAID level 1
*
* Hdr Nil -> Wpd -> Nil -> Trm
* Nil -> Wsd ->
*
* The "Wpd" node writes data to the primary copy in the mirror pair
* The "Wsd" node writes data to the secondary copy in the mirror pair
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (holds write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
*****************************************************************************/
void
rf_CreateRaidOneWriteDAGFwd(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
RF_DagNode_t *blockNode, *unblockNode, *termNode;
RF_DagNode_t *nodes, *wndNode, *wmirNode;
int nWndNodes, nWmirNodes, i;
RF_ReconUnitNum_t which_ru;
RF_PhysDiskAddr_t *pda, *pdaP;
RF_StripeNum_t parityStripeID;
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
if (rf_dagDebug) {
printf("[Creating RAID level 1 write DAG]\n");
}
nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; /* 2 implies access not
* SU aligned */
nWndNodes = (asmap->physInfo->next) ? 2 : 1;
/* alloc the Wnd nodes and the Wmir node */
if (asmap->numDataFailed == 1)
nWndNodes--;
if (asmap->numParityFailed == 1)
nWmirNodes--;
/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
* terminator) */
RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
i = 0;
wndNode = &nodes[i];
i += nWndNodes;
wmirNode = &nodes[i];
i += nWmirNodes;
blockNode = &nodes[i];
i += 1;
unblockNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
/* this dag can commit immediately */
dag_h->numCommitNodes = 0;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* initialize the unblock and term nodes */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
/* initialize the wnd nodes */
if (nWndNodes > 0) {
pda = asmap->physInfo;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
RF_ASSERT(pda != NULL);
wndNode[i].params[0].p = pda;
wndNode[i].params[1].p = pda->bufPtr;
wndNode[i].params[2].v = parityStripeID;
wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
pda = pda->next;
}
RF_ASSERT(pda == NULL);
}
/* initialize the mirror nodes */
if (nWmirNodes > 0) {
pda = asmap->physInfo;
pdaP = asmap->parityInfo;
for (i = 0; i < nWmirNodes; i++) {
rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
RF_ASSERT(pda != NULL);
wmirNode[i].params[0].p = pdaP;
wmirNode[i].params[1].p = pda->bufPtr;
wmirNode[i].params[2].v = parityStripeID;
wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
pda = pda->next;
pdaP = pdaP->next;
}
RF_ASSERT(pda == NULL);
RF_ASSERT(pdaP == NULL);
}
/* link the header node to the block node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* link the block node to the write nodes */
RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNode[i].numAntecedents == 1);
blockNode->succedents[i] = &wndNode[i];
wndNode[i].antecedents[0] = blockNode;
wndNode[i].antType[0] = rf_control;
}
for (i = 0; i < nWmirNodes; i++) {
RF_ASSERT(wmirNode[i].numAntecedents == 1);
blockNode->succedents[i + nWndNodes] = &wmirNode[i];
wmirNode[i].antecedents[0] = blockNode;
wmirNode[i].antType[0] = rf_control;
}
/* link the write nodes to the unblock node */
RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNode[i].numSuccedents == 1);
wndNode[i].succedents[0] = unblockNode;
unblockNode->antecedents[i] = &wndNode[i];
unblockNode->antType[i] = rf_control;
}
for (i = 0; i < nWmirNodes; i++) {
RF_ASSERT(wmirNode[i].numSuccedents == 1);
wmirNode[i].succedents[0] = unblockNode;
unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
unblockNode->antType[i + nWndNodes] = rf_control;
}
/* link the unblock node to the term node */
RF_ASSERT(unblockNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
unblockNode->succedents[0] = termNode;
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
return;
}