NetBSD/sys/dev/ic/i82596.c
tsutsui 4890eaf0d8 Pass correct size (after padding) to bus_dmamap_sync(9) for RX mbufs
in iee_intr().  Fixes panic on DIAGNOSTIC kernel reported by skrll@.
2009-05-13 13:12:06 +00:00

1069 lines
36 KiB
C

/* $NetBSD: i82596.c,v 1.27 2009/05/13 13:12:06 tsutsui Exp $ */
/*
* Copyright (c) 2003 Jochen Kunz.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Jochen Kunz may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
*
* It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
* ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
* i82586 compatibility mode.
*
* Documentation about these chips can be found at
*
* http://developer.intel.com/design/network/datashts/290218.htm
* http://developer.intel.com/design/network/datashts/290219.htm
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.27 2009/05/13 13:12:06 tsutsui Exp $");
/* autoconfig and device stuff */
#include <sys/param.h>
#include <sys/device.h>
#include <sys/conf.h>
#include "locators.h"
#include "ioconf.h"
/* bus_space / bus_dma etc. */
#include <sys/bus.h>
#include <sys/intr.h>
/* general system data and functions */
#include <sys/systm.h>
#include <sys/ioctl.h>
/* tsleep / sleep / wakeup */
#include <sys/proc.h>
/* hz for above */
#include <sys/kernel.h>
/* network stuff */
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <sys/socket.h>
#include <sys/mbuf.h>
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/ic/i82596reg.h>
#include <dev/ic/i82596var.h>
/* Supported chip variants */
const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
/* media change and status callback */
static int iee_mediachange(struct ifnet *);
static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
/* interface routines to upper protocols */
static void iee_start(struct ifnet *); /* initiate output */
static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
static int iee_init(struct ifnet *); /* init routine */
static void iee_stop(struct ifnet *, int); /* stop routine */
static void iee_watchdog(struct ifnet *); /* timer routine */
/* internal helper functions */
static void iee_cb_setup(struct iee_softc *, uint32_t);
/*
* Things a MD frontend has to provide:
*
* The functions via function pointers in the softc:
* int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
* int (*sc_iee_reset)(struct iee_softc *sc);
* void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
* int (*sc_mediachange)(struct ifnet *);
*
* sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
* to the SCP cmd word and issuing a Channel Attention.
* sc_iee_reset(): initiate a reset, supply the address of the SCP to the
* chip, wait for the chip to initialize and ACK interrupts that
* this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
* This functions must carefully bus_dmamap_sync() all data they have touched!
*
* sc_mediastatus() and sc_mediachange() are just MD hooks to the according
* MI functions. The MD frontend may set this pointers to NULL when they
* are not needed.
*
* sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
* This is for printing out the correct chip type at attach time only. The
* MI backend doesn't distinguish different chip types when programming
* the chip.
*
* IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
* and set on big endian hardware, when endianess conversion is not done
* by the bus attachment but done by i82596 chip itself.
* Usually you need to set IEE_NEED_SWAP on big endian machines
* where the hardware (the LE/~BE pin) is configured as BE mode.
*
* If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
* entities can be written in big endian. But Rev A chip doesn't support
* 32 bit (dword) entities with big endian byte ordering, so we have to
* treat all 32 bit (dword) entities as two 16 bit big endian entities.
* Rev B and C chips support big endian byte ordering for 32 bit entities,
* and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
*
* With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
* treated as true 32 bit entities but the SCB absolute address and
* statistical counters are still treated as two 16 bit big endian entities,
* so we have to always swap high and low words for these entities.
* IEE_SWAP32() should be used for the SCB address and statistical counters,
* and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
*
* IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
* is disabled even on big endian machines for the old Rev A chip in backend.
*
* sc->sc_cl_align must be set to 1 or to the cache line size. When set to
* 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
* it forces alignment of the data structures in the shared memory to a multiple
* of sc->sc_cl_align. This is needed on archs like hp700 that have non DMA
* I/O coherent caches and are unable to map the shared memory uncachable.
* (At least pre PA7100LC CPUs are unable to map memory uncachable.)
*
* The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
* to allocate and setup shared DMA memory in MI iee_attach().
* All communication with the chip is done via this shared memory.
* This memory is mapped with BUS_DMA_COHERENT so it will be uncached
* if possible for archs with non DMA I/O coherent caches.
* The base of the memory needs to be aligned to an even address
* if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
* Each descriptor offsets are calculated in iee_attach() to handle this.
*
* An interrupt with iee_intr() as handler must be established.
*
* Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
* int *media, int nmedia, int defmedia); when everything is set up. First
* parameter is a pointer to the MI softc, ether_address is an array that
* contains the ethernet address. media is an array of the media types
* provided by the hardware. The members of this array are supplied to
* ifmedia_add() in sequence. nmedia is the count of elements in media.
* defmedia is the default media that is set via ifmedia_set().
* nmedia and defmedia are ignored when media == NULL.
*
* The MD backend may call iee_detach() to detach the device.
*
* See sys/arch/hp700/gsc/if_iee_gsc.c for an example.
*/
/*
* How frame reception is done:
* Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
* Each RBD points to the data area of an mbuf cluster. The RFDs are linked
* together in a circular list. sc->sc_rx_done is the count of RFDs in the
* list already processed / the number of the RFD that has to be checked for
* a new frame first at the next RX interrupt. Upon successful reception of
* a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
* cluster is allocated and the RFD / RBD are reinitialized accordingly.
*
* When a RFD list overrun occurred the whole RFD and RBD lists are
* reinitialized and frame reception is started again.
*/
int
iee_intr(void *intarg)
{
struct iee_softc *sc = intarg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct iee_rfd *rfd;
struct iee_rbd *rbd;
bus_dmamap_t rx_map;
struct mbuf *rx_mbuf;
struct mbuf *new_mbuf;
int scb_status;
int scb_cmd;
int n, col;
uint16_t status, count, cmd;
if ((ifp->if_flags & IFF_RUNNING) == 0) {
(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
return 1;
}
IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
scb_status = SC_SCB(sc)->scb_status;
scb_cmd = SC_SCB(sc)->scb_cmd;
for (;;) {
rfd = SC_RFD(sc, sc->sc_rx_done);
IEE_RFDSYNC(sc, sc->sc_rx_done,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = rfd->rfd_status;
if ((status & IEE_RFD_C) == 0) {
IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
break;
}
rfd->rfd_status = 0;
IEE_RFDSYNC(sc, sc->sc_rx_done,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* At least one packet was received. */
rx_map = sc->sc_rx_map[sc->sc_rx_done];
rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
&= ~IEE_RBD_EL;
IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
rbd = SC_RBD(sc, sc->sc_rx_done);
IEE_RBDSYNC(sc, sc->sc_rx_done,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
count = rbd->rbd_count;
if ((status & IEE_RFD_OK) == 0
|| (count & IEE_RBD_EOF) == 0
|| (count & IEE_RBD_F) == 0){
/* Receive error, skip frame and reuse buffer. */
rbd->rbd_count = 0;
rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
IEE_RBDSYNC(sc, sc->sc_rx_done,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
printf("%s: iee_intr: receive error %d, rfd_status="
"0x%.4x, rfd_count=0x%.4x\n",
device_xname(sc->sc_dev),
++sc->sc_rx_err, status, count);
sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
continue;
}
bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
count & IEE_RBD_COUNT;
rx_mbuf->m_pkthdr.rcvif = ifp;
MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
if (new_mbuf == NULL) {
printf("%s: iee_intr: can't allocate mbuf\n",
device_xname(sc->sc_dev));
break;
}
MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
MCLGET(new_mbuf, M_DONTWAIT);
if ((new_mbuf->m_flags & M_EXT) == 0) {
printf("%s: iee_intr: can't alloc mbuf cluster\n",
device_xname(sc->sc_dev));
m_freem(new_mbuf);
break;
}
bus_dmamap_unload(sc->sc_dmat, rx_map);
new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
new_mbuf->m_data += 2;
if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
panic("%s: iee_intr: can't load RX DMA map\n",
device_xname(sc->sc_dev));
bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
#if NBPFILTER > 0
if (ifp->if_bpf != 0)
bpf_mtap(ifp->if_bpf, rx_mbuf);
#endif /* NBPFILTER > 0 */
(*ifp->if_input)(ifp, rx_mbuf);
ifp->if_ipackets++;
sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
rbd->rbd_count = 0;
rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
IEE_RBDSYNC(sc, sc->sc_rx_done,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
}
if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
|| (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
|| (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
/* Receive Overrun, reinit receive ring buffer. */
for (n = 0 ; n < IEE_NRFD ; n++) {
rfd = SC_RFD(sc, n);
rbd = SC_RBD(sc, n);
rfd->rfd_cmd = IEE_RFD_SF;
rfd->rfd_link_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
+ sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
rbd->rbd_next_rbd =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
+ sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
rbd->rbd_size = IEE_RBD_EL |
sc->sc_rx_map[n]->dm_segs[0].ds_len;
rbd->rbd_rb_addr =
IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
}
SC_RFD(sc, 0)->rfd_rbd_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
sc->sc_rx_done = 0;
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
(sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
printf("%s: iee_intr: receive ring buffer overrun\n",
device_xname(sc->sc_dev));
}
if (sc->sc_next_cb != 0) {
IEE_CBSYNC(sc, sc->sc_next_cb - 1,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
IEE_CBSYNC(sc, sc->sc_next_cb - 1,
BUS_DMASYNC_PREREAD);
if ((status & IEE_CB_C) != 0) {
/* CMD list finished */
ifp->if_timer = 0;
if (sc->sc_next_tbd != 0) {
/* A TX CMD list finished, cleanup */
for (n = 0 ; n < sc->sc_next_cb ; n++) {
m_freem(sc->sc_tx_mbuf[n]);
sc->sc_tx_mbuf[n] = NULL;
bus_dmamap_unload(sc->sc_dmat,
sc->sc_tx_map[n]);
IEE_CBSYNC(sc, n,
BUS_DMASYNC_POSTREAD|
BUS_DMASYNC_POSTWRITE);
status = SC_CB(sc, n)->cb_status;
IEE_CBSYNC(sc, n,
BUS_DMASYNC_PREREAD);
if ((status & IEE_CB_COL) != 0 &&
(status & IEE_CB_MAXCOL) == 0)
col = 16;
else
col = status
& IEE_CB_MAXCOL;
sc->sc_tx_col += col;
if ((status & IEE_CB_OK) != 0) {
ifp->if_opackets++;
ifp->if_collisions += col;
}
}
sc->sc_next_tbd = 0;
ifp->if_flags &= ~IFF_OACTIVE;
}
for (n = 0 ; n < sc->sc_next_cb; n++) {
/*
* Check if a CMD failed, but ignore TX errors.
*/
IEE_CBSYNC(sc, n,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmd = SC_CB(sc, n)->cb_cmd;
status = SC_CB(sc, n)->cb_status;
IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
(status & IEE_CB_OK) == 0)
printf("%s: iee_intr: scb_status=0x%x "
"scb_cmd=0x%x failed command %d: "
"cb_status[%d]=0x%.4x "
"cb_cmd[%d]=0x%.4x\n",
device_xname(sc->sc_dev),
scb_status, scb_cmd,
++sc->sc_cmd_err,
n, status, n, cmd);
}
sc->sc_next_cb = 0;
if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
iee_cb_setup(sc, IEE_CB_CMD_MCS |
IEE_CB_S | IEE_CB_EL | IEE_CB_I);
(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
} else
/* Try to get deferred packets going. */
iee_start(ifp);
}
}
if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
sc->sc_crc_err);
}
if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
sc->sc_align_err);
}
if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
printf("%s: iee_intr: resource_err=%d\n",
device_xname(sc->sc_dev), sc->sc_resource_err);
}
if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
printf("%s: iee_intr: overrun_err=%d\n",
device_xname(sc->sc_dev), sc->sc_overrun_err);
}
if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
printf("%s: iee_intr: rcvcdt_err=%d\n",
device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
}
if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
printf("%s: iee_intr: short_fr_err=%d\n",
device_xname(sc->sc_dev), sc->sc_short_fr_err);
}
IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
return 1;
}
/*
* How Command Block List Processing is done.
*
* A running CBL is never manipulated. If there is a CBL already running,
* further CMDs are deferred until the current list is done. A new list is
* setup when the old one has finished.
* This eases programming. To manipulate a running CBL it is necessary to
* suspend the Command Unit to avoid race conditions. After a suspend
* is sent we have to wait for an interrupt that ACKs the suspend. Then
* we can manipulate the CBL and resume operation. I am not sure that this
* is more effective then the current, much simpler approach. => KISS
* See i82596CA data sheet page 26.
*
* A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
*
* A CBL may consist of TX CMDs, and _only_ TX CMDs.
* A TX CBL is running or on the way to be set up when
* ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
*
* A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
* non-TX CMDs.
*
* This comes mostly through the way how an Ethernet driver works and
* because running CBLs are not manipulated when they are on the way. If
* if_start() is called there will be TX CMDs enqueued so we have a running
* CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
*
* The Multicast Setup Command is special. A MCS needs more space than
* a single CB has. Actual space requirement depends on the length of the
* multicast list. So we always defer MCS until other CBLs are finished,
* then we setup a CONF CMD in the first CB. The CONF CMD is needed to
* turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
* use all the remaining space in the CBL and the Transmit Buffer Descriptor
* List. (Therefore CBL and TBDL must be continuous in physical and virtual
* memory. This is guaranteed through the definitions of the list offsets
* in i82596reg.h and because it is only a single DMA segment used for all
* lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
* a multicast list length of 0, thus disabling the multicast filter.
* A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
*/
void
iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
{
struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multistep step;
struct ether_multi *enm;
memset(cb, 0, sc->sc_cb_sz);
cb->cb_cmd = cmd;
switch (cmd & IEE_CB_CMD) {
case IEE_CB_CMD_NOP: /* NOP CMD */
break;
case IEE_CB_CMD_IAS: /* Individual Address Setup */
memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
ETHER_ADDR_LEN);
break;
case IEE_CB_CMD_CONF: /* Configure */
memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
& IEE_CF_0_CNT_M);
break;
case IEE_CB_CMD_MCS: /* Multicast Setup */
if (sc->sc_next_cb != 0) {
sc->sc_flags |= IEE_WANT_MCAST;
return;
}
sc->sc_flags &= ~IEE_WANT_MCAST;
if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
/* Need no multicast filter in promisc mode. */
iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
| IEE_CB_I);
return;
}
/* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
cb = SC_CB(sc, sc->sc_next_cb + 1);
cb->cb_cmd = cmd;
cb->cb_mcast.mc_size = 0;
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
* ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
sc->sc_cb_sz * IEE_NCB +
sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
cb->cb_mcast.mc_size = 0;
break;
}
memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
cb->cb_mcast.mc_size * ETHER_ADDR_LEN]),
enm->enm_addrlo, ETHER_ADDR_LEN);
ETHER_NEXT_MULTI(step, enm);
cb->cb_mcast.mc_size++;
}
if (cb->cb_mcast.mc_size == 0) {
/* Can't do exact mcast filtering, do ALLMULTI mode. */
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
} else {
/* disable ALLMULTI and load mcast list */
ifp->if_flags &= ~IFF_ALLMULTI;
sc->sc_cf[11] |= IEE_CF_11_MCALL;
/* Mcast setup may need more then sc->sc_cb_sz bytes. */
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
sc->sc_cb_off,
sc->sc_cb_sz * IEE_NCB +
sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
BUS_DMASYNC_PREWRITE);
}
iee_cb_setup(sc, IEE_CB_CMD_CONF);
break;
case IEE_CB_CMD_TR: /* Transmit */
cb->cb_transmit.tx_tbd_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
+ sc->sc_tbd_sz * sc->sc_next_tbd));
cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
break;
case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
break;
case IEE_CB_CMD_DUMP: /* Dump */
break;
case IEE_CB_CMD_DIAG: /* Diagnose */
break;
default:
/* can't happen */
break;
}
cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
sc->sc_cb_sz * (sc->sc_next_cb + 1)));
IEE_CBSYNC(sc, sc->sc_next_cb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_next_cb++;
ifp->if_timer = 5;
}
void
iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
int defmedia)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int n;
KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
/*
* Calculate DMA descriptor offsets and sizes in shmem
* which should be cache line aligned.
*/
sc->sc_scp_off = 0;
sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
sc->sc_iscp_off = sc->sc_scp_sz;
sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
/* allocate memory for shared DMA descriptors */
if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
&sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
aprint_error(": can't allocate %d bytes of DMA memory\n",
sc->sc_shmem_sz);
return;
}
if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
aprint_error(": can't map DMA memory\n");
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
sc->sc_dma_rsegs);
return;
}
if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
aprint_error(": can't create DMA map\n");
bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
sc->sc_shmem_sz);
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
sc->sc_dma_rsegs);
return;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
aprint_error(": can't load DMA map\n");
bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
sc->sc_shmem_sz);
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
sc->sc_dma_rsegs);
return;
}
memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
/* Set pointer to Intermediate System Configuration Pointer. */
/* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
/* Set pointer to System Control Block. */
/* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
/* Set pointer to Receive Frame Area. (physical address) */
SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
/* Set pointer to Command Block. (physical address) */
SC_SCB(sc)->scb_cmd_blk_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
if (media != NULL) {
for (n = 0 ; n < nmedia ; n++)
ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
ifmedia_set(&sc->sc_ifmedia, defmedia);
} else {
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
}
ifp->if_softc = sc;
strcpy(ifp->if_xname, device_xname(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = iee_start; /* initiate output routine */
ifp->if_ioctl = iee_ioctl; /* ioctl routine */
ifp->if_init = iee_init; /* init routine */
ifp->if_stop = iee_stop; /* stop routine */
ifp->if_watchdog = iee_watchdog; /* timer routine */
IFQ_SET_READY(&ifp->if_snd);
/* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
if_attach(ifp);
ether_ifattach(ifp, eth_addr);
aprint_normal(": Intel 82596%s address %s\n",
i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
for (n = 0 ; n < IEE_NCB ; n++)
sc->sc_tx_map[n] = NULL;
for (n = 0 ; n < IEE_NRFD ; n++) {
sc->sc_rx_mbuf[n] = NULL;
sc->sc_rx_map[n] = NULL;
}
sc->sc_tx_timeout = 0;
sc->sc_setup_timeout = 0;
(sc->sc_iee_reset)(sc);
}
void
iee_detach(struct iee_softc *sc, int flags)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
if ((ifp->if_flags & IFF_RUNNING) != 0)
iee_stop(ifp, 1);
ether_ifdetach(ifp);
if_detach(ifp);
bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
}
/* media change and status callback */
int
iee_mediachange(struct ifnet *ifp)
{
struct iee_softc *sc = ifp->if_softc;
if (sc->sc_mediachange != NULL)
return (sc->sc_mediachange)(ifp);
return 0;
}
void
iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
{
struct iee_softc *sc = ifp->if_softc;
if (sc->sc_mediastatus != NULL)
(sc->sc_mediastatus)(ifp, ifmreq);
}
/* initiate output routine */
void
iee_start(struct ifnet *ifp)
{
struct iee_softc *sc = ifp->if_softc;
struct mbuf *m = NULL;
struct iee_tbd *tbd;
int t;
int n;
if (sc->sc_next_cb != 0)
/* There is already a CMD running. Defer packet enqueuing. */
return;
for (t = 0 ; t < IEE_NCB ; t++) {
IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
if (sc->sc_tx_mbuf[t] == NULL)
break;
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
/*
* The packet needs more TBD then we support.
* Copy the packet into a mbuf cluster to get it out.
*/
printf("%s: iee_start: failed to load DMA map\n",
device_xname(sc->sc_dev));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: iee_start: can't allocate mbuf\n",
device_xname(sc->sc_dev));
m_freem(sc->sc_tx_mbuf[t]);
t--;
continue;
}
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: iee_start: can't allocate mbuf "
"cluster\n", device_xname(sc->sc_dev));
m_freem(sc->sc_tx_mbuf[t]);
m_freem(m);
t--;
continue;
}
m_copydata(sc->sc_tx_mbuf[t], 0,
sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
m_freem(sc->sc_tx_mbuf[t]);
sc->sc_tx_mbuf[t] = m;
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
printf("%s: iee_start: can't load TX DMA map\n",
device_xname(sc->sc_dev));
m_freem(sc->sc_tx_mbuf[t]);
t--;
continue;
}
}
for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
tbd = SC_TBD(sc, sc->sc_next_tbd + n);
tbd->tbd_tb_addr =
IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
tbd->tbd_size =
sc->sc_tx_map[t]->dm_segs[n].ds_len;
tbd->tbd_link_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
}
SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
| IEE_CB_I);
else
iee_cb_setup(sc, IEE_CB_CMD_TR);
sc->sc_next_tbd += n;
#if NBPFILTER > 0
/* Pass packet to bpf if someone listens. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, sc->sc_tx_mbuf[t]);
#endif
}
if (t == 0)
/* No packets got set up for TX. */
return;
if (t == IEE_NCB)
ifp->if_flags |= IFF_OACTIVE;
(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
}
/* ioctl routine */
int
iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct iee_softc *sc = ifp->if_softc;
int s;
int err;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
err = ifmedia_ioctl(ifp, (struct ifreq *) data,
&sc->sc_ifmedia, cmd);
break;
default:
err = ether_ioctl(ifp, cmd, data);
if (err == ENETRESET) {
/*
* Multicast list as changed; set the hardware filter
* accordingly.
*/
if (ifp->if_flags & IFF_RUNNING) {
iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
IEE_CB_EL | IEE_CB_I);
if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
(*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
}
err = 0;
}
break;
}
splx(s);
return err;
}
/* init routine */
int
iee_init(struct ifnet *ifp)
{
struct iee_softc *sc = ifp->if_softc;
int r;
int t;
int n;
int err;
sc->sc_next_cb = 0;
sc->sc_next_tbd = 0;
sc->sc_flags &= ~IEE_WANT_MCAST;
sc->sc_rx_done = 0;
SC_SCB(sc)->scb_crc_err = 0;
SC_SCB(sc)->scb_align_err = 0;
SC_SCB(sc)->scb_resource_err = 0;
SC_SCB(sc)->scb_overrun_err = 0;
SC_SCB(sc)->scb_rcvcdt_err = 0;
SC_SCB(sc)->scb_short_fr_err = 0;
sc->sc_crc_err = 0;
sc->sc_align_err = 0;
sc->sc_resource_err = 0;
sc->sc_overrun_err = 0;
sc->sc_rcvcdt_err = 0;
sc->sc_short_fr_err = 0;
sc->sc_tx_col = 0;
sc->sc_rx_err = 0;
sc->sc_cmd_err = 0;
/* Create Transmit DMA maps. */
for (t = 0 ; t < IEE_NCB ; t++) {
if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_tx_map[t]) != 0) {
printf("%s: iee_init: can't create TX DMA map\n",
device_xname(sc->sc_dev));
for (n = 0 ; n < t ; n++)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_tx_map[n]);
return ENOBUFS;
}
}
/* Initialize Receive Frame and Receive Buffer Descriptors */
err = 0;
memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
for (r = 0 ; r < IEE_NRFD ; r++) {
SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
SC_RFD(sc, r)->rfd_link_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
+ sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
SC_RBD(sc, r)->rbd_next_rbd =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
+ sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
if (sc->sc_rx_mbuf[r] == NULL) {
MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
if (sc->sc_rx_mbuf[r] == NULL) {
printf("%s: iee_init: can't allocate mbuf\n",
device_xname(sc->sc_dev));
err = 1;
break;
}
MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
printf("%s: iee_init: can't allocate mbuf"
" cluster\n", device_xname(sc->sc_dev));
m_freem(sc->sc_rx_mbuf[r]);
err = 1;
break;
}
sc->sc_rx_mbuf[r]->m_len =
sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
sc->sc_rx_mbuf[r]->m_data += 2;
}
if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
&sc->sc_rx_map[r]) != 0) {
printf("%s: iee_init: can't create RX "
"DMA map\n", device_xname(sc->sc_dev));
m_freem(sc->sc_rx_mbuf[r]);
err = 1;
break;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
printf("%s: iee_init: can't load RX DMA map\n",
device_xname(sc->sc_dev));
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
m_freem(sc->sc_rx_mbuf[r]);
err = 1;
break;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
SC_RBD(sc, r)->rbd_rb_addr =
IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
}
SC_RFD(sc, 0)->rfd_rbd_addr =
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
if (err != 0) {
for (n = 0 ; n < r; n++) {
m_freem(sc->sc_rx_mbuf[n]);
sc->sc_rx_mbuf[n] = NULL;
bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
sc->sc_rx_map[n] = NULL;
}
for (n = 0 ; n < t ; n++) {
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
sc->sc_tx_map[n] = NULL;
}
return ENOBUFS;
}
(sc->sc_iee_reset)(sc);
iee_cb_setup(sc, IEE_CB_CMD_IAS);
sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
sc->sc_cf[1] = IEE_CF_1_DEF;
sc->sc_cf[2] = IEE_CF_2_DEF;
sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
| IEE_CF_3_PREAMLEN_DEF;
sc->sc_cf[4] = IEE_CF_4_DEF;
sc->sc_cf[5] = IEE_CF_5_DEF;
sc->sc_cf[6] = IEE_CF_6_DEF;
sc->sc_cf[7] = IEE_CF_7_DEF;
sc->sc_cf[8] = IEE_CF_8_DEF;
sc->sc_cf[9] = IEE_CF_9_DEF;
sc->sc_cf[10] = IEE_CF_10_DEF;
sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
sc->sc_cf[12] = IEE_CF_12_DEF;
sc->sc_cf[13] = IEE_CF_13_DEF;
iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
/* Issue a Channel Attention to ACK interrupts we may have caused. */
(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
/* Mark the interface as running and ready to RX/TX packets. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
/* stop routine */
void
iee_stop(struct ifnet *ifp, int disable)
{
struct iee_softc *sc = ifp->if_softc;
int n;
ifp->if_flags &= ~IFF_RUNNING;
ifp->if_flags |= IFF_OACTIVE;
ifp->if_timer = 0;
/* Reset the chip to get it quiet. */
(sc->sc_iee_reset)(ifp->if_softc);
/* Issue a Channel Attention to ACK interrupts we may have caused. */
(sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
/* Release any dynamically allocated resources. */
for (n = 0 ; n < IEE_NCB ; n++) {
if (sc->sc_tx_map[n] != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
sc->sc_tx_map[n] = NULL;
}
for (n = 0 ; n < IEE_NRFD ; n++) {
if (sc->sc_rx_mbuf[n] != NULL)
m_freem(sc->sc_rx_mbuf[n]);
sc->sc_rx_mbuf[n] = NULL;
if (sc->sc_rx_map[n] != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
}
sc->sc_rx_map[n] = NULL;
}
}
/* timer routine */
void
iee_watchdog(struct ifnet *ifp)
{
struct iee_softc *sc = ifp->if_softc;
(sc->sc_iee_reset)(sc);
if (sc->sc_next_tbd != 0)
printf("%s: iee_watchdog: transmit timeout %d\n",
device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
else
printf("%s: iee_watchdog: setup timeout %d\n",
device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
iee_init(ifp);
}