NetBSD/sys/dev/raidframe/rf_netbsdkintf.c
thorpej 071aed40ac A foolish consistency; most parts of the kernel use bp->b_data, so
change these from bp->b_un.b_addr to bp->b_data, as well.  This also
allows us more flexibility to experiment with other data buffer types
hung off of struct buf.
2000-05-19 18:54:22 +00:00

3237 lines
82 KiB
C

/* $NetBSD: rf_netbsdkintf.c,v 1.79 2000/05/19 18:54:30 thorpej Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Greg Oster; Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
*
* @(#)cd.c 8.2 (Berkeley) 11/16/93
*/
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Mark Holland, Jim Zelenka
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/***********************************************************
*
* rf_kintf.c -- the kernel interface routines for RAIDframe
*
***********************************************************/
#include <sys/errno.h>
#include <sys/param.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/disk.h>
#include <sys/device.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#include <sys/param.h>
#include <sys/types.h>
#include <machine/types.h>
#include <sys/disklabel.h>
#include <sys/conf.h>
#include <sys/lock.h>
#include <sys/buf.h>
#include <sys/user.h>
#include <sys/reboot.h>
#include "raid.h"
#include "opt_raid_autoconfig.h"
#include "rf_raid.h"
#include "rf_raidframe.h"
#include "rf_copyback.h"
#include "rf_dag.h"
#include "rf_dagflags.h"
#include "rf_diskqueue.h"
#include "rf_acctrace.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_debugMem.h"
#include "rf_kintf.h"
#include "rf_options.h"
#include "rf_driver.h"
#include "rf_parityscan.h"
#include "rf_debugprint.h"
#include "rf_threadstuff.h"
#include "rf_configure.h"
int rf_kdebug_level = 0;
#ifdef DEBUG
#define db1_printf(a) if (rf_kdebug_level > 0) printf a
#else /* DEBUG */
#define db1_printf(a) { }
#endif /* DEBUG */
static RF_Raid_t **raidPtrs; /* global raid device descriptors */
RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
* spare table */
static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
* installation process */
/* prototypes */
static void KernelWakeupFunc(struct buf * bp);
static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
dev_t dev, RF_SectorNum_t startSect,
RF_SectorCount_t numSect, caddr_t buf,
void (*cbFunc) (struct buf *), void *cbArg,
int logBytesPerSector, struct proc * b_proc);
static void raidinit __P((RF_Raid_t *));
void raidattach __P((int));
int raidsize __P((dev_t));
int raidopen __P((dev_t, int, int, struct proc *));
int raidclose __P((dev_t, int, int, struct proc *));
int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
int raidwrite __P((dev_t, struct uio *, int));
int raidread __P((dev_t, struct uio *, int));
void raidstrategy __P((struct buf *));
int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
/*
* Pilfered from ccd.c
*/
struct raidbuf {
struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
struct buf *rf_obp; /* ptr. to original I/O buf */
int rf_flags; /* misc. flags */
RF_DiskQueueData_t *req;/* the request that this was part of.. */
};
#define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
#define RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
/* XXX Not sure if the following should be replacing the raidPtrs above,
or if it should be used in conjunction with that...
*/
struct raid_softc {
int sc_flags; /* flags */
int sc_cflags; /* configuration flags */
size_t sc_size; /* size of the raid device */
char sc_xname[20]; /* XXX external name */
struct disk sc_dkdev; /* generic disk device info */
struct pool sc_cbufpool; /* component buffer pool */
struct buf_queue buf_queue; /* used for the device queue */
};
/* sc_flags */
#define RAIDF_INITED 0x01 /* unit has been initialized */
#define RAIDF_WLABEL 0x02 /* label area is writable */
#define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
#define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
#define RAIDF_LOCKED 0x80 /* unit is locked */
#define raidunit(x) DISKUNIT(x)
int numraid = 0;
/*
* Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
* Be aware that large numbers can allow the driver to consume a lot of
* kernel memory, especially on writes, and in degraded mode reads.
*
* For example: with a stripe width of 64 blocks (32k) and 5 disks,
* a single 64K write will typically require 64K for the old data,
* 64K for the old parity, and 64K for the new parity, for a total
* of 192K (if the parity buffer is not re-used immediately).
* Even it if is used immedately, that's still 128K, which when multiplied
* by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
*
* Now in degraded mode, for example, a 64K read on the above setup may
* require data reconstruction, which will require *all* of the 4 remaining
* disks to participate -- 4 * 32K/disk == 128K again.
*/
#ifndef RAIDOUTSTANDING
#define RAIDOUTSTANDING 6
#endif
#define RAIDLABELDEV(dev) \
(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
/* declared here, and made public, for the benefit of KVM stuff.. */
struct raid_softc *raid_softc;
static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
struct disklabel *));
static void raidgetdisklabel __P((dev_t));
static void raidmakedisklabel __P((struct raid_softc *));
static int raidlock __P((struct raid_softc *));
static void raidunlock __P((struct raid_softc *));
static void rf_markalldirty __P((RF_Raid_t *));
void rf_mountroot_hook __P((struct device *));
struct device *raidrootdev;
void rf_ReconThread __P((struct rf_recon_req *));
/* XXX what I want is: */
/*void rf_ReconThread __P((RF_Raid_t *raidPtr)); */
void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
void rf_CopybackThread __P((RF_Raid_t *raidPtr));
void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
void rf_buildroothack __P((void *));
RF_AutoConfig_t *rf_find_raid_components __P((void));
RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
static int rf_reasonable_label __P((RF_ComponentLabel_t *));
void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
RF_Raid_t *));
int rf_set_autoconfig __P((RF_Raid_t *, int));
int rf_set_rootpartition __P((RF_Raid_t *, int));
void rf_release_all_vps __P((RF_ConfigSet_t *));
void rf_cleanup_config_set __P((RF_ConfigSet_t *));
int rf_have_enough_components __P((RF_ConfigSet_t *));
int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
allow autoconfig to take place.
Note that this is overridden by having
RAID_AUTOCONFIG as an option in the
kernel config file. */
extern struct device *booted_device;
void
raidattach(num)
int num;
{
int raidID;
int i, rc;
RF_AutoConfig_t *ac_list; /* autoconfig list */
RF_ConfigSet_t *config_sets;
#ifdef DEBUG
printf("raidattach: Asked for %d units\n", num);
#endif
if (num <= 0) {
#ifdef DIAGNOSTIC
panic("raidattach: count <= 0");
#endif
return;
}
/* This is where all the initialization stuff gets done. */
numraid = num;
/* Make some space for requested number of units... */
RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
if (raidPtrs == NULL) {
panic("raidPtrs is NULL!!\n");
}
rc = rf_mutex_init(&rf_sparet_wait_mutex);
if (rc) {
RF_PANIC();
}
rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
for (i = 0; i < num; i++)
raidPtrs[i] = NULL;
rc = rf_BootRaidframe();
if (rc == 0)
printf("Kernelized RAIDframe activated\n");
else
panic("Serious error booting RAID!!\n");
/* put together some datastructures like the CCD device does.. This
* lets us lock the device and what-not when it gets opened. */
raid_softc = (struct raid_softc *)
malloc(num * sizeof(struct raid_softc),
M_RAIDFRAME, M_NOWAIT);
if (raid_softc == NULL) {
printf("WARNING: no memory for RAIDframe driver\n");
return;
}
bzero(raid_softc, num * sizeof(struct raid_softc));
raidrootdev = (struct device *)malloc(num * sizeof(struct device),
M_RAIDFRAME, M_NOWAIT);
if (raidrootdev == NULL) {
panic("No memory for RAIDframe driver!!?!?!\n");
}
for (raidID = 0; raidID < num; raidID++) {
BUFQ_INIT(&raid_softc[raidID].buf_queue);
raidrootdev[raidID].dv_class = DV_DISK;
raidrootdev[raidID].dv_cfdata = NULL;
raidrootdev[raidID].dv_unit = raidID;
raidrootdev[raidID].dv_parent = NULL;
raidrootdev[raidID].dv_flags = 0;
sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
(RF_Raid_t *));
if (raidPtrs[raidID] == NULL) {
printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
numraid = raidID;
return;
}
}
#if RAID_AUTOCONFIG
raidautoconfig = 1;
#endif
if (raidautoconfig) {
/* 1. locate all RAID components on the system */
#if DEBUG
printf("Searching for raid components...\n");
#endif
ac_list = rf_find_raid_components();
/* 2. sort them into their respective sets */
config_sets = rf_create_auto_sets(ac_list);
/* 3. evaluate each set and configure the valid ones
This gets done in rf_buildroothack() */
/* schedule the creation of the thread to do the
"/ on RAID" stuff */
kthread_create(rf_buildroothack,config_sets);
#if 0
mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
#endif
}
}
void
rf_buildroothack(arg)
void *arg;
{
RF_ConfigSet_t *config_sets = arg;
RF_ConfigSet_t *cset;
RF_ConfigSet_t *next_cset;
int retcode;
int raidID;
int rootID;
int num_root;
num_root = 0;
cset = config_sets;
while(cset != NULL ) {
next_cset = cset->next;
if (rf_have_enough_components(cset) &&
cset->ac->clabel->autoconfigure==1) {
retcode = rf_auto_config_set(cset,&raidID);
if (!retcode) {
if (cset->rootable) {
rootID = raidID;
num_root++;
}
} else {
/* The autoconfig didn't work :( */
#if DEBUG
printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
#endif
rf_release_all_vps(cset);
}
} else {
/* we're not autoconfiguring this set...
release the associated resources */
rf_release_all_vps(cset);
}
/* cleanup */
rf_cleanup_config_set(cset);
cset = next_cset;
}
if (boothowto & RB_ASKNAME) {
/* We don't auto-config... */
} else {
/* They didn't ask, and we found something bootable... */
if (num_root == 1) {
booted_device = &raidrootdev[rootID];
} else if (num_root > 1) {
/* we can't guess.. require the user to answer... */
boothowto |= RB_ASKNAME;
}
}
}
int
raidsize(dev)
dev_t dev;
{
struct raid_softc *rs;
struct disklabel *lp;
int part, unit, omask, size;
unit = raidunit(dev);
if (unit >= numraid)
return (-1);
rs = &raid_softc[unit];
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (-1);
part = DISKPART(dev);
omask = rs->sc_dkdev.dk_openmask & (1 << part);
lp = rs->sc_dkdev.dk_label;
if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
return (-1);
if (lp->d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
size = lp->d_partitions[part].p_size *
(lp->d_secsize / DEV_BSIZE);
if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
return (-1);
return (size);
}
int
raiddump(dev, blkno, va, size)
dev_t dev;
daddr_t blkno;
caddr_t va;
size_t size;
{
/* Not implemented. */
return ENXIO;
}
/* ARGSUSED */
int
raidopen(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit = raidunit(dev);
struct raid_softc *rs;
struct disklabel *lp;
int part, pmask;
int error = 0;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((error = raidlock(rs)) != 0)
return (error);
lp = rs->sc_dkdev.dk_label;
part = DISKPART(dev);
pmask = (1 << part);
db1_printf(("Opening raid device number: %d partition: %d\n",
unit, part));
if ((rs->sc_flags & RAIDF_INITED) &&
(rs->sc_dkdev.dk_openmask == 0))
raidgetdisklabel(dev);
/* make sure that this partition exists */
if (part != RAW_PART) {
db1_printf(("Not a raw partition..\n"));
if (((rs->sc_flags & RAIDF_INITED) == 0) ||
((part >= lp->d_npartitions) ||
(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
error = ENXIO;
raidunlock(rs);
db1_printf(("Bailing out...\n"));
return (error);
}
}
/* Prevent this unit from being unconfigured while open. */
switch (fmt) {
case S_IFCHR:
rs->sc_dkdev.dk_copenmask |= pmask;
break;
case S_IFBLK:
rs->sc_dkdev.dk_bopenmask |= pmask;
break;
}
if ((rs->sc_dkdev.dk_openmask == 0) &&
((rs->sc_flags & RAIDF_INITED) != 0)) {
/* First one... mark things as dirty... Note that we *MUST*
have done a configure before this. I DO NOT WANT TO BE
SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
THAT THEY BELONG TOGETHER!!!!! */
/* XXX should check to see if we're only open for reading
here... If so, we needn't do this, but then need some
other way of keeping track of what's happened.. */
rf_markalldirty( raidPtrs[unit] );
}
rs->sc_dkdev.dk_openmask =
rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
raidunlock(rs);
return (error);
}
/* ARGSUSED */
int
raidclose(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit = raidunit(dev);
struct raid_softc *rs;
int error = 0;
int part;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((error = raidlock(rs)) != 0)
return (error);
part = DISKPART(dev);
/* ...that much closer to allowing unconfiguration... */
switch (fmt) {
case S_IFCHR:
rs->sc_dkdev.dk_copenmask &= ~(1 << part);
break;
case S_IFBLK:
rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
break;
}
rs->sc_dkdev.dk_openmask =
rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
if ((rs->sc_dkdev.dk_openmask == 0) &&
((rs->sc_flags & RAIDF_INITED) != 0)) {
/* Last one... device is not unconfigured yet.
Device shutdown has taken care of setting the
clean bits if RAIDF_INITED is not set
mark things as clean... */
#if 0
printf("Last one on raid%d. Updating status.\n",unit);
#endif
rf_final_update_component_labels( raidPtrs[unit] );
}
raidunlock(rs);
return (0);
}
void
raidstrategy(bp)
struct buf *bp;
{
int s;
unsigned int raidID = raidunit(bp->b_dev);
RF_Raid_t *raidPtr;
struct raid_softc *rs = &raid_softc[raidID];
struct disklabel *lp;
int wlabel;
if ((rs->sc_flags & RAIDF_INITED) ==0) {
bp->b_error = ENXIO;
bp->b_flags = B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
if (raidID >= numraid || !raidPtrs[raidID]) {
bp->b_error = ENODEV;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
raidPtr = raidPtrs[raidID];
if (!raidPtr->valid) {
bp->b_error = ENODEV;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
if (bp->b_bcount == 0) {
db1_printf(("b_bcount is zero..\n"));
biodone(bp);
return;
}
lp = rs->sc_dkdev.dk_label;
/*
* Do bounds checking and adjust transfer. If there's an
* error, the bounds check will flag that for us.
*/
wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
if (DISKPART(bp->b_dev) != RAW_PART)
if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
db1_printf(("Bounds check failed!!:%d %d\n",
(int) bp->b_blkno, (int) wlabel));
biodone(bp);
return;
}
s = splbio();
bp->b_resid = 0;
/* stuff it onto our queue */
BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
raidstart(raidPtrs[raidID]);
splx(s);
}
/* ARGSUSED */
int
raidread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
int unit = raidunit(dev);
struct raid_softc *rs;
int part;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
part = DISKPART(dev);
db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
}
/* ARGSUSED */
int
raidwrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
int unit = raidunit(dev);
struct raid_softc *rs;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
db1_printf(("raidwrite\n"));
return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
}
int
raidioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
int unit = raidunit(dev);
int error = 0;
int part, pmask;
struct raid_softc *rs;
RF_Config_t *k_cfg, *u_cfg;
RF_Raid_t *raidPtr;
RF_RaidDisk_t *diskPtr;
RF_AccTotals_t *totals;
RF_DeviceConfig_t *d_cfg, **ucfgp;
u_char *specific_buf;
int retcode = 0;
int row;
int column;
struct rf_recon_req *rrcopy, *rr;
RF_ComponentLabel_t *clabel;
RF_ComponentLabel_t ci_label;
RF_ComponentLabel_t **clabel_ptr;
RF_SingleComponent_t *sparePtr,*componentPtr;
RF_SingleComponent_t hot_spare;
RF_SingleComponent_t component;
int i, j, d;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
raidPtr = raidPtrs[unit];
db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
(int) DISKPART(dev), (int) unit, (int) cmd));
/* Must be open for writes for these commands... */
switch (cmd) {
case DIOCSDINFO:
case DIOCWDINFO:
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return (EBADF);
}
/* Must be initialized for these... */
switch (cmd) {
case DIOCGDINFO:
case DIOCSDINFO:
case DIOCWDINFO:
case DIOCGPART:
case DIOCWLABEL:
case DIOCGDEFLABEL:
case RAIDFRAME_SHUTDOWN:
case RAIDFRAME_REWRITEPARITY:
case RAIDFRAME_GET_INFO:
case RAIDFRAME_RESET_ACCTOTALS:
case RAIDFRAME_GET_ACCTOTALS:
case RAIDFRAME_KEEP_ACCTOTALS:
case RAIDFRAME_GET_SIZE:
case RAIDFRAME_FAIL_DISK:
case RAIDFRAME_COPYBACK:
case RAIDFRAME_CHECK_RECON_STATUS:
case RAIDFRAME_GET_COMPONENT_LABEL:
case RAIDFRAME_SET_COMPONENT_LABEL:
case RAIDFRAME_ADD_HOT_SPARE:
case RAIDFRAME_REMOVE_HOT_SPARE:
case RAIDFRAME_INIT_LABELS:
case RAIDFRAME_REBUILD_IN_PLACE:
case RAIDFRAME_CHECK_PARITY:
case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
case RAIDFRAME_CHECK_COPYBACK_STATUS:
case RAIDFRAME_SET_AUTOCONFIG:
case RAIDFRAME_SET_ROOT:
case RAIDFRAME_DELETE_COMPONENT:
case RAIDFRAME_INCORPORATE_HOT_SPARE:
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
}
switch (cmd) {
/* configure the system */
case RAIDFRAME_CONFIGURE:
if (raidPtr->valid) {
/* There is a valid RAID set running on this unit! */
printf("raid%d: Device already configured!\n",unit);
return(EINVAL);
}
/* copy-in the configuration information */
/* data points to a pointer to the configuration structure */
u_cfg = *((RF_Config_t **) data);
RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
if (k_cfg == NULL) {
return (ENOMEM);
}
retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
sizeof(RF_Config_t));
if (retcode) {
RF_Free(k_cfg, sizeof(RF_Config_t));
db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
retcode));
return (retcode);
}
/* allocate a buffer for the layout-specific data, and copy it
* in */
if (k_cfg->layoutSpecificSize) {
if (k_cfg->layoutSpecificSize > 10000) {
/* sanity check */
RF_Free(k_cfg, sizeof(RF_Config_t));
return (EINVAL);
}
RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
(u_char *));
if (specific_buf == NULL) {
RF_Free(k_cfg, sizeof(RF_Config_t));
return (ENOMEM);
}
retcode = copyin(k_cfg->layoutSpecific,
(caddr_t) specific_buf,
k_cfg->layoutSpecificSize);
if (retcode) {
RF_Free(k_cfg, sizeof(RF_Config_t));
RF_Free(specific_buf,
k_cfg->layoutSpecificSize);
db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
retcode));
return (retcode);
}
} else
specific_buf = NULL;
k_cfg->layoutSpecific = specific_buf;
/* should do some kind of sanity check on the configuration.
* Store the sum of all the bytes in the last byte? */
/* configure the system */
/*
* Clear the entire RAID descriptor, just to make sure
* there is no stale data left in the case of a
* reconfiguration
*/
bzero((char *) raidPtr, sizeof(RF_Raid_t));
raidPtr->raidid = unit;
retcode = rf_Configure(raidPtr, k_cfg, NULL);
if (retcode == 0) {
/* allow this many simultaneous IO's to
this RAID device */
raidPtr->openings = RAIDOUTSTANDING;
raidinit(raidPtr);
rf_markalldirty(raidPtr);
}
/* free the buffers. No return code here. */
if (k_cfg->layoutSpecificSize) {
RF_Free(specific_buf, k_cfg->layoutSpecificSize);
}
RF_Free(k_cfg, sizeof(RF_Config_t));
return (retcode);
/* shutdown the system */
case RAIDFRAME_SHUTDOWN:
if ((error = raidlock(rs)) != 0)
return (error);
/*
* If somebody has a partition mounted, we shouldn't
* shutdown.
*/
part = DISKPART(dev);
pmask = (1 << part);
if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
((rs->sc_dkdev.dk_bopenmask & pmask) &&
(rs->sc_dkdev.dk_copenmask & pmask))) {
raidunlock(rs);
return (EBUSY);
}
retcode = rf_Shutdown(raidPtr);
pool_destroy(&rs->sc_cbufpool);
/* It's no longer initialized... */
rs->sc_flags &= ~RAIDF_INITED;
/* Detach the disk. */
disk_detach(&rs->sc_dkdev);
raidunlock(rs);
return (retcode);
case RAIDFRAME_GET_COMPONENT_LABEL:
clabel_ptr = (RF_ComponentLabel_t **) data;
/* need to read the component label for the disk indicated
by row,column in clabel */
/* For practice, let's get it directly fromdisk, rather
than from the in-core copy */
RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
(RF_ComponentLabel_t *));
if (clabel == NULL)
return (ENOMEM);
bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
retcode = copyin( *clabel_ptr, clabel,
sizeof(RF_ComponentLabel_t));
if (retcode) {
RF_Free( clabel, sizeof(RF_ComponentLabel_t));
return(retcode);
}
row = clabel->row;
column = clabel->column;
if ((row < 0) || (row >= raidPtr->numRow) ||
(column < 0) || (column >= raidPtr->numCol)) {
RF_Free( clabel, sizeof(RF_ComponentLabel_t));
return(EINVAL);
}
raidread_component_label(raidPtr->Disks[row][column].dev,
raidPtr->raid_cinfo[row][column].ci_vp,
clabel );
retcode = copyout((caddr_t) clabel,
(caddr_t) *clabel_ptr,
sizeof(RF_ComponentLabel_t));
RF_Free( clabel, sizeof(RF_ComponentLabel_t));
return (retcode);
case RAIDFRAME_SET_COMPONENT_LABEL:
clabel = (RF_ComponentLabel_t *) data;
/* XXX check the label for valid stuff... */
/* Note that some things *should not* get modified --
the user should be re-initing the labels instead of
trying to patch things.
*/
printf("Got component label:\n");
printf("Version: %d\n",clabel->version);
printf("Serial Number: %d\n",clabel->serial_number);
printf("Mod counter: %d\n",clabel->mod_counter);
printf("Row: %d\n", clabel->row);
printf("Column: %d\n", clabel->column);
printf("Num Rows: %d\n", clabel->num_rows);
printf("Num Columns: %d\n", clabel->num_columns);
printf("Clean: %d\n", clabel->clean);
printf("Status: %d\n", clabel->status);
row = clabel->row;
column = clabel->column;
if ((row < 0) || (row >= raidPtr->numRow) ||
(column < 0) || (column >= raidPtr->numCol)) {
return(EINVAL);
}
/* XXX this isn't allowed to do anything for now :-) */
/* XXX and before it is, we need to fill in the rest
of the fields!?!?!?! */
#if 0
raidwrite_component_label(
raidPtr->Disks[row][column].dev,
raidPtr->raid_cinfo[row][column].ci_vp,
clabel );
#endif
return (0);
case RAIDFRAME_INIT_LABELS:
clabel = (RF_ComponentLabel_t *) data;
/*
we only want the serial number from
the above. We get all the rest of the information
from the config that was used to create this RAID
set.
*/
raidPtr->serial_number = clabel->serial_number;
raid_init_component_label(raidPtr, &ci_label);
ci_label.serial_number = clabel->serial_number;
for(row=0;row<raidPtr->numRow;row++) {
ci_label.row = row;
for(column=0;column<raidPtr->numCol;column++) {
diskPtr = &raidPtr->Disks[row][column];
ci_label.partitionSize = diskPtr->partitionSize;
ci_label.column = column;
raidwrite_component_label(
raidPtr->Disks[row][column].dev,
raidPtr->raid_cinfo[row][column].ci_vp,
&ci_label );
}
}
return (retcode);
case RAIDFRAME_SET_AUTOCONFIG:
d = rf_set_autoconfig(raidPtr, *(int *) data);
printf("New autoconfig value is: %d\n", d);
*(int *) data = d;
return (retcode);
case RAIDFRAME_SET_ROOT:
d = rf_set_rootpartition(raidPtr, *(int *) data);
printf("New rootpartition value is: %d\n", d);
*(int *) data = d;
return (retcode);
/* initialize all parity */
case RAIDFRAME_REWRITEPARITY:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* Parity for RAID 0 is trivially correct */
raidPtr->parity_good = RF_RAID_CLEAN;
return(0);
}
if (raidPtr->parity_rewrite_in_progress == 1) {
/* Re-write is already in progress! */
return(EINVAL);
}
retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
rf_RewriteParityThread,
raidPtr,"raid_parity");
return (retcode);
case RAIDFRAME_ADD_HOT_SPARE:
sparePtr = (RF_SingleComponent_t *) data;
memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
retcode = rf_add_hot_spare(raidPtr, &hot_spare);
return(retcode);
case RAIDFRAME_REMOVE_HOT_SPARE:
return(retcode);
case RAIDFRAME_DELETE_COMPONENT:
componentPtr = (RF_SingleComponent_t *)data;
memcpy( &component, componentPtr,
sizeof(RF_SingleComponent_t));
retcode = rf_delete_component(raidPtr, &component);
return(retcode);
case RAIDFRAME_INCORPORATE_HOT_SPARE:
componentPtr = (RF_SingleComponent_t *)data;
memcpy( &component, componentPtr,
sizeof(RF_SingleComponent_t));
retcode = rf_incorporate_hot_spare(raidPtr, &component);
return(retcode);
case RAIDFRAME_REBUILD_IN_PLACE:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* Can't do this on a RAID 0!! */
return(EINVAL);
}
if (raidPtr->recon_in_progress == 1) {
/* a reconstruct is already in progress! */
return(EINVAL);
}
componentPtr = (RF_SingleComponent_t *) data;
memcpy( &component, componentPtr,
sizeof(RF_SingleComponent_t));
row = component.row;
column = component.column;
printf("Rebuild: %d %d\n",row, column);
if ((row < 0) || (row >= raidPtr->numRow) ||
(column < 0) || (column >= raidPtr->numCol)) {
return(EINVAL);
}
RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
if (rrcopy == NULL)
return(ENOMEM);
rrcopy->raidPtr = (void *) raidPtr;
rrcopy->row = row;
rrcopy->col = column;
retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
rf_ReconstructInPlaceThread,
rrcopy,"raid_reconip");
return(retcode);
case RAIDFRAME_GET_INFO:
if (!raidPtr->valid)
return (ENODEV);
ucfgp = (RF_DeviceConfig_t **) data;
RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
(RF_DeviceConfig_t *));
if (d_cfg == NULL)
return (ENOMEM);
bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
d_cfg->rows = raidPtr->numRow;
d_cfg->cols = raidPtr->numCol;
d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
if (d_cfg->ndevs >= RF_MAX_DISKS) {
RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
return (ENOMEM);
}
d_cfg->nspares = raidPtr->numSpare;
if (d_cfg->nspares >= RF_MAX_DISKS) {
RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
return (ENOMEM);
}
d_cfg->maxqdepth = raidPtr->maxQueueDepth;
d = 0;
for (i = 0; i < d_cfg->rows; i++) {
for (j = 0; j < d_cfg->cols; j++) {
d_cfg->devs[d] = raidPtr->Disks[i][j];
d++;
}
}
for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
d_cfg->spares[i] = raidPtr->Disks[0][j];
}
retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
sizeof(RF_DeviceConfig_t));
RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
return (retcode);
case RAIDFRAME_CHECK_PARITY:
*(int *) data = raidPtr->parity_good;
return (0);
case RAIDFRAME_RESET_ACCTOTALS:
bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
return (0);
case RAIDFRAME_GET_ACCTOTALS:
totals = (RF_AccTotals_t *) data;
*totals = raidPtr->acc_totals;
return (0);
case RAIDFRAME_KEEP_ACCTOTALS:
raidPtr->keep_acc_totals = *(int *)data;
return (0);
case RAIDFRAME_GET_SIZE:
*(int *) data = raidPtr->totalSectors;
return (0);
/* fail a disk & optionally start reconstruction */
case RAIDFRAME_FAIL_DISK:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* Can't do this on a RAID 0!! */
return(EINVAL);
}
rr = (struct rf_recon_req *) data;
if (rr->row < 0 || rr->row >= raidPtr->numRow
|| rr->col < 0 || rr->col >= raidPtr->numCol)
return (EINVAL);
printf("raid%d: Failing the disk: row: %d col: %d\n",
unit, rr->row, rr->col);
/* make a copy of the recon request so that we don't rely on
* the user's buffer */
RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
if (rrcopy == NULL)
return(ENOMEM);
bcopy(rr, rrcopy, sizeof(*rr));
rrcopy->raidPtr = (void *) raidPtr;
retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
rf_ReconThread,
rrcopy,"raid_recon");
return (0);
/* invoke a copyback operation after recon on whatever disk
* needs it, if any */
case RAIDFRAME_COPYBACK:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* This makes no sense on a RAID 0!! */
return(EINVAL);
}
if (raidPtr->copyback_in_progress == 1) {
/* Copyback is already in progress! */
return(EINVAL);
}
retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
rf_CopybackThread,
raidPtr,"raid_copyback");
return (retcode);
/* return the percentage completion of reconstruction */
case RAIDFRAME_CHECK_RECON_STATUS:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* This makes no sense on a RAID 0, so tell the
user it's done. */
*(int *) data = 100;
return(0);
}
row = 0; /* XXX we only consider a single row... */
if (raidPtr->status[row] != rf_rs_reconstructing)
*(int *) data = 100;
else
*(int *) data = raidPtr->reconControl[row]->percentComplete;
return (0);
case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* This makes no sense on a RAID 0 */
return(EINVAL);
}
if (raidPtr->parity_rewrite_in_progress == 1) {
*(int *) data = 100 * raidPtr->parity_rewrite_stripes_done / raidPtr->Layout.numStripe;
} else {
*(int *) data = 100;
}
return (0);
case RAIDFRAME_CHECK_COPYBACK_STATUS:
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* This makes no sense on a RAID 0 */
return(EINVAL);
}
if (raidPtr->copyback_in_progress == 1) {
*(int *) data = 100 * raidPtr->copyback_stripes_done /
raidPtr->Layout.numStripe;
} else {
*(int *) data = 100;
}
return (0);
/* the sparetable daemon calls this to wait for the kernel to
* need a spare table. this ioctl does not return until a
* spare table is needed. XXX -- calling mpsleep here in the
* ioctl code is almost certainly wrong and evil. -- XXX XXX
* -- I should either compute the spare table in the kernel,
* or have a different -- XXX XXX -- interface (a different
* character device) for delivering the table -- XXX */
#if 0
case RAIDFRAME_SPARET_WAIT:
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
while (!rf_sparet_wait_queue)
mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
waitreq = rf_sparet_wait_queue;
rf_sparet_wait_queue = rf_sparet_wait_queue->next;
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
/* structure assignment */
*((RF_SparetWait_t *) data) = *waitreq;
RF_Free(waitreq, sizeof(*waitreq));
return (0);
/* wakes up a process waiting on SPARET_WAIT and puts an error
* code in it that will cause the dameon to exit */
case RAIDFRAME_ABORT_SPARET_WAIT:
RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
waitreq->fcol = -1;
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
waitreq->next = rf_sparet_wait_queue;
rf_sparet_wait_queue = waitreq;
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
wakeup(&rf_sparet_wait_queue);
return (0);
/* used by the spare table daemon to deliver a spare table
* into the kernel */
case RAIDFRAME_SEND_SPARET:
/* install the spare table */
retcode = rf_SetSpareTable(raidPtr, *(void **) data);
/* respond to the requestor. the return status of the spare
* table installation is passed in the "fcol" field */
RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
waitreq->fcol = retcode;
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
waitreq->next = rf_sparet_resp_queue;
rf_sparet_resp_queue = waitreq;
wakeup(&rf_sparet_resp_queue);
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
return (retcode);
#endif
default:
break; /* fall through to the os-specific code below */
}
if (!raidPtr->valid)
return (EINVAL);
/*
* Add support for "regular" device ioctls here.
*/
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
break;
case DIOCGPART:
((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
((struct partinfo *) data)->part =
&rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
break;
case DIOCWDINFO:
case DIOCSDINFO:
if ((error = raidlock(rs)) != 0)
return (error);
rs->sc_flags |= RAIDF_LABELLING;
error = setdisklabel(rs->sc_dkdev.dk_label,
(struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
if (error == 0) {
if (cmd == DIOCWDINFO)
error = writedisklabel(RAIDLABELDEV(dev),
raidstrategy, rs->sc_dkdev.dk_label,
rs->sc_dkdev.dk_cpulabel);
}
rs->sc_flags &= ~RAIDF_LABELLING;
raidunlock(rs);
if (error)
return (error);
break;
case DIOCWLABEL:
if (*(int *) data != 0)
rs->sc_flags |= RAIDF_WLABEL;
else
rs->sc_flags &= ~RAIDF_WLABEL;
break;
case DIOCGDEFLABEL:
raidgetdefaultlabel(raidPtr, rs,
(struct disklabel *) data);
break;
default:
retcode = ENOTTY;
}
return (retcode);
}
/* raidinit -- complete the rest of the initialization for the
RAIDframe device. */
static void
raidinit(raidPtr)
RF_Raid_t *raidPtr;
{
struct raid_softc *rs;
int unit;
unit = raidPtr->raidid;
rs = &raid_softc[unit];
pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
/* XXX should check return code first... */
rs->sc_flags |= RAIDF_INITED;
sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
rs->sc_dkdev.dk_name = rs->sc_xname;
/* disk_attach actually creates space for the CPU disklabel, among
* other things, so it's critical to call this *BEFORE* we try putzing
* with disklabels. */
disk_attach(&rs->sc_dkdev);
/* XXX There may be a weird interaction here between this, and
* protectedSectors, as used in RAIDframe. */
rs->sc_size = raidPtr->totalSectors;
}
/* wake up the daemon & tell it to get us a spare table
* XXX
* the entries in the queues should be tagged with the raidPtr
* so that in the extremely rare case that two recons happen at once,
* we know for which device were requesting a spare table
* XXX
*
* XXX This code is not currently used. GO
*/
int
rf_GetSpareTableFromDaemon(req)
RF_SparetWait_t *req;
{
int retcode;
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
req->next = rf_sparet_wait_queue;
rf_sparet_wait_queue = req;
wakeup(&rf_sparet_wait_queue);
/* mpsleep unlocks the mutex */
while (!rf_sparet_resp_queue) {
tsleep(&rf_sparet_resp_queue, PRIBIO,
"raidframe getsparetable", 0);
}
req = rf_sparet_resp_queue;
rf_sparet_resp_queue = req->next;
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
retcode = req->fcol;
RF_Free(req, sizeof(*req)); /* this is not the same req as we
* alloc'd */
return (retcode);
}
/* a wrapper around rf_DoAccess that extracts appropriate info from the
* bp & passes it down.
* any calls originating in the kernel must use non-blocking I/O
* do some extra sanity checking to return "appropriate" error values for
* certain conditions (to make some standard utilities work)
*
* Formerly known as: rf_DoAccessKernel
*/
void
raidstart(raidPtr)
RF_Raid_t *raidPtr;
{
RF_SectorCount_t num_blocks, pb, sum;
RF_RaidAddr_t raid_addr;
int retcode;
struct partition *pp;
daddr_t blocknum;
int unit;
struct raid_softc *rs;
int do_async;
struct buf *bp;
unit = raidPtr->raidid;
rs = &raid_softc[unit];
/* quick check to see if anything has died recently */
RF_LOCK_MUTEX(raidPtr->mutex);
if (raidPtr->numNewFailures > 0) {
rf_update_component_labels(raidPtr);
raidPtr->numNewFailures--;
}
RF_UNLOCK_MUTEX(raidPtr->mutex);
/* Check to see if we're at the limit... */
RF_LOCK_MUTEX(raidPtr->mutex);
while (raidPtr->openings > 0) {
RF_UNLOCK_MUTEX(raidPtr->mutex);
/* get the next item, if any, from the queue */
if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
/* nothing more to do */
return;
}
BUFQ_REMOVE(&rs->buf_queue, bp);
/* Ok, for the bp we have here, bp->b_blkno is relative to the
* partition.. Need to make it absolute to the underlying
* device.. */
blocknum = bp->b_blkno;
if (DISKPART(bp->b_dev) != RAW_PART) {
pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
blocknum += pp->p_offset;
}
db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
(int) blocknum));
db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
/* *THIS* is where we adjust what block we're going to...
* but DO NOT TOUCH bp->b_blkno!!! */
raid_addr = blocknum;
num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
sum = raid_addr + num_blocks + pb;
if (1 || rf_debugKernelAccess) {
db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
(int) raid_addr, (int) sum, (int) num_blocks,
(int) pb, (int) bp->b_resid));
}
if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
|| (sum < num_blocks) || (sum < pb)) {
bp->b_error = ENOSPC;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
RF_LOCK_MUTEX(raidPtr->mutex);
continue;
}
/*
* XXX rf_DoAccess() should do this, not just DoAccessKernel()
*/
if (bp->b_bcount & raidPtr->sectorMask) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
RF_LOCK_MUTEX(raidPtr->mutex);
continue;
}
db1_printf(("Calling DoAccess..\n"));
RF_LOCK_MUTEX(raidPtr->mutex);
raidPtr->openings--;
RF_UNLOCK_MUTEX(raidPtr->mutex);
/*
* Everything is async.
*/
do_async = 1;
/* don't ever condition on bp->b_flags & B_WRITE.
* always condition on B_READ instead */
/* XXX we're still at splbio() here... do we *really*
need to be? */
retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
do_async, raid_addr, num_blocks,
bp->b_data, bp, NULL, NULL,
RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
RF_LOCK_MUTEX(raidPtr->mutex);
}
RF_UNLOCK_MUTEX(raidPtr->mutex);
}
/* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
int
rf_DispatchKernelIO(queue, req)
RF_DiskQueue_t *queue;
RF_DiskQueueData_t *req;
{
int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
struct buf *bp;
struct raidbuf *raidbp = NULL;
struct raid_softc *rs;
int unit;
int s;
s=0;
/* s = splbio();*/ /* want to test this */
/* XXX along with the vnode, we also need the softc associated with
* this device.. */
req->queue = queue;
unit = queue->raidPtr->raidid;
db1_printf(("DispatchKernelIO unit: %d\n", unit));
if (unit >= numraid) {
printf("Invalid unit number: %d %d\n", unit, numraid);
panic("Invalid Unit number in rf_DispatchKernelIO\n");
}
rs = &raid_softc[unit];
/* XXX is this the right place? */
disk_busy(&rs->sc_dkdev);
bp = req->bp;
#if 1
/* XXX when there is a physical disk failure, someone is passing us a
* buffer that contains old stuff!! Attempt to deal with this problem
* without taking a performance hit... (not sure where the real bug
* is. It's buried in RAIDframe somewhere) :-( GO ) */
if (bp->b_flags & B_ERROR) {
bp->b_flags &= ~B_ERROR;
}
if (bp->b_error != 0) {
bp->b_error = 0;
}
#endif
raidbp = RAIDGETBUF(rs);
raidbp->rf_flags = 0; /* XXX not really used anywhere... */
/*
* context for raidiodone
*/
raidbp->rf_obp = bp;
raidbp->req = req;
LIST_INIT(&raidbp->rf_buf.b_dep);
switch (req->type) {
case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
/* XXX need to do something extra here.. */
/* I'm leaving this in, as I've never actually seen it used,
* and I'd like folks to report it... GO */
printf(("WAKEUP CALLED\n"));
queue->numOutstanding++;
/* XXX need to glue the original buffer into this?? */
KernelWakeupFunc(&raidbp->rf_buf);
break;
case RF_IO_TYPE_READ:
case RF_IO_TYPE_WRITE:
if (req->tracerec) {
RF_ETIMER_START(req->tracerec->timer);
}
InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
op | bp->b_flags, queue->rf_cinfo->ci_dev,
req->sectorOffset, req->numSector,
req->buf, KernelWakeupFunc, (void *) req,
queue->raidPtr->logBytesPerSector, req->b_proc);
if (rf_debugKernelAccess) {
db1_printf(("dispatch: bp->b_blkno = %ld\n",
(long) bp->b_blkno));
}
queue->numOutstanding++;
queue->last_deq_sector = req->sectorOffset;
/* acc wouldn't have been let in if there were any pending
* reqs at any other priority */
queue->curPriority = req->priority;
db1_printf(("Going for %c to unit %d row %d col %d\n",
req->type, unit, queue->row, queue->col));
db1_printf(("sector %d count %d (%d bytes) %d\n",
(int) req->sectorOffset, (int) req->numSector,
(int) (req->numSector <<
queue->raidPtr->logBytesPerSector),
(int) queue->raidPtr->logBytesPerSector));
if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
raidbp->rf_buf.b_vp->v_numoutput++;
}
VOP_STRATEGY(&raidbp->rf_buf);
break;
default:
panic("bad req->type in rf_DispatchKernelIO");
}
db1_printf(("Exiting from DispatchKernelIO\n"));
/* splx(s); */ /* want to test this */
return (0);
}
/* this is the callback function associated with a I/O invoked from
kernel code.
*/
static void
KernelWakeupFunc(vbp)
struct buf *vbp;
{
RF_DiskQueueData_t *req = NULL;
RF_DiskQueue_t *queue;
struct raidbuf *raidbp = (struct raidbuf *) vbp;
struct buf *bp;
struct raid_softc *rs;
int unit;
int s;
s = splbio();
db1_printf(("recovering the request queue:\n"));
req = raidbp->req;
bp = raidbp->rf_obp;
queue = (RF_DiskQueue_t *) req->queue;
if (raidbp->rf_buf.b_flags & B_ERROR) {
bp->b_flags |= B_ERROR;
bp->b_error = raidbp->rf_buf.b_error ?
raidbp->rf_buf.b_error : EIO;
}
/* XXX methinks this could be wrong... */
#if 1
bp->b_resid = raidbp->rf_buf.b_resid;
#endif
if (req->tracerec) {
RF_ETIMER_STOP(req->tracerec->timer);
RF_ETIMER_EVAL(req->tracerec->timer);
RF_LOCK_MUTEX(rf_tracing_mutex);
req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
req->tracerec->num_phys_ios++;
RF_UNLOCK_MUTEX(rf_tracing_mutex);
}
bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
unit = queue->raidPtr->raidid; /* *Much* simpler :-> */
/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
* ballistic, and mark the component as hosed... */
if (bp->b_flags & B_ERROR) {
/* Mark the disk as dead */
/* but only mark it once... */
if (queue->raidPtr->Disks[queue->row][queue->col].status ==
rf_ds_optimal) {
printf("raid%d: IO Error. Marking %s as failed.\n",
unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
queue->raidPtr->Disks[queue->row][queue->col].status =
rf_ds_failed;
queue->raidPtr->status[queue->row] = rf_rs_degraded;
queue->raidPtr->numFailures++;
queue->raidPtr->numNewFailures++;
/* XXX here we should bump the version number for each component, and write that data out */
} else { /* Disk is already dead... */
/* printf("Disk already marked as dead!\n"); */
}
}
rs = &raid_softc[unit];
RAIDPUTBUF(rs, raidbp);
if (bp->b_resid == 0) {
/* XXX is this the right place for a disk_unbusy()??!??!?!? */
disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
}
rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
splx(s);
}
/*
* initialize a buf structure for doing an I/O in the kernel.
*/
static void
InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
logBytesPerSector, b_proc)
struct buf *bp;
struct vnode *b_vp;
unsigned rw_flag;
dev_t dev;
RF_SectorNum_t startSect;
RF_SectorCount_t numSect;
caddr_t buf;
void (*cbFunc) (struct buf *);
void *cbArg;
int logBytesPerSector;
struct proc *b_proc;
{
/* bp->b_flags = B_PHYS | rw_flag; */
bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
bp->b_bcount = numSect << logBytesPerSector;
bp->b_bufsize = bp->b_bcount;
bp->b_error = 0;
bp->b_dev = dev;
bp->b_data = buf;
bp->b_blkno = startSect;
bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
if (bp->b_bcount == 0) {
panic("bp->b_bcount is zero in InitBP!!\n");
}
bp->b_proc = b_proc;
bp->b_iodone = cbFunc;
bp->b_vp = b_vp;
}
static void
raidgetdefaultlabel(raidPtr, rs, lp)
RF_Raid_t *raidPtr;
struct raid_softc *rs;
struct disklabel *lp;
{
db1_printf(("Building a default label...\n"));
bzero(lp, sizeof(*lp));
/* fabricate a label... */
lp->d_secperunit = raidPtr->totalSectors;
lp->d_secsize = raidPtr->bytesPerSector;
lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
lp->d_ntracks = 1;
lp->d_ncylinders = raidPtr->totalSectors /
(lp->d_nsectors * lp->d_ntracks);
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
lp->d_type = DTYPE_RAID;
strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
lp->d_rpm = 3600;
lp->d_interleave = 1;
lp->d_flags = 0;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
}
/*
* Read the disklabel from the raid device. If one is not present, fake one
* up.
*/
static void
raidgetdisklabel(dev)
dev_t dev;
{
int unit = raidunit(dev);
struct raid_softc *rs = &raid_softc[unit];
char *errstring;
struct disklabel *lp = rs->sc_dkdev.dk_label;
struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
RF_Raid_t *raidPtr;
db1_printf(("Getting the disklabel...\n"));
bzero(clp, sizeof(*clp));
raidPtr = raidPtrs[unit];
raidgetdefaultlabel(raidPtr, rs, lp);
/*
* Call the generic disklabel extraction routine.
*/
errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
if (errstring)
raidmakedisklabel(rs);
else {
int i;
struct partition *pp;
/*
* Sanity check whether the found disklabel is valid.
*
* This is necessary since total size of the raid device
* may vary when an interleave is changed even though exactly
* same componets are used, and old disklabel may used
* if that is found.
*/
if (lp->d_secperunit != rs->sc_size)
printf("WARNING: %s: "
"total sector size in disklabel (%d) != "
"the size of raid (%ld)\n", rs->sc_xname,
lp->d_secperunit, (long) rs->sc_size);
for (i = 0; i < lp->d_npartitions; i++) {
pp = &lp->d_partitions[i];
if (pp->p_offset + pp->p_size > rs->sc_size)
printf("WARNING: %s: end of partition `%c' "
"exceeds the size of raid (%ld)\n",
rs->sc_xname, 'a' + i, (long) rs->sc_size);
}
}
}
/*
* Take care of things one might want to take care of in the event
* that a disklabel isn't present.
*/
static void
raidmakedisklabel(rs)
struct raid_softc *rs;
{
struct disklabel *lp = rs->sc_dkdev.dk_label;
db1_printf(("Making a label..\n"));
/*
* For historical reasons, if there's no disklabel present
* the raw partition must be marked FS_BSDFFS.
*/
lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
lp->d_checksum = dkcksum(lp);
}
/*
* Lookup the provided name in the filesystem. If the file exists,
* is a valid block device, and isn't being used by anyone else,
* set *vpp to the file's vnode.
* You'll find the original of this in ccd.c
*/
int
raidlookup(path, p, vpp)
char *path;
struct proc *p;
struct vnode **vpp; /* result */
{
struct nameidata nd;
struct vnode *vp;
struct vattr va;
int error;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
#ifdef DEBUG
printf("RAIDframe: vn_open returned %d\n", error);
#endif
return (error);
}
vp = nd.ni_vp;
if (vp->v_usecount > 1) {
VOP_UNLOCK(vp, 0);
(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
return (EBUSY);
}
if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
VOP_UNLOCK(vp, 0);
(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
return (error);
}
/* XXX: eventually we should handle VREG, too. */
if (va.va_type != VBLK) {
VOP_UNLOCK(vp, 0);
(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
return (ENOTBLK);
}
VOP_UNLOCK(vp, 0);
*vpp = vp;
return (0);
}
/*
* Wait interruptibly for an exclusive lock.
*
* XXX
* Several drivers do this; it should be abstracted and made MP-safe.
* (Hmm... where have we seen this warning before :-> GO )
*/
static int
raidlock(rs)
struct raid_softc *rs;
{
int error;
while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
rs->sc_flags |= RAIDF_WANTED;
if ((error =
tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
return (error);
}
rs->sc_flags |= RAIDF_LOCKED;
return (0);
}
/*
* Unlock and wake up any waiters.
*/
static void
raidunlock(rs)
struct raid_softc *rs;
{
rs->sc_flags &= ~RAIDF_LOCKED;
if ((rs->sc_flags & RAIDF_WANTED) != 0) {
rs->sc_flags &= ~RAIDF_WANTED;
wakeup(rs);
}
}
#define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
#define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
int
raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
{
RF_ComponentLabel_t clabel;
raidread_component_label(dev, b_vp, &clabel);
clabel.mod_counter = mod_counter;
clabel.clean = RF_RAID_CLEAN;
raidwrite_component_label(dev, b_vp, &clabel);
return(0);
}
int
raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
{
RF_ComponentLabel_t clabel;
raidread_component_label(dev, b_vp, &clabel);
clabel.mod_counter = mod_counter;
clabel.clean = RF_RAID_DIRTY;
raidwrite_component_label(dev, b_vp, &clabel);
return(0);
}
/* ARGSUSED */
int
raidread_component_label(dev, b_vp, clabel)
dev_t dev;
struct vnode *b_vp;
RF_ComponentLabel_t *clabel;
{
struct buf *bp;
int error;
/* XXX should probably ensure that we don't try to do this if
someone has changed rf_protected_sectors. */
/* get a block of the appropriate size... */
bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
bp->b_dev = dev;
/* get our ducks in a row for the read */
bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
bp->b_bcount = RF_COMPONENT_INFO_SIZE;
bp->b_flags = B_BUSY | B_READ;
bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
error = biowait(bp);
if (!error) {
memcpy(clabel, bp->b_data,
sizeof(RF_ComponentLabel_t));
#if 0
rf_print_component_label( clabel );
#endif
} else {
#if 0
printf("Failed to read RAID component label!\n");
#endif
}
bp->b_flags = B_INVAL | B_AGE;
brelse(bp);
return(error);
}
/* ARGSUSED */
int
raidwrite_component_label(dev, b_vp, clabel)
dev_t dev;
struct vnode *b_vp;
RF_ComponentLabel_t *clabel;
{
struct buf *bp;
int error;
/* get a block of the appropriate size... */
bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
bp->b_dev = dev;
/* get our ducks in a row for the write */
bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
bp->b_bcount = RF_COMPONENT_INFO_SIZE;
bp->b_flags = B_BUSY | B_WRITE;
bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
error = biowait(bp);
bp->b_flags = B_INVAL | B_AGE;
brelse(bp);
if (error) {
#if 1
printf("Failed to write RAID component info!\n");
#endif
}
return(error);
}
void
rf_markalldirty(raidPtr)
RF_Raid_t *raidPtr;
{
RF_ComponentLabel_t clabel;
int r,c;
raidPtr->mod_counter++;
for (r = 0; r < raidPtr->numRow; r++) {
for (c = 0; c < raidPtr->numCol; c++) {
if (raidPtr->Disks[r][c].status != rf_ds_failed) {
raidread_component_label(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
&clabel);
if (clabel.status == rf_ds_spared) {
/* XXX do something special...
but whatever you do, don't
try to access it!! */
} else {
#if 0
clabel.status =
raidPtr->Disks[r][c].status;
raidwrite_component_label(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
&clabel);
#endif
raidmarkdirty(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
raidPtr->mod_counter);
}
}
}
}
/* printf("Component labels marked dirty.\n"); */
#if 0
for( c = 0; c < raidPtr->numSpare ; c++) {
sparecol = raidPtr->numCol + c;
if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
/*
XXX this is where we get fancy and map this spare
into it's correct spot in the array.
*/
/*
we claim this disk is "optimal" if it's
rf_ds_used_spare, as that means it should be
directly substitutable for the disk it replaced.
We note that too...
*/
for(i=0;i<raidPtr->numRow;i++) {
for(j=0;j<raidPtr->numCol;j++) {
if ((raidPtr->Disks[i][j].spareRow ==
r) &&
(raidPtr->Disks[i][j].spareCol ==
sparecol)) {
srow = r;
scol = sparecol;
break;
}
}
}
raidread_component_label(
raidPtr->Disks[r][sparecol].dev,
raidPtr->raid_cinfo[r][sparecol].ci_vp,
&clabel);
/* make sure status is noted */
clabel.version = RF_COMPONENT_LABEL_VERSION;
clabel.mod_counter = raidPtr->mod_counter;
clabel.serial_number = raidPtr->serial_number;
clabel.row = srow;
clabel.column = scol;
clabel.num_rows = raidPtr->numRow;
clabel.num_columns = raidPtr->numCol;
clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
clabel.status = rf_ds_optimal;
raidwrite_component_label(
raidPtr->Disks[r][sparecol].dev,
raidPtr->raid_cinfo[r][sparecol].ci_vp,
&clabel);
raidmarkclean( raidPtr->Disks[r][sparecol].dev,
raidPtr->raid_cinfo[r][sparecol].ci_vp);
}
}
#endif
}
void
rf_update_component_labels(raidPtr)
RF_Raid_t *raidPtr;
{
RF_ComponentLabel_t clabel;
int sparecol;
int r,c;
int i,j;
int srow, scol;
srow = -1;
scol = -1;
/* XXX should do extra checks to make sure things really are clean,
rather than blindly setting the clean bit... */
raidPtr->mod_counter++;
for (r = 0; r < raidPtr->numRow; r++) {
for (c = 0; c < raidPtr->numCol; c++) {
if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
raidread_component_label(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
&clabel);
/* make sure status is noted */
clabel.status = rf_ds_optimal;
/* bump the counter */
clabel.mod_counter = raidPtr->mod_counter;
raidwrite_component_label(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
&clabel);
}
/* else we don't touch it.. */
}
}
for( c = 0; c < raidPtr->numSpare ; c++) {
sparecol = raidPtr->numCol + c;
if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
/*
we claim this disk is "optimal" if it's
rf_ds_used_spare, as that means it should be
directly substitutable for the disk it replaced.
We note that too...
*/
for(i=0;i<raidPtr->numRow;i++) {
for(j=0;j<raidPtr->numCol;j++) {
if ((raidPtr->Disks[i][j].spareRow ==
0) &&
(raidPtr->Disks[i][j].spareCol ==
sparecol)) {
srow = i;
scol = j;
break;
}
}
}
/* XXX shouldn't *really* need this... */
raidread_component_label(
raidPtr->Disks[0][sparecol].dev,
raidPtr->raid_cinfo[0][sparecol].ci_vp,
&clabel);
/* make sure status is noted */
raid_init_component_label(raidPtr, &clabel);
clabel.mod_counter = raidPtr->mod_counter;
clabel.row = srow;
clabel.column = scol;
clabel.status = rf_ds_optimal;
raidwrite_component_label(
raidPtr->Disks[0][sparecol].dev,
raidPtr->raid_cinfo[0][sparecol].ci_vp,
&clabel);
}
}
/* printf("Component labels updated\n"); */
}
void
rf_final_update_component_labels(raidPtr)
RF_Raid_t *raidPtr;
{
RF_ComponentLabel_t clabel;
int sparecol;
int r,c;
int i,j;
int srow, scol;
srow = -1;
scol = -1;
/* XXX should do extra checks to make sure things really are clean,
rather than blindly setting the clean bit... */
raidPtr->mod_counter++;
for (r = 0; r < raidPtr->numRow; r++) {
for (c = 0; c < raidPtr->numCol; c++) {
if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
raidread_component_label(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
&clabel);
/* make sure status is noted */
clabel.status = rf_ds_optimal;
/* bump the counter */
clabel.mod_counter = raidPtr->mod_counter;
raidwrite_component_label(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
&clabel);
if (raidPtr->parity_good == RF_RAID_CLEAN) {
raidmarkclean(
raidPtr->Disks[r][c].dev,
raidPtr->raid_cinfo[r][c].ci_vp,
raidPtr->mod_counter);
}
}
/* else we don't touch it.. */
}
}
for( c = 0; c < raidPtr->numSpare ; c++) {
sparecol = raidPtr->numCol + c;
if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
/*
we claim this disk is "optimal" if it's
rf_ds_used_spare, as that means it should be
directly substitutable for the disk it replaced.
We note that too...
*/
for(i=0;i<raidPtr->numRow;i++) {
for(j=0;j<raidPtr->numCol;j++) {
if ((raidPtr->Disks[i][j].spareRow ==
0) &&
(raidPtr->Disks[i][j].spareCol ==
sparecol)) {
srow = i;
scol = j;
break;
}
}
}
/* XXX shouldn't *really* need this... */
raidread_component_label(
raidPtr->Disks[0][sparecol].dev,
raidPtr->raid_cinfo[0][sparecol].ci_vp,
&clabel);
/* make sure status is noted */
raid_init_component_label(raidPtr, &clabel);
clabel.mod_counter = raidPtr->mod_counter;
clabel.row = srow;
clabel.column = scol;
clabel.status = rf_ds_optimal;
raidwrite_component_label(
raidPtr->Disks[0][sparecol].dev,
raidPtr->raid_cinfo[0][sparecol].ci_vp,
&clabel);
if (raidPtr->parity_good == RF_RAID_CLEAN) {
raidmarkclean( raidPtr->Disks[0][sparecol].dev,
raidPtr->raid_cinfo[0][sparecol].ci_vp,
raidPtr->mod_counter);
}
}
}
/* printf("Component labels updated\n"); */
}
void
rf_close_component(raidPtr, vp, auto_configured)
RF_Raid_t *raidPtr;
struct vnode *vp;
int auto_configured;
{
struct proc *p;
p = raidPtr->engine_thread;
if (vp != NULL) {
if (auto_configured == 1) {
VOP_CLOSE(vp, FREAD, NOCRED, 0);
vput(vp);
} else {
VOP_UNLOCK(vp, 0);
(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
}
} else {
printf("vnode was NULL\n");
}
}
void
rf_UnconfigureVnodes(raidPtr)
RF_Raid_t *raidPtr;
{
int r,c;
struct proc *p;
struct vnode *vp;
int acd;
/* We take this opportunity to close the vnodes like we should.. */
p = raidPtr->engine_thread;
for (r = 0; r < raidPtr->numRow; r++) {
for (c = 0; c < raidPtr->numCol; c++) {
printf("Closing vnode for row: %d col: %d\n", r, c);
vp = raidPtr->raid_cinfo[r][c].ci_vp;
acd = raidPtr->Disks[r][c].auto_configured;
rf_close_component(raidPtr, vp, acd);
raidPtr->raid_cinfo[r][c].ci_vp = NULL;
raidPtr->Disks[r][c].auto_configured = 0;
}
}
for (r = 0; r < raidPtr->numSpare; r++) {
printf("Closing vnode for spare: %d\n", r);
vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
rf_close_component(raidPtr, vp, acd);
raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
}
}
void
rf_ReconThread(req)
struct rf_recon_req *req;
{
int s;
RF_Raid_t *raidPtr;
s = splbio();
raidPtr = (RF_Raid_t *) req->raidPtr;
raidPtr->recon_in_progress = 1;
rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
/* XXX get rid of this! we don't need it at all.. */
RF_Free(req, sizeof(*req));
raidPtr->recon_in_progress = 0;
splx(s);
/* That's all... */
kthread_exit(0); /* does not return */
}
void
rf_RewriteParityThread(raidPtr)
RF_Raid_t *raidPtr;
{
int retcode;
int s;
raidPtr->parity_rewrite_in_progress = 1;
s = splbio();
retcode = rf_RewriteParity(raidPtr);
splx(s);
if (retcode) {
printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
} else {
/* set the clean bit! If we shutdown correctly,
the clean bit on each component label will get
set */
raidPtr->parity_good = RF_RAID_CLEAN;
}
raidPtr->parity_rewrite_in_progress = 0;
/* That's all... */
kthread_exit(0); /* does not return */
}
void
rf_CopybackThread(raidPtr)
RF_Raid_t *raidPtr;
{
int s;
raidPtr->copyback_in_progress = 1;
s = splbio();
rf_CopybackReconstructedData(raidPtr);
splx(s);
raidPtr->copyback_in_progress = 0;
/* That's all... */
kthread_exit(0); /* does not return */
}
void
rf_ReconstructInPlaceThread(req)
struct rf_recon_req *req;
{
int retcode;
int s;
RF_Raid_t *raidPtr;
s = splbio();
raidPtr = req->raidPtr;
raidPtr->recon_in_progress = 1;
retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
RF_Free(req, sizeof(*req));
raidPtr->recon_in_progress = 0;
splx(s);
/* That's all... */
kthread_exit(0); /* does not return */
}
void
rf_mountroot_hook(dev)
struct device *dev;
{
}
RF_AutoConfig_t *
rf_find_raid_components()
{
struct devnametobdevmaj *dtobdm;
struct vnode *vp;
struct disklabel label;
struct device *dv;
char *cd_name;
dev_t dev;
int error;
int i;
int good_one;
RF_ComponentLabel_t *clabel;
RF_AutoConfig_t *ac_list;
RF_AutoConfig_t *ac;
/* initialize the AutoConfig list */
ac_list = NULL;
if (raidautoconfig) {
/* we begin by trolling through *all* the devices on the system */
for (dv = alldevs.tqh_first; dv != NULL;
dv = dv->dv_list.tqe_next) {
/* we are only interested in disks... */
if (dv->dv_class != DV_DISK)
continue;
/* we don't care about floppies... */
if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
continue;
}
/* need to find the device_name_to_block_device_major stuff */
cd_name = dv->dv_cfdata->cf_driver->cd_name;
dtobdm = dev_name2blk;
while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
dtobdm++;
}
/* get a vnode for the raw partition of this disk */
dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
if (bdevvp(dev, &vp))
panic("RAID can't alloc vnode");
error = VOP_OPEN(vp, FREAD, NOCRED, 0);
if (error) {
/* "Who cares." Continue looking
for something that exists*/
vput(vp);
continue;
}
/* Ok, the disk exists. Go get the disklabel. */
error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
FREAD, NOCRED, 0);
if (error) {
/*
* XXX can't happen - open() would
* have errored out (or faked up one)
*/
printf("can't get label for dev %s%c (%d)!?!?\n",
dv->dv_xname, 'a' + RAW_PART, error);
}
/* don't need this any more. We'll allocate it again
a little later if we really do... */
VOP_CLOSE(vp, FREAD, NOCRED, 0);
vput(vp);
for (i=0; i < label.d_npartitions; i++) {
/* We only support partitions marked as RAID */
if (label.d_partitions[i].p_fstype != FS_RAID)
continue;
dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
if (bdevvp(dev, &vp))
panic("RAID can't alloc vnode");
error = VOP_OPEN(vp, FREAD, NOCRED, 0);
if (error) {
/* Whatever... */
vput(vp);
continue;
}
good_one = 0;
clabel = (RF_ComponentLabel_t *)
malloc(sizeof(RF_ComponentLabel_t),
M_RAIDFRAME, M_NOWAIT);
if (clabel == NULL) {
/* XXX CLEANUP HERE */
printf("RAID auto config: out of memory!\n");
return(NULL); /* XXX probably should panic? */
}
if (!raidread_component_label(dev, vp, clabel)) {
/* Got the label. Does it look reasonable? */
if (rf_reasonable_label(clabel) &&
(clabel->partitionSize <=
label.d_partitions[i].p_size)) {
#if DEBUG
printf("Component on: %s%c: %d\n",
dv->dv_xname, 'a'+i,
label.d_partitions[i].p_size);
rf_print_component_label(clabel);
#endif
/* if it's reasonable, add it,
else ignore it. */
ac = (RF_AutoConfig_t *)
malloc(sizeof(RF_AutoConfig_t),
M_RAIDFRAME,
M_NOWAIT);
if (ac == NULL) {
/* XXX should panic?? */
return(NULL);
}
sprintf(ac->devname, "%s%c",
dv->dv_xname, 'a'+i);
ac->dev = dev;
ac->vp = vp;
ac->clabel = clabel;
ac->next = ac_list;
ac_list = ac;
good_one = 1;
}
}
if (!good_one) {
/* cleanup */
free(clabel, M_RAIDFRAME);
VOP_CLOSE(vp, FREAD, NOCRED, 0);
vput(vp);
}
}
}
}
return(ac_list);
}
static int
rf_reasonable_label(clabel)
RF_ComponentLabel_t *clabel;
{
if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
(clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
((clabel->clean == RF_RAID_CLEAN) ||
(clabel->clean == RF_RAID_DIRTY)) &&
clabel->row >=0 &&
clabel->column >= 0 &&
clabel->num_rows > 0 &&
clabel->num_columns > 0 &&
clabel->row < clabel->num_rows &&
clabel->column < clabel->num_columns &&
clabel->blockSize > 0 &&
clabel->numBlocks > 0) {
/* label looks reasonable enough... */
return(1);
}
return(0);
}
void
rf_print_component_label(clabel)
RF_ComponentLabel_t *clabel;
{
printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
clabel->row, clabel->column,
clabel->num_rows, clabel->num_columns);
printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
clabel->version, clabel->serial_number,
clabel->mod_counter);
printf(" Clean: %s Status: %d\n",
clabel->clean ? "Yes" : "No", clabel->status );
printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
(char) clabel->parityConfig, clabel->blockSize,
clabel->numBlocks);
printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
printf(" Contains root partition: %s\n",
clabel->root_partition ? "Yes" : "No" );
printf(" Last configured as: raid%d\n", clabel->last_unit );
#if 0
printf(" Config order: %d\n", clabel->config_order);
#endif
}
RF_ConfigSet_t *
rf_create_auto_sets(ac_list)
RF_AutoConfig_t *ac_list;
{
RF_AutoConfig_t *ac;
RF_ConfigSet_t *config_sets;
RF_ConfigSet_t *cset;
RF_AutoConfig_t *ac_next;
config_sets = NULL;
/* Go through the AutoConfig list, and figure out which components
belong to what sets. */
ac = ac_list;
while(ac!=NULL) {
/* we're going to putz with ac->next, so save it here
for use at the end of the loop */
ac_next = ac->next;
if (config_sets == NULL) {
/* will need at least this one... */
config_sets = (RF_ConfigSet_t *)
malloc(sizeof(RF_ConfigSet_t),
M_RAIDFRAME, M_NOWAIT);
if (config_sets == NULL) {
panic("rf_create_auto_sets: No memory!\n");
}
/* this one is easy :) */
config_sets->ac = ac;
config_sets->next = NULL;
config_sets->rootable = 0;
ac->next = NULL;
} else {
/* which set does this component fit into? */
cset = config_sets;
while(cset!=NULL) {
if (rf_does_it_fit(cset, ac)) {
/* looks like it matches */
ac->next = cset->ac;
cset->ac = ac;
break;
}
cset = cset->next;
}
if (cset==NULL) {
/* didn't find a match above... new set..*/
cset = (RF_ConfigSet_t *)
malloc(sizeof(RF_ConfigSet_t),
M_RAIDFRAME, M_NOWAIT);
if (cset == NULL) {
panic("rf_create_auto_sets: No memory!\n");
}
cset->ac = ac;
ac->next = NULL;
cset->next = config_sets;
cset->rootable = 0;
config_sets = cset;
}
}
ac = ac_next;
}
return(config_sets);
}
static int
rf_does_it_fit(cset, ac)
RF_ConfigSet_t *cset;
RF_AutoConfig_t *ac;
{
RF_ComponentLabel_t *clabel1, *clabel2;
/* If this one matches the *first* one in the set, that's good
enough, since the other members of the set would have been
through here too... */
/* note that we are not checking partitionSize here..
Note that we are also not checking the mod_counters here.
If everything else matches execpt the mod_counter, that's
good enough for this test. We will deal with the mod_counters
a little later in the autoconfiguration process.
(clabel1->mod_counter == clabel2->mod_counter) &&
*/
clabel1 = cset->ac->clabel;
clabel2 = ac->clabel;
if ((clabel1->version == clabel2->version) &&
(clabel1->serial_number == clabel2->serial_number) &&
(clabel1->num_rows == clabel2->num_rows) &&
(clabel1->num_columns == clabel2->num_columns) &&
(clabel1->sectPerSU == clabel2->sectPerSU) &&
(clabel1->SUsPerPU == clabel2->SUsPerPU) &&
(clabel1->SUsPerRU == clabel2->SUsPerRU) &&
(clabel1->parityConfig == clabel2->parityConfig) &&
(clabel1->maxOutstanding == clabel2->maxOutstanding) &&
(clabel1->blockSize == clabel2->blockSize) &&
(clabel1->numBlocks == clabel2->numBlocks) &&
(clabel1->autoconfigure == clabel2->autoconfigure) &&
(clabel1->root_partition == clabel2->root_partition) &&
(clabel1->last_unit == clabel2->last_unit) &&
(clabel1->config_order == clabel2->config_order)) {
/* if it get's here, it almost *has* to be a match */
} else {
/* it's not consistent with somebody in the set..
punt */
return(0);
}
/* all was fine.. it must fit... */
return(1);
}
int
rf_have_enough_components(cset)
RF_ConfigSet_t *cset;
{
RF_AutoConfig_t *ac;
RF_AutoConfig_t *auto_config;
RF_ComponentLabel_t *clabel;
int r,c;
int num_rows;
int num_cols;
int num_missing;
/* check to see that we have enough 'live' components
of this set. If so, we can configure it if necessary */
num_rows = cset->ac->clabel->num_rows;
num_cols = cset->ac->clabel->num_columns;
/* XXX Check for duplicate components!?!?!? */
num_missing = 0;
auto_config = cset->ac;
for(r=0; r<num_rows; r++) {
for(c=0; c<num_cols; c++) {
ac = auto_config;
while(ac!=NULL) {
if (ac->clabel==NULL) {
/* big-time bad news. */
goto fail;
}
if ((ac->clabel->row == r) &&
(ac->clabel->column == c)) {
/* it's this one... */
#if DEBUG
printf("Found: %s at %d,%d\n",
ac->devname,r,c);
#endif
break;
}
ac=ac->next;
}
if (ac==NULL) {
/* Didn't find one here! */
num_missing++;
}
}
}
clabel = cset->ac->clabel;
if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
((clabel->parityConfig == '1') && (num_missing > 1)) ||
((clabel->parityConfig == '4') && (num_missing > 1)) ||
((clabel->parityConfig == '5') && (num_missing > 1))) {
/* XXX this needs to be made *much* more general */
/* Too many failures */
return(0);
}
/* otherwise, all is well, and we've got enough to take a kick
at autoconfiguring this set */
return(1);
fail:
return(0);
}
void
rf_create_configuration(ac,config,raidPtr)
RF_AutoConfig_t *ac;
RF_Config_t *config;
RF_Raid_t *raidPtr;
{
RF_ComponentLabel_t *clabel;
int i;
clabel = ac->clabel;
/* 1. Fill in the common stuff */
config->numRow = clabel->num_rows;
config->numCol = clabel->num_columns;
config->numSpare = 0; /* XXX should this be set here? */
config->sectPerSU = clabel->sectPerSU;
config->SUsPerPU = clabel->SUsPerPU;
config->SUsPerRU = clabel->SUsPerRU;
config->parityConfig = clabel->parityConfig;
/* XXX... */
strcpy(config->diskQueueType,"fifo");
config->maxOutstandingDiskReqs = clabel->maxOutstanding;
config->layoutSpecificSize = 0; /* XXX ?? */
while(ac!=NULL) {
/* row/col values will be in range due to the checks
in reasonable_label() */
strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
ac->devname);
ac = ac->next;
}
for(i=0;i<RF_MAXDBGV;i++) {
config->debugVars[i][0] = NULL;
}
}
int
rf_set_autoconfig(raidPtr, new_value)
RF_Raid_t *raidPtr;
int new_value;
{
RF_ComponentLabel_t clabel;
struct vnode *vp;
dev_t dev;
int row, column;
raidPtr->autoconfigure = new_value;
for(row=0; row<raidPtr->numRow; row++) {
for(column=0; column<raidPtr->numCol; column++) {
dev = raidPtr->Disks[row][column].dev;
vp = raidPtr->raid_cinfo[row][column].ci_vp;
raidread_component_label(dev, vp, &clabel);
clabel.autoconfigure = new_value;
raidwrite_component_label(dev, vp, &clabel);
}
}
return(new_value);
}
int
rf_set_rootpartition(raidPtr, new_value)
RF_Raid_t *raidPtr;
int new_value;
{
RF_ComponentLabel_t clabel;
struct vnode *vp;
dev_t dev;
int row, column;
raidPtr->root_partition = new_value;
for(row=0; row<raidPtr->numRow; row++) {
for(column=0; column<raidPtr->numCol; column++) {
dev = raidPtr->Disks[row][column].dev;
vp = raidPtr->raid_cinfo[row][column].ci_vp;
raidread_component_label(dev, vp, &clabel);
clabel.root_partition = new_value;
raidwrite_component_label(dev, vp, &clabel);
}
}
return(new_value);
}
void
rf_release_all_vps(cset)
RF_ConfigSet_t *cset;
{
RF_AutoConfig_t *ac;
ac = cset->ac;
while(ac!=NULL) {
/* Close the vp, and give it back */
if (ac->vp) {
VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
vput(ac->vp);
}
ac = ac->next;
}
}
void
rf_cleanup_config_set(cset)
RF_ConfigSet_t *cset;
{
RF_AutoConfig_t *ac;
RF_AutoConfig_t *next_ac;
ac = cset->ac;
while(ac!=NULL) {
next_ac = ac->next;
/* nuke the label */
free(ac->clabel, M_RAIDFRAME);
/* cleanup the config structure */
free(ac, M_RAIDFRAME);
/* "next.." */
ac = next_ac;
}
/* and, finally, nuke the config set */
free(cset, M_RAIDFRAME);
}
void
raid_init_component_label(raidPtr, clabel)
RF_Raid_t *raidPtr;
RF_ComponentLabel_t *clabel;
{
/* current version number */
clabel->version = RF_COMPONENT_LABEL_VERSION;
clabel->serial_number = raidPtr->serial_number;
clabel->mod_counter = raidPtr->mod_counter;
clabel->num_rows = raidPtr->numRow;
clabel->num_columns = raidPtr->numCol;
clabel->clean = RF_RAID_DIRTY; /* not clean */
clabel->status = rf_ds_optimal; /* "It's good!" */
clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
clabel->blockSize = raidPtr->bytesPerSector;
clabel->numBlocks = raidPtr->sectorsPerDisk;
/* XXX not portable */
clabel->parityConfig = raidPtr->Layout.map->parityConfig;
clabel->maxOutstanding = raidPtr->maxOutstanding;
clabel->autoconfigure = raidPtr->autoconfigure;
clabel->root_partition = raidPtr->root_partition;
clabel->last_unit = raidPtr->raidid;
clabel->config_order = raidPtr->config_order;
}
int
rf_auto_config_set(cset,unit)
RF_ConfigSet_t *cset;
int *unit;
{
RF_Raid_t *raidPtr;
RF_Config_t *config;
int raidID;
int retcode;
printf("RAID autoconfigure\n");
retcode = 0;
*unit = -1;
/* 1. Create a config structure */
config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
M_RAIDFRAME,
M_NOWAIT);
if (config==NULL) {
printf("Out of mem!?!?\n");
/* XXX do something more intelligent here. */
return(1);
}
memset(config, 0, sizeof(RF_Config_t));
/* XXX raidID needs to be set correctly.. */
/*
2. Figure out what RAID ID this one is supposed to live at
See if we can get the same RAID dev that it was configured
on last time..
*/
raidID = cset->ac->clabel->last_unit;
if ((raidID < 0) || (raidID >= numraid)) {
/* let's not wander off into lala land. */
raidID = numraid - 1;
}
if (raidPtrs[raidID]->valid != 0) {
/*
Nope... Go looking for an alternative...
Start high so we don't immediately use raid0 if that's
not taken.
*/
for(raidID = numraid; raidID >= 0; raidID--) {
if (raidPtrs[raidID]->valid == 0) {
/* can use this one! */
break;
}
}
}
if (raidID < 0) {
/* punt... */
printf("Unable to auto configure this set!\n");
printf("(Out of RAID devs!)\n");
return(1);
}
printf("Configuring raid%d:\n",raidID);
raidPtr = raidPtrs[raidID];
/* XXX all this stuff should be done SOMEWHERE ELSE! */
raidPtr->raidid = raidID;
raidPtr->openings = RAIDOUTSTANDING;
/* 3. Build the configuration structure */
rf_create_configuration(cset->ac, config, raidPtr);
/* 4. Do the configuration */
retcode = rf_Configure(raidPtr, config, cset->ac);
if (retcode == 0) {
raidinit(raidPtrs[raidID]);
rf_markalldirty(raidPtrs[raidID]);
raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
if (cset->ac->clabel->root_partition==1) {
/* everything configured just fine. Make a note
that this set is eligible to be root. */
cset->rootable = 1;
/* XXX do this here? */
raidPtrs[raidID]->root_partition = 1;
}
}
/* 5. Cleanup */
free(config, M_RAIDFRAME);
*unit = raidID;
return(retcode);
}