NetBSD/sys/arch/arm32/footbridge/ebsa285_machdep.c

875 lines
25 KiB
C

/* $NetBSD: ebsa285_machdep.c,v 1.11 2000/03/24 17:05:31 ws Exp $ */
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependant functions for kernel setup for EBSA285 core architecture
* using cyclone firmware
*
* Created : 24/11/97
*/
#include "opt_ddb.h"
#include "opt_pmap_debug.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <vm/vm_kern.h>
#include <machine/bootconfig.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/irqhandler.h>
#include <machine/pte.h>
#include <machine/undefined.h>
#include <arm32/footbridge/cyclone_boot.h>
#include <arm32/footbridge/dc21285mem.h>
#include <arm32/footbridge/dc21285reg.h>
#include "opt_ipkdb.h"
#include "isa.h"
#if NISA > 0
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#endif
#define VERBOSE_INIT_ARM
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = DC21285_ROM_BASE;
u_int dc21285_fclk = FCLK;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#ifdef IPKDB
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
struct ebsaboot ebsabootinfo;
BootConfig bootconfig; /* Boot config storage */
static char bootargs[MAX_BOOT_STRING + 1];
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
vm_offset_t pagetables_start;
int physmem = 0;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_VMDATA 2 /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
/* Prototypes */
void consinit __P((void));
int fcomcnattach __P((u_int iobase, int rate,tcflag_t cflag));
int fcomcndetach __P((void));
void isa_cats_init __P((u_int iobase, u_int membase));
void map_section __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
int cacheable));
void map_pagetable __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry_nc __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry_ro __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
vm_size_t map_chunk __P((vm_offset_t pd, vm_offset_t pt, vm_offset_t va,
vm_offset_t pa, vm_size_t size, u_int acc,
u_int flg));
void pmap_bootstrap __P((vm_offset_t kernel_l1pt,
pv_addr_t kernel_ptpt));
void process_kernel_args __P((char *));
void data_abort_handler __P((trapframe_t *frame));
void prefetch_abort_handler __P((trapframe_t *frame));
void undefinedinstruction_bounce __P((trapframe_t *frame));
void zero_page_readonly __P((void));
void zero_page_readwrite __P((void));
extern void configure __P((void));
extern pt_entry_t *pmap_pte __P((pmap_t pmap, vm_offset_t va));
extern void db_machine_init __P((void));
extern void parse_mi_bootargs __P((char *args));
extern void dumpsys __P((void));
/* A load of console goo. */
#include "vga.h"
#if (NVGA > 0)
#include <dev/ic/mc6845reg.h>
#include <dev/ic/pcdisplayvar.h>
#include <dev/ic/vgareg.h>
#include <dev/ic/vgavar.h>
#endif
#include "pckbc.h"
#if (NPCKBC > 0)
#include <dev/ic/pckbcvar.h>
#endif
#include "com.h"
#if (NCOM > 0)
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#ifndef CONCOMADDR
#define CONCOMADDR 0x3f8
#endif
#endif
#ifndef CONSDEVNAME
#define CONSDEVNAME "vga"
#endif
#define CONSPEED B38400
#ifndef CONSPEED
#define CONSPEED B9600 /* TTYDEF_SPEED */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(howto, bootstr)
int howto;
char *bootstr;
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
/* cnpollc(1);*/
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
* It looks like syslogd is getting woken up only to find that it cannot
* page part of the binary in as the filesystem has been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/*
* Mapping table for core kernel memory. This memory is mapped at init
* time with section mappings.
*/
struct l1_sec_map {
vm_offset_t va;
vm_offset_t pa;
vm_size_t size;
int flags;
} l1_sec_table[] = {
/* Map 1MB for CSR space */
{ DC21285_ARMCSR_VBASE, DC21285_ARMCSR_BASE,
DC21285_ARMCSR_VSIZE, 0 },
/* Map 1MB for fast cache cleaning space */
{ DC21285_CACHE_FLUSH_VBASE, DC28285_SA_CACHE_FLUSH_BASE,
DC21285_CACHE_FLUSH_VSIZE, 1 },
/* Map 1MB for PCI IO space */
{ DC21285_PCI_IO_VBASE, DC21285_PCI_IO_BASE,
DC21285_PCI_IO_VSIZE, 0 },
/* Map 1MB for PCI IACK space */
{ DC21285_PCI_IACK_VBASE, DC21285_PCI_IACK_SPECIAL,
DC21285_PCI_IACK_VSIZE, 0 },
/* Map 16MB of type 1 PCI config access */
{ DC21285_PCI_TYPE_1_CONFIG_VBASE, DC21285_PCI_TYPE_1_CONFIG,
DC21285_PCI_TYPE_1_CONFIG_VSIZE, 0 },
/* Map 16MB of type 0 PCI config access */
{ DC21285_PCI_TYPE_0_CONFIG_VBASE, DC21285_PCI_TYPE_0_CONFIG,
DC21285_PCI_TYPE_0_CONFIG_VSIZE, 0 },
/* Map 1MB of 32 bit PCI address space for ISA MEM accesses via PCI */
{ DC21285_PCI_ISA_MEM_VBASE, DC21285_PCI_MEM_BASE,
DC21285_PCI_ISA_MEM_VSIZE, 0 },
{ 0, 0, 0, 0 }
};
/*
* u_int initarm(struct ebsaboot *bootinfo)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responcible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(bootinfo)
struct ebsaboot *bootinfo;
{
int loop;
int loop1;
u_int logical;
u_int l1pagetable;
u_int l2pagetable;
extern char page0[], page0_end[];
struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
pv_addr_t kernel_l1pt;
pv_addr_t kernel_ptpt;
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
set_cpufuncs();
/* Copy the boot configuration structure */
ebsabootinfo = *bootinfo;
if (ebsabootinfo.bt_fclk >= 50000000
&& ebsabootinfo.bt_fclk <= 66000000)
dc21285_fclk = ebsabootinfo.bt_fclk;
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independant */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = ebsabootinfo.bt_memstart;
bootconfig.dram[0].pages = (ebsabootinfo.bt_memend
- ebsabootinfo.bt_memstart) / NBPG;
/*
* Initialise the diagnostic serial console
* This allows a means of generating output during initarm().
* Once all the memory map changes are complete we can call consinit()
* and not have to worry about things moving.
*/
/* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode);*/
/* Talk to the user */
printf("NetBSD/arm32 booting ...\n");
if (ebsabootinfo.bt_magic != BT_MAGIC_NUMBER_EBSA
&& ebsabootinfo.bt_magic != BT_MAGIC_NUMBER_CATS)
panic("Incompatible magic number passed in boot args\n");
/* {
int loop;
for (loop = 0; loop < 8; ++loop) {
printf("%08x\n", *(((int *)bootinfo)+loop));
}
}*/
/*
* Ok we have the following memory map
*
* virtual address == physical address apart from the areas:
* 0x00000000 -> 0x000fffff which is mapped to
* top 1MB of physical memory
* 0x00100000 -> 0x0fffffff which is mapped to
* physical addresses 0x00100000 -> 0x0fffffff
* 0x10000000 -> 0x1fffffff which is mapped to
* physical addresses 0x00000000 -> 0x0fffffff
* 0x20000000 -> 0xefffffff which is mapped to
* physical addresses 0x20000000 -> 0xefffffff
* 0xf0000000 -> 0xf03fffff which is mapped to
* physical addresses 0x00000000 -> 0x003fffff
*
* This means that the kernel is mapped suitably for continuing
* execution, all I/O is mapped 1:1 virtual to physical and
* physical memory is accessable.
*
* The initarm() has the responcibility for creating the kernel
* page tables.
* It must also set up various memory pointers that are used
* by pmap etc.
*/
/*
* Examine the boot args string for options we need to know about
* now.
*/
process_kernel_args((char *)ebsabootinfo.bt_args);
printf("initarm: Configuring system ...\n");
/*
* Set up the variables that define the availablilty of
* physical memory
*/
physical_start = ebsabootinfo.bt_memstart;
physical_freestart = physical_start;
physical_end = ebsabootinfo.bt_memend;
physical_freeend = physical_end;
free_pages = (physical_end - physical_start) / NBPG;
physmem = (physical_end - physical_start) / NBPG;
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
/*
* Ok the kernel occupies the bottom of physical memory.
* The first free page after the kernel can be found in
* ebsabootinfo->bt_memavail
* We now need to allocate some fixed page tables to get the kernel
* going.
* We allocate one page directory and a number page tables and store
* the physical addresses in the kernel_pt_table array.
*
* Ok the next bit of physical allocation may look complex but it is
* simple really. I have done it like this so that no memory gets
* wasted during the allocation of various pages and tables that are
* all different sizes.
* The start addresses will be page aligned.
* We allocate the kernel page directory on the first free 16KB boundry
* we find.
* We allocate the kernel page tables on the first 4KB boundry we find.
* Since we allocate at least 3 L2 pagetables we know that we must
* encounter at least one 16KB aligned address.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
/* Update the address of the first free page of physical memory */
physical_freestart = ebsabootinfo.bt_memavail;
free_pages -= (physical_freestart - physical_start) / NBPG;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
(var) = physical_freestart; \
physical_freestart += ((np) * NBPG); \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * NBPG));
loop1 = 0;
kernel_l1pt.pv_pa = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freestart & (PD_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
} else {
alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
++loop1;
}
}
#ifdef DIAGNOSTIC
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory\n");
#endif
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate a page for the page table to map kernel page tables*/
valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table\n");
#endif
/*
* Now we start consturction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
map_pagetable(l1pagetable, 0x00000000,
kernel_pt_table[KERNEL_PT_SYS]);
map_pagetable(l1pagetable, KERNEL_BASE,
kernel_pt_table[KERNEL_PT_KERNEL]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
kernel_pt_table[KERNEL_PT_VMDATA + loop]);
map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
kernel_ptpt.pv_pa);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL];
if (N_GETMAGIC(kernexec[0]) != ZMAGIC)
panic("Illegal kernel format\n");
else {
extern int end;
logical = map_chunk(0, l2pagetable, KERNEL_TEXT_BASE,
physical_start, kernexec->a_text,
AP_KR, PT_CACHEABLE);
logical += map_chunk(0, l2pagetable, KERNEL_TEXT_BASE + logical,
physical_start + logical, kernexec->a_data,
AP_KRW, PT_CACHEABLE);
logical += map_chunk(0, l2pagetable, KERNEL_TEXT_BASE + logical,
physical_start + logical, kernexec->a_bss,
AP_KRW, PT_CACHEABLE);
logical += map_chunk(0, l2pagetable, KERNEL_TEXT_BASE + logical,
physical_start + logical, kernexec->a_syms + sizeof(int)
+ *(u_int *)((int)&end + kernexec->a_syms + sizeof(int)),
AP_KRW, PT_CACHEABLE);
}
/*
* PATCH PATCH ...
*
* Fixup the first word of the kernel to be the instruction
* add pc, pc, #0x41000000
*
* This traps the case where the CPU core resets due to bus contention
* on a prototype CATS system and will reboot into the firmware.
*/
*((u_int *)KERNEL_TEXT_BASE) = 0xe28ff441;
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the boot arguments page */
map_entry_ro(l2pagetable, ebsabootinfo.bt_vargp, ebsabootinfo.bt_pargp);
/* Map the stack pages */
map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
PD_SIZE, AP_KRW, 0);
/* Map the page table that maps the kernel pages */
map_entry_nc(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa);
/*
* Map entries in the page table used to map PTE's
* Basically every kernel page table gets mapped here
*/
/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
l2pagetable = kernel_ptpt.pv_pa;
map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_KERNEL]);
map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
kernel_ptpt.pv_pa);
map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
(loop * 0x00400000)) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/*
* Map the system page in the kernel page table for the bottom 1Meg
* of the virtual memory map.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_SYS];
map_entry(l2pagetable, 0x00000000, systempage.pv_pa);
/* Map the core memory needed before autoconfig */
loop = 0;
while (l1_sec_table[loop].size) {
vm_size_t sz;
#ifdef VERBOSE_INIT_ARM
printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
l1_sec_table[loop].va);
#endif
for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
map_section(l1pagetable, l1_sec_table[loop].va + sz,
l1_sec_table[loop].pa + sz,
l1_sec_table[loop].flags);
++loop;
}
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page tables.
*/
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("switching to new L1 page table\n");
#endif
setttb(kernel_l1pt.pv_pa);
/*
* Ok the DC21285 CSR registers have just moved.
* Detach the diagnostic serial port and reattach at the new address.
*/
/* fcomcndetach();*/
/*
* XXX this should only be done in main() but it useful to
* have output earlier ...
*/
consinit();
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
/* Right set up the vectors at the bottom of page 0 */
memcpy((char *)0x00000000, page0, page0_end - page0);
/* We have modified a text page so sync the icache */
cpu_cache_syncI();
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
printf("init subsystems: stacks ");
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
printf("vectors ");
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* At last !
* We now have the kernel in physical memory from the bottom upwards.
* Kernel page tables are physically above this.
* The kernel is mapped to KERNEL_TEXT_BASE
* The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
* The page tables are mapped to 0xefc00000
*/
/* Initialise the undefined instruction handlers */
printf("undefined ");
undefined_init();
/* Boot strap pmap telling it where the kernel page table is */
printf("pmap ");
pmap_bootstrap(kernel_l1pt.pv_va, kernel_ptpt);
/* Setup the IRQ system */
printf("irq ");
irq_init();
printf("done.\n");
#ifdef IPKDB
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif
#ifdef DDB
printf("ddb: ");
db_machine_init();
{
extern int end;
extern int *esym;
ddb_init(*(int *)&end, ((int *)&end) + 1, esym);
}
if (boothowto & RB_KDB)
Debugger();
#endif
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void
process_kernel_args(args)
char *args;
{
boothowto = 0;
/* Make a local copy of the bootargs */
strncpy(bootargs, args, MAX_BOOT_STRING);
args = bootargs;
boot_file = bootargs;
/* Skip the kernel image filename */
while (*args != ' ' && *args != 0)
++args;
if (*args != 0)
*args++ = 0;
while (*args == ' ')
++args;
boot_args = args;
printf("bootfile: %s\n", boot_file);
printf("bootargs: %s\n", boot_args);
parse_mi_bootargs(boot_args);
}
#if 0
void
arm32_cachectl(va, len, flags)
vm_offset_t va;
int len;
int flags;
{
pt_entry_t *ptep, pte;
int loop;
vm_offset_t addr;
/* printf("arm32_cachectl(%x,%x,%x)\n", va, len, flags);*/
if (flags & 1) {
addr = va;
loop = len;
while (loop > 0) {
ptep = vtopte(addr & (~PGOFSET));
pte = *ptep;
*ptep = (pte & ~(PT_C | PT_B)) | (flags & (PT_C | PT_B));
loop -= NBPG;
addr += NBPG;
}
tlb_flush();
}
cpu_cache_purgeD_rng(va, len);
}
#endif
extern struct bus_space footbridge_pci_io_bs_tag;
extern struct bus_space footbridge_pci_mem_bs_tag;
void footbridge_pci_bs_tag_init __P((void));
void
consinit(void)
{
static int consinit_called = 0;
char *console = CONSDEVNAME;
if (consinit_called != 0)
return;
consinit_called = 1;
#if NISA > 0
/* Initialise the ISA subsystem early ... */
isa_cats_init(DC21285_PCI_IO_VBASE, DC21285_PCI_ISA_MEM_VBASE);
#endif
footbridge_pci_bs_tag_init();
get_bootconf_option(boot_args, "console", BOOTOPT_TYPE_STRING,
&console);
if (strncmp(console, "fcom", 4) == 0
|| strncmp(console, "diag", 4) == 0)
fcomcnattach(DC21285_ARMCSR_VBASE, comcnspeed, comcnmode);
#if (NVGA > 0)
else if (strncmp(console, "vga", 3) == 0) {
vga_cnattach(&footbridge_pci_io_bs_tag,
&footbridge_pci_mem_bs_tag, - 1, 0);
#if (NPCKBC > 0)
pckbc_cnattach(&isa_io_bs_tag, IO_KBD, PCKBC_KBD_SLOT);
#endif /* NPCKBC */
}
#endif /* NVGA */
#if (NCOM > 0)
else if (strncmp(console, "com", 3) == 0) {
if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
COM_FREQ, comcnmode))
panic("can't init serial console @%x", CONCOMADDR);
}
#endif
/* Don't know what console was requested so use the fall back. */
else
fcomcnattach(DC21285_ARMCSR_VBASE, comcnspeed, comcnmode);
}
/* End of ebsa285_machdep.c */