NetBSD/sys/compat/ibcs2/ibcs2_misc.c

2090 lines
42 KiB
C

/*
* Copyright (c) 1994 Scott Bartram
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: sun_misc.c,v 1.16 93/04/07 02:46:27 torek Exp
*
* @(#)sun_misc.c 8.1 (Berkeley) 6/18/93
* $Id: ibcs2_misc.c,v 1.2 1994/09/05 01:29:03 mycroft Exp $
*/
/*
* IBCS2 compatibility module.
*
* IBCS2 system calls that are implemented differently in BSD are
* handled here.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/dir.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/filedesc.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/reboot.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/vnode.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <sys/utsname.h>
#include <sys/unistd.h>
#include <netinet/in.h>
#include <miscfs/specfs/specdev.h>
#include <vm/vm.h>
#include <sys/sysctl.h> /* must be included after vm.h */
#include <i386/include/reg.h>
#include <compat/ibcs2/ibcs2_types.h>
#include <compat/ibcs2/ibcs2_dirent.h>
#include <compat/ibcs2/ibcs2_fcntl.h>
#include <compat/ibcs2/ibcs2_signal.h>
#include <compat/ibcs2/ibcs2_stat.h>
#include <compat/ibcs2/ibcs2_statfs.h>
#include <compat/ibcs2/ibcs2_time.h>
#include <compat/ibcs2/ibcs2_unistd.h>
#include <compat/ibcs2/ibcs2_ustat.h>
#include <compat/ibcs2/ibcs2_utsname.h>
#ifdef DEBUG_IBCS2
#define DPRINTF(s) printf s
#else
#define DPRINTF(s)
#endif
#define szsigcode (esigcode - sigcode)
#define STACK_ALLOC() ALIGN(PS_STRINGS - szsigcode - STACKGAPLEN)
#define NOSIG (-1)
extern char sigcode[], esigcode[];
static int ibcs2bsd_sigtbl[IBCS2_NSIG] = {
NOSIG, /* 0 */
SIGHUP, /* 1 */
SIGINT, /* 2 */
SIGQUIT, /* 3 */
SIGILL, /* 4 */
SIGTRAP, /* 5 */
SIGABRT, /* 6 */
SIGEMT, /* 7 */
SIGFPE, /* 8 */
SIGKILL, /* 9 */
SIGBUS, /* 10 */
SIGSEGV, /* 11 */
SIGSYS, /* 12 */
SIGPIPE, /* 13 */
SIGALRM, /* 14 */
SIGTERM, /* 15 */
SIGUSR1, /* 16 */
SIGUSR2, /* 17 */
SIGCHLD, /* 18 */
NOSIG, /* 19 - SIGPWR */
SIGWINCH, /* 20 */
NOSIG, /* 21 */
NOSIG, /* 22 - SIGPOLL */
SIGSTOP, /* 23 */
SIGTSTP, /* 24 */
SIGCONT, /* 25 */
SIGTTIN, /* 26 */
SIGTTOU, /* 27 */
NOSIG, /* 28 */
NOSIG, /* 29 */
NOSIG, /* 30 */
NOSIG, /* 31 */
};
static int bsd2ibcs_sigtbl[NSIG] = {
NOSIG, /* 0 */
IBCS2_SIGHUP, /* 1 */
IBCS2_SIGINT, /* 2 */
IBCS2_SIGQUIT, /* 3 */
IBCS2_SIGILL, /* 4 */
IBCS2_SIGTRAP, /* 5 */
IBCS2_SIGABRT, /* 6 */
IBCS2_SIGEMT, /* 7 */
IBCS2_SIGFPE, /* 8 */
IBCS2_SIGKILL, /* 9 */
IBCS2_SIGBUS, /* 10 */
IBCS2_SIGSEGV, /* 11 */
IBCS2_SIGSYS, /* 12 */
IBCS2_SIGPIPE, /* 13 */
IBCS2_SIGALRM, /* 14 */
IBCS2_SIGTERM, /* 15 */
NOSIG, /* 16 */
IBCS2_SIGSTOP, /* 17 */
IBCS2_SIGTSTP, /* 18 */
IBCS2_SIGCONT, /* 19 */
IBCS2_SIGCLD, /* 20 */
IBCS2_SIGTTIN, /* 21 */
IBCS2_SIGTTOU, /* 22 */
NOSIG, /* 23 */
NOSIG, /* 24 */
NOSIG, /* 25 */
NOSIG, /* 26 */
NOSIG, /* 27 */
IBCS2_SIGWINCH, /* 28 */
NOSIG, /* 29 */
IBCS2_SIGUSR1, /* 30 */
IBCS2_SIGUSR2, /* 31 */
};
static int
ibcs2bsd_sig(sig)
int sig;
{
if (sig < 1 || sig >= IBCS2_NSIG)
return NOSIG;
else
return ibcs2bsd_sigtbl[sig];
}
int
bsd2ibcs_sig(sig)
int sig;
{
if (sig < 1 || sig >= NSIG)
return NOSIG;
else
return bsd2ibcs_sigtbl[sig];
}
static sigset_t
cvt_sigmask(mask, sigtbl)
sigset_t mask;
int sigtbl[];
{
int i, newmask;
for (i = 0, newmask = 0; i < NSIG; i++)
if ((sigtbl[i] != NOSIG) && (mask & (1 << i)))
newmask |= (1 << (sigtbl[i] - 1));
return newmask;
}
struct ibcs2_sigsys_args {
int sig;
void (*fp)();
};
int
ibcs2_sigsys(p, uap, retval)
struct proc *p;
struct ibcs2_sigsys_args *uap;
int *retval;
{
int error;
int nsig = ibcs2bsd_sig(IBCS2_SIGNO(uap->sig));
if (nsig == NOSIG) {
if (IBCS2_SIGCALL(uap->sig) == IBCS2_SIGNAL_MASK
|| IBCS2_SIGCALL(uap->sig) == IBCS2_SIGSET_MASK)
*retval = (int)IBCS2_SIG_ERR;
return EINVAL;
}
switch (IBCS2_SIGCALL(uap->sig)) {
/*
* sigset is identical to signal() except that SIG_HOLD is allowed as
* an action and we don't set the bit in the ibcs_sigflags field.
*/
case IBCS2_SIGSET_MASK:
if (uap->fp == IBCS2_SIG_HOLD) {
struct sigprocmask_args {
int how;
sigset_t mask;
} sa;
sa.how = SIG_BLOCK;
sa.mask = sigmask(nsig);
return sigprocmask(p, &sa, retval);
}
/* else fall through */
case IBCS2_SIGNAL_MASK:
{
struct sigaction *sap, *osap;
struct sigaction_args {
int sig;
struct sigaction *sa;
struct sigaction *osa;
} sa_args;
sap = (struct sigaction *)STACK_ALLOC();
osap = &sap[1];
sa_args.sig = nsig;
sa_args.sa = sap;
sa_args.osa = osap;
sa_args.sa->sa_handler = uap->fp;
sa_args.sa->sa_mask = (sigset_t)0;
sa_args.sa->sa_flags = 0;
#if 0
if (sa_args.sig != SIGALRM)
sa_args.sa->sa_flags = SA_RESTART;
#endif
error = sigaction(p, &sa_args, retval);
if (error) {
DPRINTF(("signal: sigaction failed: %d\n",
error));
*retval = (int)IBCS2_SIG_ERR;
return error;
}
*retval = (int)sa_args.osa->sa_handler;
if (IBCS2_SIGCALL(uap->sig) == IBCS2_SIGNAL_MASK)
p->p_md.ibcs_sigflags |= sigmask(nsig);
return 0;
}
case IBCS2_SIGHOLD_MASK:
{
struct sigprocmask_args {
int how;
sigset_t mask;
} sa;
sa.how = SIG_BLOCK;
sa.mask = sigmask(nsig);
return sigprocmask(p, &sa, retval);
}
case IBCS2_SIGRELSE_MASK:
{
struct sigprocmask_args {
int how;
sigset_t mask;
} sa;
sa.how = SIG_UNBLOCK;
sa.mask = sigmask(nsig);
return sigprocmask(p, &sa, retval);
}
case IBCS2_SIGIGNORE_MASK:
{
struct sigaction *sap;
struct sigaction_args {
int sig;
struct sigaction *sa;
struct sigaction *osa;
} sa_args;
sap = (struct sigaction *)STACK_ALLOC();
sa_args.sig = nsig;
sa_args.sa = sap;
sa_args.osa = NULL;
sa_args.sa->sa_handler = SIG_IGN;
sa_args.sa->sa_mask = (sigset_t)0;
sa_args.sa->sa_flags = 0;
error = sigaction(p, &sa_args, retval);
if (error) {
DPRINTF(("sigignore: sigaction failed\n"));
return error;
}
return 0;
}
case IBCS2_SIGPAUSE_MASK:
{
struct sigsuspend_args {
sigset_t mask;
} sa;
sa.mask = p->p_sigmask &~ sigmask(nsig);
return sigsuspend(p, &sa, retval);
}
default:
return ENOSYS;
}
}
static void
cvt_flock2iflock(flp, iflp)
struct flock *flp;
struct ibcs2_flock *iflp;
{
switch (flp->l_type) {
case F_RDLCK:
iflp->l_type = IBCS2_F_RDLCK;
break;
case F_WRLCK:
iflp->l_type = IBCS2_F_WRLCK;
break;
case F_UNLCK:
iflp->l_type = IBCS2_F_UNLCK;
break;
}
iflp->l_whence = (short)flp->l_whence;
iflp->l_start = (ibcs2_off_t)flp->l_start;
iflp->l_len = (ibcs2_off_t)flp->l_len;
iflp->l_sysid = 0;
iflp->l_pid = (ibcs2_pid_t)flp->l_pid;
}
static void
cvt_iflock2flock(iflp, flp)
struct ibcs2_flock *iflp;
struct flock *flp;
{
flp->l_start = (off_t)iflp->l_start;
flp->l_len = (off_t)iflp->l_len;
flp->l_pid = (pid_t)iflp->l_pid;
switch (iflp->l_type) {
case IBCS2_F_RDLCK:
flp->l_type = F_RDLCK;
break;
case IBCS2_F_WRLCK:
flp->l_type = F_WRLCK;
break;
case IBCS2_F_UNLCK:
flp->l_type = F_UNLCK;
break;
}
flp->l_whence = iflp->l_whence;
}
/* convert iBCS2 mode into NetBSD mode */
int
ioflags2oflags(flags)
int flags;
{
int r = 0;
if (flags & IBCS2_O_RDONLY) r |= O_RDONLY;
if (flags & IBCS2_O_WRONLY) r |= O_WRONLY;
if (flags & IBCS2_O_RDWR) r |= O_RDWR;
if (flags & IBCS2_O_NDELAY) r |= O_NONBLOCK;
if (flags & IBCS2_O_APPEND) r |= O_APPEND;
if (flags & IBCS2_O_SYNC) r |= O_FSYNC;
if (flags & IBCS2_O_NONBLOCK) r |= O_NONBLOCK;
if (flags & IBCS2_O_CREAT) r |= O_CREAT;
if (flags & IBCS2_O_TRUNC) r |= O_TRUNC;
if (flags & IBCS2_O_EXCL) r |= O_EXCL;
if (flags & IBCS2_O_NOCTTY) r |= O_NOCTTY;
return r;
}
/* convert NetBSD mode into iBCS2 mode */
int
oflags2ioflags(flags)
int flags;
{
int r = 0;
if (flags & O_RDONLY) r |= IBCS2_O_RDONLY;
if (flags & O_WRONLY) r |= IBCS2_O_WRONLY;
if (flags & O_RDWR) r |= IBCS2_O_RDWR;
if (flags & O_NDELAY) r |= IBCS2_O_NONBLOCK;
if (flags & O_APPEND) r |= IBCS2_O_APPEND;
if (flags & O_FSYNC) r |= IBCS2_O_SYNC;
if (flags & O_NONBLOCK) r |= IBCS2_O_NONBLOCK;
if (flags & O_CREAT) r |= IBCS2_O_CREAT;
if (flags & O_TRUNC) r |= IBCS2_O_TRUNC;
if (flags & O_EXCL) r |= IBCS2_O_EXCL;
if (flags & O_NOCTTY) r |= IBCS2_O_NOCTTY;
return r;
}
struct ibcs2_fcntl_args {
int fd;
int cmd;
char *arg;
};
int
ibcs2_fcntl(p, uap, retval)
struct proc *p;
struct ibcs2_fcntl_args *uap;
int *retval;
{
int error;
struct fcntl_args {
int fd;
int cmd;
int arg;
} fa;
struct flock *flp;
struct ibcs2_flock ifl;
switch(uap->cmd) {
case IBCS2_F_DUPFD:
fa.fd = uap->fd;
fa.cmd = F_DUPFD;
fa.arg = (int)uap->arg;
return fcntl(p, &fa, retval);
case IBCS2_F_GETFD:
fa.fd = uap->fd;
fa.cmd = F_GETFD;
fa.arg = (int)uap->arg;
return fcntl(p, &fa, retval);
case IBCS2_F_SETFD:
fa.fd = uap->fd;
fa.cmd = F_SETFD;
fa.arg = (int)uap->arg;
return fcntl(p, &fa, retval);
case IBCS2_F_GETFL:
fa.fd = uap->fd;
fa.cmd = F_GETFL;
fa.arg = (int)uap->arg;
error = fcntl(p, &fa, retval);
if (error)
return error;
*retval = oflags2ioflags(*retval);
return error;
case IBCS2_F_SETFL:
fa.fd = uap->fd;
fa.cmd = F_SETFL;
fa.arg = ioflags2oflags(uap->arg);
return fcntl(p, &fa, retval);
case IBCS2_F_GETLK:
flp = (struct flock *)STACK_ALLOC();
error = copyin((caddr_t)uap->arg, (caddr_t)&ifl,
ibcs2_flock_len);
if (error)
return error;
cvt_iflock2flock(&ifl, flp);
fa.fd = uap->fd;
fa.cmd = F_GETLK;
fa.arg = (int)flp;
error = fcntl(p, &fa, retval);
if (error)
return error;
cvt_flock2iflock(flp, &ifl);
return copyout((caddr_t)&ifl, (caddr_t)uap->arg,
ibcs2_flock_len);
case IBCS2_F_SETLK:
flp = (struct flock *)STACK_ALLOC();
error = copyin((caddr_t)uap->arg, (caddr_t)&ifl,
ibcs2_flock_len);
if (error)
return error;
cvt_iflock2flock(&ifl, flp);
fa.fd = uap->fd;
fa.cmd = F_SETLK;
fa.arg = (int)flp;
return fcntl(p, &fa, retval);
case IBCS2_F_SETLKW:
flp = (struct flock *)STACK_ALLOC();
error = copyin((caddr_t)uap->arg, (caddr_t)&ifl,
ibcs2_flock_len);
if (error)
return error;
cvt_iflock2flock(&ifl, flp);
fa.fd = uap->fd;
fa.cmd = F_SETLKW;
fa.arg = (int)flp;
return fcntl(p, &fa, retval);
}
return ENOSYS;
}
struct ibcs2_ulimit_args {
int cmd;
int newlim;
};
#define IBCS2_GETFSIZE 1
#define IBCS2_SETFSIZE 2
#define IBCS2_GETPSIZE 3
int
ibcs2_ulimit(p, uap, retval)
struct proc *p;
struct ibcs2_ulimit_args *uap;
int *retval;
{
int error;
struct rlimit rl;
struct setrlimit_args {
int resource;
struct rlimit *rlp;
} sra;
switch (uap->cmd) {
case IBCS2_GETFSIZE:
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur;
return 0;
case IBCS2_SETFSIZE: /* XXX - fix this */
#ifdef notyet
rl.rlim_cur = uap->newlim;
sra.resource = RLIMIT_FSIZE;
sra.rlp = &rl;
error = setrlimit(p, &sra, retval);
if (!error)
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur;
else
DPRINTF(("failed "));
return error;
#else
*retval = uap->newlim;
return 0;
#endif
case IBCS2_GETPSIZE:
*retval = p->p_rlimit[RLIMIT_RSS].rlim_cur; /* XXX */
return 0;
default:
return ENOSYS;
}
}
struct ibcs2_wait_args {
int *status;
};
struct ibcs2_waitpid_args {
int pid;
int *status;
int options;
};
struct ibcs2_waitsys_args {
union {
struct ibcs2_wait_args wa;
struct ibcs2_waitpid_args wpa;
} u;
};
int
ibcs2_waitsys(p, uap, retval)
struct proc *p;
struct ibcs2_waitsys_args *uap;
int *retval;
{
int error, status;
struct wait_args {
int pid;
int *status;
int options;
struct rusage *rusage;
#ifdef COMPAT_43
int compat;
#endif
} w4;
#define WAITPID_EFLAGS 0x8c4 /* OF, SF, ZF, PF */
if ((p->p_md.md_regs[tEFLAGS] & WAITPID_EFLAGS) == WAITPID_EFLAGS) {
/* waitpid */
w4.pid = uap->u.wpa.pid;
w4.status = uap->u.wpa.status;
w4.options = uap->u.wpa.options;
w4.rusage = NULL;
} else {
/* wait */
w4.pid = WAIT_ANY;
w4.status = uap->u.wa.status;
w4.options = 0;
w4.rusage = NULL;
}
error = wait4(p, &w4, retval);
if (error == 0 && w4.status) /* this is real iBCS brain-damage */
copyin((caddr_t)w4.status, (caddr_t)&retval[1],
sizeof(w4.status));
return error;
}
struct ibcs2_execv_args {
char *fname;
char **argp;
char **envp; /* pseudo */
};
ibcs2_execv(p, uap, retval)
struct proc *p;
struct ibcs2_execv_args *uap;
int *retval;
{
DPRINTF(("ibcs2_execv(%d): %s ", p->p_pid, uap->fname));
uap->envp = NULL;
return (execve(p, uap, retval));
}
struct ibcs2_umount_args {
char *name;
};
ibcs2_umount(p, uap, retval)
struct proc *p;
struct ibcs2_umount_args *uap;
int *retval;
{
struct unmount_args {
char *name;
int flags;
} um;
um.name = uap->name;
um.flags = 0;
return (unmount(p, &um, retval));
}
struct ibcs2_mount_args {
char *special;
char *dir;
int flags;
int fstype;
char *data;
int len;
};
ibcs2_mount(p, uap, retval)
struct proc *p;
struct ibcs2_mount_args *uap;
int *retval;
{
#ifdef notyet
int oflags = uap->flags, nflags, error;
char fsname[MFSNAMELEN];
if (oflags & (IBCS2_MS_NOSUB | IBCS2_MS_SYS5))
return (EINVAL);
if ((oflags & IBCS2_MS_NEWTYPE) == 0)
return (EINVAL);
nflags = 0;
if (oflags & IBCS2_MS_RDONLY)
nflags |= MNT_RDONLY;
if (oflags & IBCS2_MS_NOSUID)
nflags |= MNT_NOSUID;
if (oflags & IBCS2_MS_REMOUNT)
nflags |= MNT_UPDATE;
uap->flags = nflags;
if (error = copyinstr((caddr_t)uap->type, fsname, sizeof fsname,
(u_int *)0))
return (error);
if (strcmp(fsname, "4.2") == 0) {
uap->type = (caddr_t)STACK_ALLOC();
if (error = copyout("ufs", uap->type, sizeof("ufs")))
return (error);
} else if (strcmp(fsname, "nfs") == 0) {
struct ibcs2_nfs_args sna;
struct sockaddr_in sain;
struct nfs_args na;
struct sockaddr sa;
if (error = copyin(uap->data, &sna, sizeof sna))
return (error);
if (error = copyin(sna.addr, &sain, sizeof sain))
return (error);
bcopy(&sain, &sa, sizeof sa);
sa.sa_len = sizeof(sain);
uap->data = (caddr_t)STACK_ALLOC();
na.addr = (struct sockaddr *)((int)uap->data + sizeof na);
na.sotype = SOCK_DGRAM;
na.proto = IPPROTO_UDP;
na.fh = (nfsv2fh_t *)sna.fh;
na.flags = sna.flags;
na.wsize = sna.wsize;
na.rsize = sna.rsize;
na.timeo = sna.timeo;
na.retrans = sna.retrans;
na.hostname = sna.hostname;
if (error = copyout(&sa, na.addr, sizeof sa))
return (error);
if (error = copyout(&na, uap->data, sizeof na))
return (error);
}
return (mount(p, uap, retval));
#else
return EINVAL;
#endif
}
/*
* Read iBCS2-style directory entries. We suck them into kernel space so
* that they can be massaged before being copied out to user code. Like
* SunOS, we squish out `empty' entries.
*
* This is quite ugly, but what do you expect from compatibility code?
*/
struct ibcs2_getdents_args {
int fd;
char *buf;
int nbytes;
};
ibcs2_getdents(p, uap, retval)
struct proc *p;
register struct ibcs2_getdents_args *uap;
int *retval;
{
register struct vnode *vp;
register caddr_t inp, buf; /* BSD-format */
register int len, reclen; /* BSD-format */
register caddr_t outp; /* iBCS2-format */
register int resid; /* iBCS2-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct ibcs2_dirent idb;
off_t off; /* true file offset */
ibcs2_off_t soff; /* SYSV file offset */
int buflen, error, eofflag;
#define BSD_DIRENT(cp) ((struct dirent *)(cp))
#define IBCS2_DIRENT(cp) ((struct ibcs2_dirent *)(cp))
#define IBCS2_RECLEN(reclen) (reclen + sizeof(u_short))
if ((error = getvnode(p->p_fd, uap->fd, &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0)
return (EBADF);
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VDIR) /* XXX vnode readdir op should do this */
return (EINVAL);
buflen = min(MAXBSIZE, uap->nbytes);
buf = malloc(buflen, M_TEMP, M_WAITOK);
VOP_LOCK(vp);
off = fp->f_offset;
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_procp = p;
auio.uio_resid = buflen;
auio.uio_offset = off;
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
if (error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, (u_long *)0,
0))
goto out;
inp = buf;
outp = uap->buf;
resid = uap->nbytes;
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (; len > 0; len -= reclen) {
reclen = ((struct dirent *)inp)->d_reclen;
if (reclen & 3)
panic("ibcs2_getdents");
off += reclen; /* each entry points to next */
if (BSD_DIRENT(inp)->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
continue;
}
if (reclen > len || resid < IBCS2_RECLEN(reclen)) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make a iBCS2-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (ibcs2_ino_t)BSD_DIRENT(inp)->d_fileno;
idb.d_off = (ibcs2_off_t)off;
idb.d_reclen = (u_short)IBCS2_RECLEN(reclen);
if ((error = copyout((caddr_t)&idb, outp, 10)) != 0 ||
(error = copyout(BSD_DIRENT(inp)->d_name, outp + 10,
BSD_DIRENT(inp)->d_namlen + 1)) != 0)
goto out;
/* advance past this real entry */
inp += reclen;
/* advance output past Sun-shaped entry */
outp += IBCS2_RECLEN(reclen);
resid -= IBCS2_RECLEN(reclen);
}
/* if we squished out the whole block, try again */
if (outp == uap->buf)
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
*retval = uap->nbytes - resid;
out:
VOP_UNLOCK(vp);
free(buf, M_TEMP);
return (error);
}
struct ibcs2_fchroot_args {
int fdes;
};
ibcs2_fchroot(p, uap, retval)
register struct proc *p;
register struct ibcs2_fchroot_args *uap;
int *retval;
{
register struct filedesc *fdp = p->p_fd;
register struct vnode *vp;
struct file *fp;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
if ((error = getvnode(fdp, uap->fdes, &fp)) != 0)
return (error);
vp = (struct vnode *)fp->f_data;
VOP_LOCK(vp);
if (vp->v_type != VDIR)
error = ENOTDIR;
else
error = VOP_ACCESS(vp, VEXEC, p->p_ucred, p);
VOP_UNLOCK(vp);
if (error)
return (error);
VREF(vp);
if (fdp->fd_rdir != NULL)
vrele(fdp->fd_rdir);
fdp->fd_rdir = vp;
return (0);
}
struct ibcs2_ustat_args {
struct ibcs2_ustat *buf;
int dev;
};
struct ibcs2_uname_args {
struct ibcs2_utsname *buf;
int junk;
};
struct ibcs2_utssys_args {
union {
struct ibcs2_ustat_args ustat_args;
struct ibcs2_uname_args uname_args;
} u;
int flag;
};
int
ibcs2_utssys(p, uap, retval)
struct proc *p;
struct ibcs2_utssys_args *uap;
int *retval;
{
switch (uap->flag) {
case 0: /* uname(2) */
{
struct ibcs2_utsname sut;
extern char ostype[], machine[], osrelease[];
bzero(&sut, ibcs2_utsname_len);
bcopy(ostype, sut.sysname, sizeof(sut.sysname) - 1);
bcopy(hostname, sut.nodename, sizeof(sut.nodename));
sut.nodename[sizeof(sut.nodename)-1] = '\0';
bcopy(osrelease, sut.release, sizeof(sut.release) - 1);
bcopy("1", sut.version, sizeof(sut.version) - 1);
bcopy(machine, sut.machine, sizeof(sut.machine) - 1);
return copyout((caddr_t)&sut, (caddr_t)uap->u.uname_args.buf,
ibcs2_utsname_len);
}
case 2: /* ustat(2) */
return ENOSYS; /* XXX - TODO */
default:
return ENOSYS;
}
}
struct ibcs2_open_args {
char *fname;
int fmode;
int crtmode;
};
int
cvt_o_flags(flags)
int flags;
{
int r = 0;
/* convert mode into NetBSD mode */
if (flags & IBCS2_O_WRONLY) r |= O_WRONLY;
if (flags & IBCS2_O_RDWR) r |= O_RDWR;
if (flags & (IBCS2_O_NDELAY | IBCS2_O_NONBLOCK)) r |= O_NONBLOCK;
if (flags & IBCS2_O_APPEND) r |= O_APPEND;
if (flags & IBCS2_O_SYNC) r |= O_FSYNC;
if (flags & IBCS2_O_CREAT) r |= O_CREAT;
if (flags & IBCS2_O_TRUNC) r |= O_TRUNC;
if (flags & IBCS2_O_EXCL) r |= O_EXCL;
return r;
}
int
ibcs2_open(p, uap, retval)
struct proc *p;
struct ibcs2_open_args *uap;
int *retval;
{
int noctty = uap->fmode & IBCS2_O_NOCTTY;
int ret;
uap->fmode = cvt_o_flags(uap->fmode);
ret = open(p, uap, retval);
if (!ret && !noctty && SESS_LEADER(p) && !(p->p_flag & P_CONTROLT)) {
struct filedesc *fdp = p->p_fd;
struct file *fp = fdp->fd_ofiles[*retval];
/* ignore any error, just give it a try */
if (fp->f_type == DTYPE_VNODE)
(fp->f_ops->fo_ioctl)(fp, TIOCSCTTY, (caddr_t) 0, p);
}
return ret;
}
static int
ibcs2_cvt_statfs(sp, buf, len)
struct statfs *sp;
caddr_t buf;
int len;
{
struct ibcs2_statfs ssfs;
bzero(&ssfs, sizeof ssfs);
ssfs.f_fstyp = 0;
ssfs.f_bsize = sp->f_bsize;
ssfs.f_frsize = 0;
ssfs.f_blocks = sp->f_blocks;
ssfs.f_bfree = sp->f_bfree;
ssfs.f_files = sp->f_files;
ssfs.f_ffree = sp->f_ffree;
ssfs.f_fname[0] = 0;
ssfs.f_fpack[0] = 0;
return copyout((caddr_t)&ssfs, buf, len);
}
struct ibcs2_statfs_args {
char *path;
struct ibcs2_statfs *buf;
int len;
int fstype;
};
ibcs2_statfs(p, uap, retval)
struct proc *p;
struct ibcs2_statfs_args *uap;
int *retval;
{
register struct mount *mp;
register struct statfs *sp;
int error;
struct nameidata nd;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->path, p);
if (error = namei(&nd))
return (error);
mp = nd.ni_vp->v_mount;
sp = &mp->mnt_stat;
vrele(nd.ni_vp);
if (error = VFS_STATFS(mp, sp, p))
return (error);
sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
return ibcs2_cvt_statfs(sp, (caddr_t)uap->buf, uap->len);
}
struct ibcs2_fstatfs_args {
int fd;
struct ibcs2_statfs *buf;
int len;
int fstype;
};
ibcs2_fstatfs(p, uap, retval)
struct proc *p;
struct ibcs2_fstatfs_args *uap;
int *retval;
{
struct file *fp;
struct mount *mp;
register struct statfs *sp;
int error;
if (error = getvnode(p->p_fd, uap->fd, &fp))
return (error);
mp = ((struct vnode *)fp->f_data)->v_mount;
sp = &mp->mnt_stat;
if (error = VFS_STATFS(mp, sp, p))
return (error);
sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
return ibcs2_cvt_statfs(sp, (caddr_t)uap->buf, uap->len);
}
struct ibcs2_mknod_args {
char *fname;
int fmode;
int dev;
};
ibcs2_mknod(p, uap, retval)
struct proc *p;
struct ibcs2_mknod_args *uap;
int *retval;
{
if (S_ISFIFO(uap->fmode))
return mkfifo(p, uap, retval);
return mknod(p, uap, retval);
}
struct ibcs2_xenix_args {
int callno;
};
int
ibcs2_xenix(p, uap, retval)
struct proc *p;
struct ibcs2_xenix_args *uap;
int *retval;
{
return EINVAL;
}
struct ibcs2_select_args {
int nfds;
fd_set *readfds, *writefds, *exceptfds;
struct ibcs2_timeval *timeout;
};
/* int select(nfds, readfds, writefds, exceptfds, timeout) */
int
ibcs2_select(p, uap, retval)
struct proc *p;
struct ibcs2_select_args *uap;
int *retval;
{
return EINVAL;
}
static void
cvt_sa2isa(sap, isap)
struct sigaction *sap;
struct ibcs2_sigaction *isap;
{
sap->sa_handler = isap->sa_handler;
sap->sa_mask = cvt_sigmask(isap->sa_mask, ibcs2bsd_sigtbl);
sap->sa_flags = (isap->sa_flags & IBCS2_SA_NOCLDSTOP)
? SA_NOCLDSTOP : 0;
}
static void
cvt_isa2sa(isap, sap)
struct ibcs2_sigaction *isap;
struct sigaction *sap;
{
isap->sa_handler = sap->sa_handler;
isap->sa_mask = cvt_sigmask(sap->sa_mask, bsd2ibcs_sigtbl);
isap->sa_flags = (sap->sa_flags & SA_NOCLDSTOP)
? IBCS2_SA_NOCLDSTOP : 0;
}
struct ibcs2_sigaction_args {
int sig;
struct ibcs2_sigaction *act, *oact;
};
int
ibcs2_sigaction(p, uap, retval)
struct proc *p;
struct ibcs2_sigaction_args *uap;
int *retval;
{
int error;
struct sigaction_args {
int sig;
struct sigaction *act, *oact;
} sa;
struct ibcs2_sigaction *isa, *oisa;
isa = (struct ibcs2_sigaction *)STACK_ALLOC();
oisa = &isa[1];
sa.sig = ibcs2bsd_sig(uap->sig);
sa.act = (struct sigaction *)&isa[2];
sa.oact = (struct sigaction *)&isa[3];
if (error = copyin((caddr_t)uap->act, (caddr_t)isa, sizeof(*isa)))
return error;
cvt_isa2sa(isa, sa.act);
if (error = sigaction(p, &sa, retval))
return error;
cvt_sa2isa(sa.oact, oisa);
return copyout((caddr_t)oisa, (caddr_t)uap->oact, sizeof(*oisa));
}
struct ibcs2_sigprocmask_args {
int how;
sigset_t *set, *oset;
};
int
ibcs2_sigprocmask(p, uap, retval)
struct proc *p;
struct ibcs2_sigprocmask_args *uap;
int *retval;
{
int error;
sigset_t iset;
struct sigprocmask_args {
int how;
sigset_t mask;
} sa;
switch (uap->how) {
case IBCS2_SIG_BLOCK:
sa.how = SIG_BLOCK;
break;
case IBCS2_SIG_UNBLOCK:
sa.how = SIG_UNBLOCK;
break;
case IBCS2_SIG_SETMASK:
sa.how = SIG_SETMASK;
break;
default:
return EINVAL;
}
if (error = copyin((caddr_t)uap->set, (caddr_t)&iset, sizeof(iset)))
return error;
sa.mask = cvt_sigmask(iset, ibcs2bsd_sigtbl);
if (error = sigprocmask(p, &sa, retval))
return error;
iset = cvt_sigmask(*retval, bsd2ibcs_sigtbl);
return copyout((caddr_t)&iset, (caddr_t)uap->oset, sizeof(iset));
}
struct ibcs2_sigpending_args {
sigset_t *mask;
};
int
ibcs2_sigpending(p, uap, retval)
struct proc *p;
struct ibcs2_sigpending_args *uap;
int *retval;
{
int mask = cvt_sigmask(p->p_siglist & p->p_sigmask, bsd2ibcs_sigtbl);
return (copyout((caddr_t)&mask, (caddr_t)uap->mask, sizeof(int)));
}
struct ibcs2_sigsuspend_args {
sigset_t *mask;
};
int
ibcs2_sigsuspend(p, uap, retval)
struct proc *p;
struct ibcs2_sigsuspend_args *uap;
int *retval;
{
int error;
struct sigsuspend_args {
sigset_t mask;
} sa;
if (error = copyin((caddr_t)uap->mask, (caddr_t)sa.mask,
sizeof(sa.mask)))
return error;
return sigsuspend(p, &sa, retval);
}
struct ibcs2_getgroups_args {
int gidsetsize;
ibcs2_gid_t *gidset;
};
int
ibcs2_getgroups(p, uap, retval)
struct proc *p;
struct ibcs2_getgroups_args *uap;
int *retval;
{
int error, i;
ibcs2_gid_t igid, *iset;
struct getgroups_args {
u_int gidsetsize;
gid_t *gidset;
} sa;
sa.gidsetsize = uap->gidsetsize;
sa.gidset = (gid_t *)STACK_ALLOC();
iset = (ibcs2_gid_t *)&sa.gidset[NGROUPS_MAX];
if (error = getgroups(p, &sa, retval))
return error;
for (i = 0; i < retval[0]; i++)
iset[i] = (ibcs2_gid_t)sa.gidset[i];
if (retval[0] && (error = copyout((caddr_t)iset, (caddr_t)uap->gidset,
sizeof(ibcs2_gid_t) * retval[0])))
return error;
return 0;
}
struct ibcs2_setgroups_args {
int gidsetsize;
ibcs2_gid_t *gidset;
};
int
ibcs2_setgroups(p, uap, retval)
struct proc *p;
struct ibcs2_setgroups_args *uap;
int *retval;
{
int error, i;
ibcs2_gid_t igid, *iset;
struct setgroups_args {
u_int gidsetsize;
gid_t *gidset;
} sa;
sa.gidsetsize = uap->gidsetsize;
sa.gidset = (gid_t *)STACK_ALLOC();
iset = (ibcs2_gid_t *)&sa.gidset[NGROUPS_MAX];
if (sa.gidsetsize && (error = copyin((caddr_t)uap->gidset,
(caddr_t)iset,
sizeof(ibcs2_gid_t) *
sa.gidsetsize)))
return error;
for (i = 0; i < sa.gidsetsize; i++)
sa.gidset[i] = (gid_t)iset[i];
return setgroups(p, &sa, retval);
}
struct ibcs2_setuid_args {
int uid;
};
int
ibcs2_setuid(p, uap, retval)
struct proc *p;
struct ibcs2_setuid_args *uap;
int *retval;
{
struct setuid_args {
uid_t uid;
} sa;
sa.uid = (uid_t) uap->uid;
return setuid(p, &sa, retval);
}
struct ibcs2_setgid_args {
int gid;
};
int
ibcs2_setgid(p, uap, retval)
struct proc *p;
struct ibcs2_setgid_args *uap;
int *retval;
{
struct setgid_args {
gid_t gid;
} sa;
sa.gid = (gid_t) uap->gid;
return setgid(p, &sa, retval);
}
struct ibcs2_timeb {
ibcs2_time_t time;
unsigned short millitm;
short timezone;
short dstflag;
};
#define ibcs2_timeb_len 10 /* packed struct */
struct ibcs2_ftime_args {
struct ibcs2_timeb *tp;
};
int
ibcs2_ftime(p, uap, retval)
struct proc *p;
struct ibcs2_ftime_args *uap;
int *retval;
{
struct timeval tv;
extern struct timezone tz;
struct ibcs2_timeb itb;
microtime(&tv);
itb.time = tv.tv_sec;
itb.millitm = (tv.tv_usec / 1000);
itb.timezone = tz.tz_minuteswest;
itb.dstflag = tz.tz_dsttime;
return copyout((caddr_t)&itb, (caddr_t)uap->tp, ibcs2_timeb_len);
}
struct ibcs2_time_args {
ibcs2_time_t *tp;
};
int
ibcs2_time(p, uap, retval)
struct proc *p;
struct ibcs2_time_args *uap;
int *retval;
{
struct timeval tv;
microtime(&tv);
*retval = tv.tv_sec;
if (uap->tp)
return copyout((caddr_t)&tv.tv_sec, (caddr_t)uap->tp,
sizeof(ibcs2_time_t));
else
return 0;
}
struct ibcs2_pathconf_args {
char *path;
int name;
};
int
ibcs2_pathconf(p, uap, retval)
struct proc *p;
struct ibcs2_pathconf_args *uap;
int *retval;
{
uap->name++; /* iBCS2 _PC_* defines are offset by one */
return pathconf(p, uap, retval);
}
struct ibcs2_fpathconf_args {
int fd;
int name;
};
int
ibcs2_fpathconf(p, uap, retval)
struct proc *p;
struct ibcs2_fpathconf_args *uap;
int *retval;
{
uap->name++; /* iBCS2 _PC_* defines are offset by one */
return fpathconf(p, uap, retval);
}
struct ibcs2_sysconf_args {
int name;
};
int
ibcs2_sysconf(p, uap, retval)
struct proc *p;
struct ibcs2_sysconf_args *uap;
int *retval;
{
int mib[2], value, len, error;
struct __sysctl_args {
int *name;
u_int namelen;
void *old;
size_t *oldlenp;
void *new;
size_t newlen;
} sa;
struct getrlimit_args {
u_int which;
struct rlimit *rlp;
} ga;
switch(uap->name) {
case IBCS2_SC_ARG_MAX:
mib[1] = KERN_ARGMAX;
break;
case IBCS2_SC_CHILD_MAX:
ga.which = RLIMIT_NPROC;
ga.rlp = (struct rlimit *)STACK_ALLOC();
if (error = getrlimit(p, &ga, retval))
return error;
*retval = ga.rlp->rlim_cur;
return 0;
case IBCS2_SC_CLK_TCK:
*retval = hz;
return 0;
case IBCS2_SC_NGROUPS_MAX:
mib[1] = KERN_NGROUPS;
break;
case IBCS2_SC_OPEN_MAX:
ga.which = RLIMIT_NOFILE;
ga.rlp = (struct rlimit *)STACK_ALLOC();
if (error = getrlimit(p, &ga, retval))
return error;
*retval = ga.rlp->rlim_cur;
return 0;
case IBCS2_SC_JOB_CONTROL:
mib[1] = KERN_JOB_CONTROL;
break;
case IBCS2_SC_SAVED_IDS:
mib[1] = KERN_SAVED_IDS;
break;
case IBCS2_SC_VERSION:
mib[1] = KERN_POSIX1;
break;
case IBCS2_SC_PASS_MAX:
*retval = 128; /* XXX - should we create PASS_MAX ? */
return 0;
case IBCS2_SC_XOPEN_VERSION:
*retval = 2; /* XXX: What should that be? */
return 0;
default:
return EINVAL;
}
mib[0] = CTL_KERN;
len = sizeof(value);
sa.name = mib;
sa.namelen = 2;
sa.old = &value;
sa.oldlenp = &len;
sa.new = NULL;
sa.newlen = 0;
if (error = __sysctl(p, &sa, retval))
return error;
*retval = value;
return 0;
}
static void
ibcs2_statcvt(st, st4)
struct ostat *st;
struct ibcs2_stat *st4;
{
bzero(st4, sizeof(*st4));
st4->st_dev = (ibcs2_dev_t)st->st_dev;
st4->st_ino = (ibcs2_ino_t)st->st_ino;
st4->st_mode = (ibcs2_mode_t)st->st_mode;
st4->st_nlink = (ibcs2_nlink_t)st->st_nlink;
st4->st_uid = (ibcs2_uid_t)st->st_uid;
st4->st_gid = (ibcs2_gid_t)st->st_gid;
st4->st_rdev = (ibcs2_dev_t)st->st_rdev;
st4->st_size = (ibcs2_off_t)st->st_size;
st4->st_atim = (ibcs2_time_t)st->st_atime;
st4->st_mtim = (ibcs2_time_t)st->st_mtime;
st4->st_ctim = (ibcs2_time_t)st->st_ctime;
}
struct ostat_args {
char *fname;
struct ostat *st;
};
struct ibcs2_stat_args {
char *fname;
struct ibcs2_stat *st;
};
ibcs2_stat(p, uap, retval)
struct proc *p;
struct ibcs2_stat_args *uap;
int *retval;
{
struct ostat st;
struct ibcs2_stat ibcs2_st;
struct ostat_args cup;
int error;
cup.fname = uap->fname;
cup.st = (struct ostat *)STACK_ALLOC();
if (error = ostat(p, &cup, retval))
return (error);
if (error = copyin(cup.st, &st, sizeof st))
return (error);
ibcs2_statcvt(&st, &ibcs2_st);
return copyout((caddr_t)&ibcs2_st, (caddr_t)uap->st, ibcs2_stat_len);
}
struct olstat_args {
char *fname;
struct ostat *st;
};
struct ibcs2_lstat_args {
char *fname;
struct ibcs2_stat *st;
};
ibcs2_lstat(p, uap, retval)
struct proc *p;
struct ibcs2_lstat_args *uap;
int *retval;
{
struct ostat st;
struct ibcs2_stat ibcs2_st;
struct olstat_args cup;
int error;
cup.fname = uap->fname;
cup.st = (struct ostat *)STACK_ALLOC();
if (error = olstat(p, &cup, retval))
return (error);
if (error = copyin(cup.st, &st, sizeof st))
return (error);
ibcs2_statcvt(&st, &ibcs2_st);
return copyout((caddr_t)&ibcs2_st, (caddr_t)uap->st, ibcs2_stat_len);
}
struct ofstat_args {
int fd;
struct ostat *st;
};
struct ibcs2_fstat_args {
int fd;
struct ibcs2_stat *st;
};
ibcs2_fstat(p, uap, retval)
struct proc *p;
struct ibcs2_fstat_args *uap;
int *retval;
{
struct ostat st;
struct ibcs2_stat ibcs2_st;
struct ofstat_args cup;
int error;
cup.fd = uap->fd;
cup.st = (struct ostat *)STACK_ALLOC();
if (error = ofstat(p, &cup, retval))
return (error);
if (error = copyin(cup.st, &st, sizeof st))
return (error);
ibcs2_statcvt(&st, &ibcs2_st);
return copyout((caddr_t)&ibcs2_st, (caddr_t)uap->st, ibcs2_stat_len);
}
struct ibcs2_alarm_args {
unsigned int secs;
};
ibcs2_alarm(p, uap, retval)
struct proc *p;
struct ibcs2_alarm_args *uap;
int *retval;
{
int error;
struct itimerval *itp, *oitp;
struct setitimer_args {
u_int which;
struct itimerval *itv, *oitv;
} sa;
itp = (struct itimerval *)STACK_ALLOC();
oitp = &itp[1];
timerclear(&itp->it_interval);
itp->it_value.tv_sec = uap->secs;
itp->it_value.tv_usec = 0;
sa.which = ITIMER_REAL;
sa.itv = itp;
sa.oitv = oitp;
error = setitimer(p, &sa, retval);
if (error)
return error;
if (oitp->it_value.tv_usec)
oitp->it_value.tv_sec++;
*retval = oitp->it_value.tv_sec;
return 0;
}
int
ibcs2_pause(p, uap, retval)
struct proc *p;
void *uap;
int *retval;
{
int error;
struct sigsuspend_args {
sigset_t mask;
} sa;
sa.mask = p->p_sigmask;
error = sigsuspend(p, &sa, retval);
return error;
}
int
ibcs2_getmsg(p, uap, retval)
struct proc *p;
void *uap;
int *retval;
{
return 0;
}
int
ibcs2_putmsg(p, uap, retval)
struct proc *p;
void *uap;
int *retval;
{
return 0;
}
struct ibcs2_times_arg {
struct tms *tp;
};
int
ibcs2_times(p, uap, retval)
struct proc *p;
struct ibcs2_times_arg *uap;
int *retval;
{
int error;
struct getrusage_args {
int who;
struct rusage *rusage;
} ga;
struct tms tms;
struct rusage *ru = (struct rusage *)STACK_ALLOC();
struct timeval t;
#define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
ga.who = RUSAGE_SELF;
ga.rusage = ru;
error = getrusage(p, &ga, retval);
if (error)
return error;
tms.tms_utime = CONVTCK(ru->ru_utime);
tms.tms_stime = CONVTCK(ru->ru_stime);
ga.who = RUSAGE_CHILDREN;
error = getrusage(p, &ga, retval);
if (error)
return error;
tms.tms_cutime = CONVTCK(ru->ru_utime);
tms.tms_cstime = CONVTCK(ru->ru_stime);
microtime(&t);
*retval = CONVTCK(t);
return copyout(&tms, uap->tp, sizeof(tms));
}
struct ibcs2_stime_args {
long *timep;
};
int
ibcs2_stime(p, uap, retval)
struct proc *p;
struct ibcs2_stime_args *uap;
int *retval;
{
int error;
struct settimeofday_args {
struct timeval *tv;
struct timezone *tzp;
} sa;
sa.tv = STACK_ALLOC();
sa.tzp = NULL;
if (error = copyin((caddr_t)uap->timep, &sa.tv->tv_sec, sizeof(long)))
return error;
sa.tv->tv_usec = 0;
if (error = settimeofday(p, &sa, retval))
return EPERM;
return 0;
}
int
ibcs2_ptrace(p, uap, retval)
struct proc *p;
void *uap;
int *retval;
{
return EINVAL; /* XXX - TODO */
}
struct ibcs2_utimbuf {
time_t actime;
time_t modtime;
};
struct ibcs2_utime_args {
char *path;
struct ibcs2_utimbuf *buf;
};
int
ibcs2_utime(p, uap, retval)
struct proc *p;
struct ibcs2_utime_args *uap;
int *retval;
{
int error;
struct utimes_args {
char *path;
struct timeval *tptr;
} sa;
sa.path = uap->path;
if (uap->buf) {
struct ibcs2_utimbuf ubuf;
if (error = copyin((caddr_t)uap->buf, (caddr_t)&ubuf,
sizeof(ubuf)))
return error;
sa.tptr = STACK_ALLOC();
sa.tptr[0].tv_sec = ubuf.actime;
sa.tptr[0].tv_usec = 0;
sa.tptr[1].tv_sec = ubuf.modtime;
sa.tptr[1].tv_usec = 0;
} else
sa.tptr = NULL;
return utimes(p, &sa, retval);
}
struct ibcs2_nice_args {
int incr;
};
int
ibcs2_nice(p, uap, retval)
struct proc *p;
struct ibcs2_nice_args *uap;
int *retval;
{
int error, cur_nice = p->p_nice;
struct setpriority_args {
int which;
int who;
int prio;
} sa;
sa.which = PRIO_PROCESS;
sa.who = 0;
sa.prio = p->p_nice + uap->incr;
if (error = setpriority(p, &sa, retval))
return EPERM;
*retval = p->p_nice;
return 0;
}
/*
* iBCS2 getpgrp, setpgrp, setsid, and setpgid
*/
struct ibcs2_pgrpsys_args {
int type;
caddr_t dummy;
int pid;
int pgid;
};
int
ibcs2_pgrpsys(p, uap, retval)
struct proc *p;
struct ibcs2_pgrpsys_args *uap;
int *retval;
{
switch (uap->type) {
case 0: /* getpgrp */
*retval = p->p_pgrp->pg_id;
return 0;
case 1: /* setpgrp */
{
struct setpgid_args {
int pid;
int pgid;
} sa;
sa.pid = 0;
sa.pgid = 0;
setpgid(p, &sa, retval);
*retval = p->p_pgrp->pg_id;
return 0;
}
case 2: /* setpgid */
{
struct setpgid_args {
int pid;
int pgid;
} sa;
sa.pid = uap->pid;
sa.pgid = uap->pgid;
return setpgid(p, &sa, retval);
}
case 3: /* setsid */
return setsid(p, NULL, retval);
default:
return EINVAL;
}
}
struct ibcs2_plock_args {
int cmd;
};
#define IBCS2_UNLOCK 0
#define IBCS2_PROCLOCK 1
#define IBCS2_TEXTLOCK 2
#define IBCS2_DATALOCK 4
/*
* XXX - need to check for nested calls
*/
int
ibcs2_plock(p, uap, retval)
struct proc *p;
struct ibcs2_plock_args *uap;
int *retval;
{
int error;
if (error = suser(p->p_ucred, &p->p_acflag))
return EPERM;
switch(uap->cmd) {
case IBCS2_UNLOCK:
case IBCS2_PROCLOCK:
case IBCS2_TEXTLOCK:
case IBCS2_DATALOCK:
return 0; /* XXX - TODO */
}
return EINVAL;
}
#define SCO_A_REBOOT 1
#define SCO_A_SHUTDOWN 2
#define SCO_A_REMOUNT 4
#define SCO_A_CLOCK 8
#define SCO_A_SETCONFIG 128
#define SCO_A_GETDEV 130
#define SCO_AD_HALT 0
#define SCO_AD_BOOT 1
#define SCO_AD_IBOOT 2
#define SCO_AD_PWRDOWN 3
#define SCO_AD_PWRNAP 4
#define SCO_AD_PANICBOOT 1
#define SCO_AD_GETBMAJ 0
#define SCO_AD_GETCMAJ 1
struct ibcs2_uadmin_args {
int cmd;
int func;
caddr_t data;
};
int
ibcs2_uadmin(p, uap, retval)
struct proc *p;
struct ibcs2_uadmin_args *uap;
int *retval;
{
switch(uap->cmd) {
case SCO_A_REBOOT:
case SCO_A_SHUTDOWN:
switch(uap->func) {
case SCO_AD_HALT:
case SCO_AD_PWRDOWN:
case SCO_AD_PWRNAP:
reboot(RB_HALT);
case SCO_AD_BOOT:
case SCO_AD_IBOOT:
reboot(RB_AUTOBOOT);
}
return EINVAL;
case SCO_A_REMOUNT:
case SCO_A_CLOCK:
case SCO_A_SETCONFIG:
return 0;
case SCO_A_GETDEV:
return EINVAL; /* XXX - TODO */
}
return EINVAL;
}
struct ibcs2_sysfs_args {
int cmd;
caddr_t d1;
char *buf;
};
#define IBCS2_GETFSIND 1
#define IBCS2_GETFSTYP 2
#define IBCS2_GETNFSTYP 3
int
ibcs2_sysfs(p, uap, retval)
struct proc *p;
struct ibcs2_sysfs_args *uap;
int *retval;
{
switch(uap->cmd) {
case IBCS2_GETFSIND:
case IBCS2_GETFSTYP:
case IBCS2_GETNFSTYP:
}
return EINVAL; /* XXX - TODO */
}
int
ibcs2_poll(p, uap, retval)
struct proc *p;
void *uap;
int *retval;
{
return EINVAL; /* XXX - TODO */
}
struct ibcs2_kill_args {
int pid;
int signo;
};
int
ibcs2_kill(p, uap, retval)
struct proc *p;
struct ibcs2_kill_args *uap;
int *retval;
{
uap->signo = ibcs2bsd_sig(uap->signo);
if (uap->signo == NOSIG)
return EINVAL;
return kill(p, uap, retval);
}
struct xenix_rdchk_args {
int fd;
};
int
xenix_rdchk(p, uap, retval)
struct proc *p;
struct xenix_rdchk_args *uap;
int *retval;
{
int error;
struct ioctl_args {
int fd;
int com;
caddr_t data;
} sa;
sa.fd = uap->fd;
sa.com = FIONREAD;
sa.data = STACK_ALLOC();
if (error = ioctl(p, &sa, retval))
return error;
*retval = (*((int*)sa.data)) ? 1 : 0;
return 0;
}
struct xenix_chsize_args {
int fd;
long size;
};
int
xenix_chsize(p, uap, retval)
struct proc *p;
struct xenix_chsize_args *uap;
int *retval;
{
struct ftruncate_args {
int fd;
int pad;
off_t length;
} sa;
sa.fd = uap->fd;
sa.pad = 0;
sa.length = uap->size;
return ftruncate(p, &sa, retval);
}
struct xenix_nap_args {
int millisec;
};
int
xenix_nap(p, uap, retval)
struct proc *p;
struct xenix_nap_args *uap;
int *retval;
{
return ENOSYS;
}