NetBSD/gnu/dist/toolchain/sim/d10v/d10v_sim.h

488 lines
13 KiB
C

#include "config.h"
#include <stdio.h>
#include <ctype.h>
#include <limits.h>
#include "ansidecl.h"
#include "callback.h"
#include "opcode/d10v.h"
#include "bfd.h"
#define DEBUG_TRACE 0x00000001
#define DEBUG_VALUES 0x00000002
#define DEBUG_LINE_NUMBER 0x00000004
#define DEBUG_MEMSIZE 0x00000008
#define DEBUG_INSTRUCTION 0x00000010
#define DEBUG_TRAP 0x00000020
#define DEBUG_MEMORY 0x00000040
#ifndef DEBUG
#define DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER)
#endif
extern int d10v_debug;
#include "remote-sim.h"
#include "sim-config.h"
#include "sim-types.h"
typedef unsigned8 uint8;
typedef unsigned16 uint16;
typedef signed16 int16;
typedef unsigned32 uint32;
typedef signed32 int32;
typedef unsigned64 uint64;
typedef signed64 int64;
/* FIXME: D10V defines */
typedef uint16 reg_t;
struct simops
{
long opcode;
int is_long;
long mask;
int format;
int cycles;
int unit;
int exec_type;
void (*func)();
int numops;
int operands[9];
};
enum _ins_type
{
INS_UNKNOWN, /* unknown instruction */
INS_COND_TRUE, /* # times EXExxx executed other instruction */
INS_COND_FALSE, /* # times EXExxx did not execute other instruction */
INS_COND_JUMP, /* # times JUMP skipped other instruction */
INS_CYCLES, /* # cycles */
INS_LONG, /* long instruction (both containers, ie FM == 11) */
INS_LEFTRIGHT, /* # times instruction encoded as L -> R (ie, FM == 01) */
INS_RIGHTLEFT, /* # times instruction encoded as L <- R (ie, FM == 10) */
INS_PARALLEL, /* # times instruction encoded as L || R (ie, RM == 00) */
INS_LEFT, /* normal left instructions */
INS_LEFT_PARALLEL, /* left side of || */
INS_LEFT_COND_TEST, /* EXExx test on left side */
INS_LEFT_COND_EXE, /* execution after EXExxx test on right side succeeded */
INS_LEFT_NOPS, /* NOP on left side */
INS_RIGHT, /* normal right instructions */
INS_RIGHT_PARALLEL, /* right side of || */
INS_RIGHT_COND_TEST, /* EXExx test on right side */
INS_RIGHT_COND_EXE, /* execution after EXExxx test on left side succeeded */
INS_RIGHT_NOPS, /* NOP on right side */
INS_MAX
};
extern unsigned long ins_type_counters[ (int)INS_MAX ];
enum {
SP_IDX = 15,
};
/* Write-back slots */
union slot_data {
unsigned_1 _1;
unsigned_2 _2;
unsigned_4 _4;
unsigned_8 _8;
};
struct slot {
void *dest;
int size;
union slot_data data;
union slot_data mask;
};
enum {
NR_SLOTS = 16,
};
#define SLOT (State.slot)
#define SLOT_NR (State.slot_nr)
#define SLOT_PEND_MASK(DEST, MSK, VAL) \
do \
{ \
SLOT[SLOT_NR].dest = &(DEST); \
SLOT[SLOT_NR].size = sizeof (DEST); \
switch (sizeof (DEST)) \
{ \
case 1: \
SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \
SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \
break; \
case 2: \
SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \
SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \
break; \
case 4: \
SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \
SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \
break; \
case 8: \
SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \
SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \
break; \
} \
SLOT_NR = (SLOT_NR + 1); \
} \
while (0)
#define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL)
#define SLOT_DISCARD() (SLOT_NR = 0)
#define SLOT_FLUSH() \
do \
{ \
int i; \
for (i = 0; i < SLOT_NR; i++) \
{ \
switch (SLOT[i].size) \
{ \
case 1: \
*(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \
*(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \
break; \
case 2: \
*(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \
*(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \
break; \
case 4: \
*(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \
*(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \
break; \
case 8: \
*(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \
*(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \
break; \
} \
} \
SLOT_NR = 0; \
} \
while (0)
#define SLOT_DUMP() \
do \
{ \
int i; \
for (i = 0; i < SLOT_NR; i++) \
{ \
switch (SLOT[i].size) \
{ \
case 1: \
printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \
(long) SLOT[i].dest, \
(unsigned) SLOT[i].mask._1, \
(unsigned) SLOT[i].data._1); \
break; \
case 2: \
printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \
(long) SLOT[i].dest, \
(unsigned) SLOT[i].mask._2, \
(unsigned) SLOT[i].data._2); \
break; \
case 4: \
printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \
(long) SLOT[i].dest, \
(unsigned) SLOT[i].mask._4, \
(unsigned) SLOT[i].data._4); \
break; \
case 8: \
printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \
(long) SLOT[i].dest, \
(unsigned) (SLOT[i].mask._8 >> 32), \
(unsigned) SLOT[i].mask._8, \
(unsigned) (SLOT[i].data._8 >> 32), \
(unsigned) SLOT[i].data._8); \
break; \
} \
} \
} \
while (0)
/* d10v memory: There are three separate d10v memory regions IMEM,
UMEM and DMEM. The IMEM and DMEM are further broken down into
blocks (very like VM pages). */
enum
{
IMAP_BLOCK_SIZE = 0x20000,
DMAP_BLOCK_SIZE = 0x4000,
};
/* Implement the three memory regions using sparse arrays. Allocate
memory using ``segments''. A segment must be at least as large as
a BLOCK - ensures that an access that doesn't cross a block
boundary can't cross a segment boundary */
enum
{
SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */
IMEM_SEGMENTS = 8, /* 1MB */
DMEM_SEGMENTS = 8, /* 1MB */
UMEM_SEGMENTS = 128 /* 16MB */
};
struct d10v_memory
{
uint8 *insn[IMEM_SEGMENTS];
uint8 *data[DMEM_SEGMENTS];
uint8 *unif[UMEM_SEGMENTS];
uint8 fault[16];
};
struct _state
{
reg_t regs[16]; /* general-purpose registers */
#define GPR(N) (State.regs[(N)] + 0)
#define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL))
#define GPR32(N) ((((uint32) State.regs[(N) + 0]) << 16) \
| (uint16) State.regs[(N) + 1])
#define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0)
reg_t cregs[16]; /* control registers */
#define CREG(N) (State.cregs[(N)] + 0)
#define SET_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 0)
#define SET_HW_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 1)
reg_t sp[2]; /* holding area for SPI(0)/SPU(1) */
#define HELD_SP(N) (State.sp[(N)] + 0)
#define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL))
int64 a[2]; /* accumulators */
#define ACC(N) (State.a[(N)] + 0)
#define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40)
/* writeback info */
struct slot slot[NR_SLOTS];
int slot_nr;
/* trace data */
struct {
uint16 psw;
} trace;
uint8 exe;
int exception;
int pc_changed;
/* NOTE: everything below this line is not reset by
sim_create_inferior() */
struct d10v_memory mem;
enum _ins_type ins_type;
} State;
extern host_callback *d10v_callback;
extern uint16 OP[4];
extern struct simops Simops[];
extern asection *text;
extern bfd_vma text_start;
extern bfd_vma text_end;
extern bfd *prog_bfd;
enum
{
PSW_CR = 0,
BPSW_CR = 1,
PC_CR = 2,
BPC_CR = 3,
DPSW_CR = 4,
DPC_CR = 5,
RPT_C_CR = 7,
RPT_S_CR = 8,
RPT_E_CR = 9,
MOD_S_CR = 10,
MOD_E_CR = 11,
IBA_CR = 14,
};
enum
{
PSW_SM_BIT = 0x8000,
PSW_EA_BIT = 0x2000,
PSW_DB_BIT = 0x1000,
PSW_DM_BIT = 0x0800,
PSW_IE_BIT = 0x0400,
PSW_RP_BIT = 0x0200,
PSW_MD_BIT = 0x0100,
PSW_FX_BIT = 0x0080,
PSW_ST_BIT = 0x0040,
PSW_F0_BIT = 0x0008,
PSW_F1_BIT = 0x0004,
PSW_C_BIT = 0x0001,
};
#define PSW CREG (PSW_CR)
#define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL))
#define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL))
#define SET_PSW_BIT(MASK,VAL) move_to_cr (PSW_CR, ~(MASK), (VAL) ? (MASK) : 0, 1)
#define PSW_SM ((PSW & PSW_SM_BIT) != 0)
#define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL))
#define PSW_EA ((PSW & PSW_EA_BIT) != 0)
#define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL))
#define PSW_DB ((PSW & PSW_DB_BIT) != 0)
#define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL))
#define PSW_DM ((PSW & PSW_DM_BIT) != 0)
#define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL))
#define PSW_IE ((PSW & PSW_IE_BIT) != 0)
#define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL))
#define PSW_RP ((PSW & PSW_RP_BIT) != 0)
#define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL))
#define PSW_MD ((PSW & PSW_MD_BIT) != 0)
#define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL))
#define PSW_FX ((PSW & PSW_FX_BIT) != 0)
#define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL))
#define PSW_ST ((PSW & PSW_ST_BIT) != 0)
#define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL))
#define PSW_F0 ((PSW & PSW_F0_BIT) != 0)
#define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL))
#define PSW_F1 ((PSW & PSW_F1_BIT) != 0)
#define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL))
#define PSW_C ((PSW & PSW_C_BIT) != 0)
#define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL))
/* See simopsc.:move_to_cr() for registers that can not be read-from
or assigned-to directly */
#define PC CREG (PC_CR)
#define SET_PC(VAL) SET_CREG (PC_CR, (VAL))
#define BPSW CREG (BPSW_CR)
#define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL))
#define BPC CREG (BPC_CR)
#define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL))
#define DPSW CREG (DPSW_CR)
#define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL))
#define DPC CREG (DPC_CR)
#define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL))
#define RPT_C CREG (RPT_C_CR)
#define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL))
#define RPT_S CREG (RPT_S_CR)
#define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL))
#define RPT_E CREG (RPT_E_CR)
#define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL))
#define MOD_S CREG (MOD_S_CR)
#define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL))
#define MOD_E CREG (MOD_E_CR)
#define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL))
#define IBA CREG (IBA_CR)
#define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL))
#define SIG_D10V_STOP -1
#define SIG_D10V_EXIT -2
#define SIG_D10V_BUS -3
#define SEXT3(x) ((((x)&0x7)^(~3))+4)
/* sign-extend a 4-bit number */
#define SEXT4(x) ((((x)&0xf)^(~7))+8)
/* sign-extend an 8-bit number */
#define SEXT8(x) ((((x)&0xff)^(~0x7f))+0x80)
/* sign-extend a 16-bit number */
#define SEXT16(x) ((((x)&0xffff)^(~0x7fff))+0x8000)
/* sign-extend a 32-bit number */
#define SEXT32(x) ((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000))
/* sign extend a 40 bit number */
#define SEXT40(x) ((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000))
/* sign extend a 44 bit number */
#define SEXT44(x) ((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000))
/* sign extend a 56 bit number */
#define SEXT56(x) ((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000))
/* sign extend a 60 bit number */
#define SEXT60(x) ((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000))
#define MAX32 SIGNED64(0x7fffffff)
#define MIN32 SIGNED64(0xff80000000)
#define MASK32 SIGNED64(0xffffffff)
#define MASK40 SIGNED64(0xffffffffff)
/* The alignment of MOD_E in the following macro depends upon "i"
always being a power of 2. */
#define INC_ADDR(x,i) \
do \
{ \
int test_i = i < 0 ? i : ~((i) - 1); \
if (PSW_MD && GPR (x) == (MOD_E & test_i)) \
SET_GPR (x, MOD_S); \
else \
SET_GPR (x, GPR (x) + (i)); \
} \
while (0)
extern uint8 *dmem_addr (uint16 offset);
extern uint8 *imem_addr PARAMS ((uint32));
extern bfd_vma decode_pc PARAMS ((void));
#define RB(x) (*(dmem_addr(x)))
#define SB(addr,data) ( RB(addr) = (data & 0xff))
#if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE)
#define ENDIAN_INLINE static __inline__
#include "endian.c"
#undef ENDIAN_INLINE
#else
extern uint32 get_longword PARAMS ((uint8 *));
extern uint16 get_word PARAMS ((uint8 *));
extern int64 get_longlong PARAMS ((uint8 *));
extern void write_word PARAMS ((uint8 *addr, uint16 data));
extern void write_longword PARAMS ((uint8 *addr, uint32 data));
extern void write_longlong PARAMS ((uint8 *addr, int64 data));
#endif
#define SW(addr,data) write_word(dmem_addr(addr),data)
#define RW(x) get_word(dmem_addr(x))
#define SLW(addr,data) write_longword(dmem_addr(addr),data)
#define RLW(x) get_longword(dmem_addr(x))
#define READ_16(x) get_word(x)
#define WRITE_16(addr,data) write_word(addr,data)
#define READ_64(x) get_longlong(x)
#define WRITE_64(addr,data) write_longlong(addr,data)
#define JMP(x) do { SET_PC (x); State.pc_changed = 1; } while (0)
#define RIE_VECTOR_START 0xffc2
#define AE_VECTOR_START 0xffc3
#define TRAP_VECTOR_START 0xffc4 /* vector for trap 0 */
#define DBT_VECTOR_START 0xffd4
#define SDBT_VECTOR_START 0xffd5
/* Scedule a store of VAL into cr[CR]. MASK indicates the bits in
cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) |
(VAL & ~MASK)). In addition, unless PSW_HW_P, a VAL intended for
PSW is masked for zero bits. */
extern reg_t move_to_cr (int cr, reg_t mask, reg_t val, int psw_hw_p);