NetBSD/sys/arch/i386/isa/intr.c
1994-10-27 04:14:23 +00:00

295 lines
8.0 KiB
C

/* $NetBSD: intr.c,v 1.23 1994/10/27 04:17:44 cgd Exp $ */
/*-
* Copyright (c) 1993, 1994 Charles Hannum.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)isa.c 7.2 (Berkeley) 5/13/91
*/
#include <sys/param.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <machine/pio.h>
#include <machine/cpufunc.h>
#include <i386/isa/isareg.h>
#include <i386/isa/isavar.h>
#include <i386/isa/icu.h>
#define IDTVEC(name) __CONCAT(X,name)
/* default interrupt vector table entries */
extern IDTVEC(wild), IDTVEC(intr)[], IDTVEC(fast)[];
extern struct gate_descriptor idt[];
/*
* Fill in default interrupt table (in case of spuruious interrupt
* during configuration of kernel, setup interrupt control unit
*/
void
isa_defaultirq()
{
int i;
imask[IPL_BIO] |= SIR_CLOCKMASK;
imask[IPL_NET] |= SIR_NETMASK;
imask[IPL_TTY] |= SIR_TTYMASK;
imask[IPL_CLOCK] |= SIR_CLOCKMASK;
/* icu vectors */
for (i = 0; i < ICU_LEN; i++)
setgate(&idt[ICU_OFFSET + i], IDTVEC(intr)[i], 0, SDT_SYS386IGT,
SEL_KPL);
/* initialize 8259's */
outb(IO_ICU1, 0x11); /* reset; program device, four bytes */
outb(IO_ICU1+1, ICU_OFFSET); /* starting at this vector index */
outb(IO_ICU1+1, IRQ_SLAVE); /* slave on line 2 */
#ifdef AUTO_EOI_1
outb(IO_ICU1+1, 2 | 1); /* auto EOI, 8086 mode */
#else
outb(IO_ICU1+1, 1); /* 8086 mode */
#endif
outb(IO_ICU1+1, 0xff); /* leave interrupts masked */
outb(IO_ICU1, 0x68); /* special mask mode (if available) */
outb(IO_ICU1, 0x0a); /* Read IRR by default. */
#ifdef REORDER_IRQ
outb(IO_ICU1, 0xc0 | (3 - 1)); /* pri order 3-7, 0-2 (com2 first) */
#endif
outb(IO_ICU2, 0x11); /* reset; program device, four bytes */
outb(IO_ICU2+1, ICU_OFFSET+8); /* staring at this vector index */
outb(IO_ICU2+1, ffs(IRQ_SLAVE)-1);
#ifdef AUTO_EOI_2
outb(IO_ICU2+1, 2 | 1); /* auto EOI, 8086 mode */
#else
outb(IO_ICU2+1, 1); /* 8086 mode */
#endif
outb(IO_ICU2+1, 0xff); /* leave interrupts masked */
outb(IO_ICU2, 0x68); /* special mask mode (if available) */
outb(IO_ICU2, 0x0a); /* Read IRR by default. */
}
/*
* Handle a NMI, possibly a machine check.
* return true to panic system, false to ignore.
*/
int
isa_nmi()
{
log(LOG_CRIT, "NMI port 61 %x, port 70 %x\n", inb(0x61), inb(0x70));
return(0);
}
/*
* Caught a stray interrupt, notify
*/
void
isa_strayintr(irq)
int irq;
{
static u_long strays, wilds;
/*
* Stray interrupts on irq 7 occur when an interrupt line is raised
* and then lowered before the CPU acknowledges it. This generally
* means either the device is screwed or something is cli'ing too
* long and it's timing out.
*
* -1 is passed by the generic handler for out of range exceptions,
* since we don't really want 208 little vectors just to get the
* message right. (It wouldn't be all that much code, but why bother?)
*/
if (irq == -1) {
++wilds;
log(LOG_ERR, "wild interrupt\n");
} else {
if (++strays <= 5)
log(LOG_ERR, "stray interrupt %d%s\n", irq,
strays >= 5 ? "; stopped logging" : "");
}
}
int fastvec;
int intrmask[ICU_LEN], intrlevel[ICU_LEN];
struct intrhand *intrhand[ICU_LEN];
/*
* Recalculate the interrupt masks from scratch.
* We could code special registry and deregistry versions of this function that
* would be faster, but the code would be nastier, and we don't expect this to
* happen very much anyway.
*/
void
intr_calculatemasks()
{
int irq, level;
struct intrhand *q;
/* First, figure out which levels each IRQ uses. */
for (irq = 0; irq < ICU_LEN; irq++) {
register int levels = 0;
for (q = intrhand[irq]; q; q = q->ih_next)
if (q->ih_level != IPL_NONE)
levels |= 1 << q->ih_level;
intrlevel[irq] = levels;
}
/* Then figure out which IRQs use each level. */
for (level = 0; level < 4; level++) {
register int irqs = 0;
for (irq = 0; irq < ICU_LEN; irq++)
if (intrlevel[irq] & (1 << level))
irqs |= 1 << irq;
/* Preserve any softintr dependencies we set up earlier. */
imask[level] = (imask[level] & -(1 << ICU_LEN)) | irqs;
}
#include "sl.h"
#include "ppp.h"
#if NSL > 0 || NPPP > 0
/* In the presence of SLIP or PPP, splimp > spltty. */
imask[IPL_NET] |= imask[IPL_TTY];
#endif
/* And eventually calculate the complete masks. */
for (irq = 0; irq < ICU_LEN; irq++) {
register int irqs = 1 << irq;
for (q = intrhand[irq]; q; q = q->ih_next)
if (q->ih_level != IPL_NONE)
irqs |= imask[q->ih_level];
intrmask[irq] = irqs;
}
/* Lastly, determine which IRQs are actually in use. */
{
register int irqs = 0;
for (irq = 0; irq < ICU_LEN; irq++)
if (intrhand[irq])
irqs |= 1 << irq;
if (irqs >= 0x100) /* any IRQs >= 8 in use */
irqs |= IRQ_SLAVE;
imen = ~irqs;
SET_ICUS();
}
}
int
fakeintr(arg)
void *arg;
{
return 0;
}
/*
* Set up an interrupt handler to start being called.
*/
void
intr_establish(mask, ih)
int mask;
struct intrhand *ih;
{
int irq;
struct intrhand **p, *q;
static struct intrhand fakehand = {fakeintr};
irq = ffs(mask) - 1;
if (irq < 0 || irq > ICU_LEN)
panic("intr_establish: bogus irq");
if (fastvec & mask)
panic("intr_establish: irq is already fast vector");
/*
* Figure out where to put the handler.
* This is O(N^2), but we want to preserve the order, and N is
* generally small.
*/
for (p = &intrhand[irq]; (q = *p) != NULL; p = &q->ih_next)
;
/*
* Actually install a fake handler momentarily, since we might be doing
* this with interrupts enabled and don't want the real routine called
* until masking is set up.
*/
fakehand.ih_level = ih->ih_level;
*p = &fakehand;
intr_calculatemasks();
/*
* Poke the real handler in now.
*/
ih->ih_count = 0;
ih->ih_next = NULL;
*p = ih;
}
/*
* Deregister an interrupt handler.
*/
void
intr_disestablish(mask, ih)
int mask;
struct intrhand *ih;
{
int irq;
struct intrhand **p, *q;
irq = ffs(mask) - 1;
if (irq < 0 || irq > ICU_LEN)
panic("intr_disestablish: bogus irq");
if (fastvec & mask)
fastvec &= ~mask;
/*
* Remove the handler from the chain.
* This is O(n^2), too.
*/
for (p = &intrhand[irq]; (q = *p) != NULL && q != ih; p = &q->ih_next)
;
if (q)
*p = q->ih_next;
else
panic("intr_disestablish: handler not registered");
intr_calculatemasks();
}