NetBSD/sys/arch/sandpoint/stand/netboot/rge.c

417 lines
13 KiB
C

/* $NetBSD: rge.c,v 1.13 2008/05/30 14:54:16 nisimura Exp $ */
/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>
#include "globals.h"
/*
* - reverse endian access every CSR.
* - no vtophys() translation, vaddr_t == paddr_t.
* - PIPT writeback cache aware.
*/
#define CSR_WRITE_1(l, r, v) *(volatile uint8_t *)((l)->csr+(r)) = (v)
#define CSR_READ_1(l, r) *(volatile uint8_t *)((l)->csr+(r))
#define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v))
#define CSR_READ_2(l, r) in16rb((l)->csr+(r))
#define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v))
#define CSR_READ_4(l, r) in32rb((l)->csr+(r))
#define VTOPHYS(va) (uint32_t)(va)
#define DEVTOV(pa) (uint32_t)(pa)
#define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n) delay(n)
#define ALLOC(T,A) (T *)((unsigned)alloc(sizeof(T) + (A)) &~ ((A) - 1))
void *rge_init(unsigned, void *);
int rge_send(void *, char *, unsigned);
int rge_recv(void *, char *, unsigned, unsigned);
struct desc {
uint32_t xd0, xd1, xd2, xd3;
};
#define T0_OWN 0x80000000 /* loaded for HW to send */
#define T0_EOR 0x40000000 /* end of ring */
#define T0_FS 0x20000000 /* first descriptor */
#define T0_LS 0x10000000 /* last descriptor */
#define T0_LSGEN 0x08000000 /* TCP segmentation offload */
#define T0_IPCS 0x00040000 /* generate IP checksum */
#define T0_UDPCS 0x00020000 /* generate UDP checksum */
#define T0_TCPCS 0x00010000 /* generate TCP checksum */
#define T0_FRMASK 0x0000ffff
#define T1_TAGC 0x00020000 /* insert VTAG */
#define T1_VTAG 0x0000ffff /* VTAG value */
#define R0_OWN 0x80000000 /* empty for HW to load anew */
#define R0_EOR 0x40000000 /* end mark to form a ring */
#define R0_BUFLEN 0x00003ff8 /* max frag. size to receive */
/* RX status upon Rx completed */
#define R0_FS 0x20000000 /* start of frame */
#define R0_LS 0x10000000 /* end of frame */
#define R0_RES 0x00200000 /* Rx error summary */
#define R0_RUNT 0x00100000 /* runt frame received */
#define R0_CRC 0x00080000 /* CRC error found */
#define R0_PID 0x00060000 /* protocol type; 1:TCP, 2:UDP, 3:IP */
#define R0_IPF 0x00010000 /* IP checksum bad */
#define R0_UDPF 0x00008000 /* UDP checksum bad */
#define R0_TCPF 0x00004000 /* TCP checksum bad */
#define R0_FRMASK 0x00003fff /* 13:0 frame length */
#define R1_TAVA 0x00010000 /* VTAG exists */
#define R1_VTAG 0x0000ffff /* TAG value */
#define RGE_IDR0 0x00 /* MAC address [0] */
#define RGE_IDR1 0x01 /* MAC address [1] */
#define RGE_IDR2 0x02 /* MAC address [2] */
#define RGE_IDR3 0x03 /* MAC address [3] */
#define RGE_IDR4 0x04 /* MAC address [4] */
#define RGE_IDR5 0x05 /* MAC address [5] */
#define RGE_MAR0 0x08 /* multicast filter [31:00] */
#define RGE_MAR1 0x0c /* multicast filter [63:32] */
#define RGE_TNPDS 0x20 /* Tx descriptor base paddr */
#define RGE_THPDS 0x28 /* high pro. Tx des. base paddr */
#define RGE_CR 0x37 /* command */
#define CR_RESET (1U << 4) /* reset S1C */
#define CR_RXEN (1U << 3) /* Rx enable */
#define CR_TXEN (1U << 2) /* Tx enable */
#define RGE_TPPOLL 0x38 /* activate desc polling */
#define RGE_IMR 0x3c /* interrupt mask */
#define RGE_ISR 0x3e /* interrupt status */
#define ISR_TXERR 0x0088 /* Tx error conditions */
#define ISR_RXERR 0x0072 /* Rx error conditions */
#define ISR_LNKCHG (1U << 5) /* link status change found */
#define ISR_TXOK (1U << 2) /* Tx done */
#define ISR_RXOK (1U << 0) /* Rx frame available */
#define RGE_TCR 0x40 /* Tx control */
#define TCR_MAXDMA 0x0700 /* 10:8 Tx DMA burst size */
#define RGE_RCR 0x44 /* Rx control */
#define RCR_RXTFH 0xe000 /* 15:13 Rx FIFO threshold */
#define RCR_MAXDMA 0x0700 /* 10:8 Rx DMA burst size */
#define RCR_AE (1U << 5) /* accept error frame */
#define RCR_RE (1U << 4) /* accept runt frame */
#define RCR_AB (1U << 3) /* accept broadcast frame */
#define RCR_AM (1U << 2) /* accept multicast frame */
#define RCR_APM (1U << 1) /* accept unicast frame */
#define RCR_AAP (1U << 0) /* promiscuous */
#define RGE_PHYAR 0x60 /* PHY access */
#define RGE_PHYSR 0x6c /* PHY status */
#define RGE_RMS 0xda /* Rx maximum frame size */
#define RGE_CCCR 0xe0 /* C+CR */
#define CCCR_VLAN (1U << 6) /* Rx VTAG removal */
#define CCCR_CSUM (1U << 5) /* Rx checksum offload */
#define RGE_RDSAR 0xe4 /* Rx descriptor base paddr */
#define RGE_ETTHR 0xec /* Tx threshold */
#define FRAMESIZE 1536
struct local {
struct desc txd;
struct desc rxd[2];
uint8_t rxstore[2][FRAMESIZE];
unsigned csr, rx;
unsigned phy, bmsr, anlpar;
unsigned tcr, rcr;
};
static int mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
static void mii_dealan(struct local *, unsigned);
int
rge_match(unsigned tag, void *data)
{
unsigned v;
v = pcicfgread(tag, PCI_ID_REG);
switch (v) {
case PCI_DEVICE(0x10ec, 0x8169):
return 1;
}
return 0;
}
void *
rge_init(unsigned tag, void *data)
{
unsigned val;
struct local *l;
struct desc *txd, *rxd;
uint8_t *en = data;
val = pcicfgread(tag, PCI_ID_REG);
if (PCI_DEVICE(0x10ec, 0x8169) != val)
return NULL;
l = ALLOC(struct local, 256); /* desc alignment */
memset(l, 0, sizeof(struct local));
l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */
CSR_WRITE_1(l, RGE_CR, CR_RESET);
do {
val = CSR_READ_1(l, RGE_CR);
} while (val & CR_RESET);
mii_initphy(l);
en = data;
en[0] = CSR_READ_1(l, RGE_IDR0);
en[1] = CSR_READ_1(l, RGE_IDR1);
en[2] = CSR_READ_1(l, RGE_IDR2);
en[3] = CSR_READ_1(l, RGE_IDR3);
en[4] = CSR_READ_1(l, RGE_IDR4);
en[5] = CSR_READ_1(l, RGE_IDR5);
printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
en[0], en[1], en[2], en[3], en[4], en[5]);
printf("PHY %d (%04x.%04x)\n", l->phy,
mii_read(l, l->phy, 2), mii_read(l, l->phy, 3));
mii_dealan(l, 5);
/* speed and duplexity can be seen in PHYSR */
val = CSR_READ_1(l, RGE_PHYSR);
if (val & (1U << 4)) printf("1000Mbps");
if (val & (1U << 3)) printf("100Mbps");
if (val & (1U << 2)) printf("10Mbps");
if (val & (1U << 0)) printf("-FDX\n");
txd = &l->txd;
rxd = &l->rxd[0];
rxd[0].xd0 = htole32(R0_OWN | FRAMESIZE);
rxd[0].xd2 = htole32(VTOPHYS(l->rxstore[0]));
rxd[1].xd0 = htole32(R0_OWN | R0_EOR | FRAMESIZE);
rxd[1].xd2 = htole32(VTOPHYS(l->rxstore[1]));
wbinv(l, sizeof(struct local));
l->rx = 0;
l->tcr = (03 << 24) | (07 << 8);
l->rcr = (07 << 13) | (07 << 8) | RCR_APM;
CSR_WRITE_1(l, RGE_CR, CR_TXEN | CR_RXEN);
CSR_WRITE_1(l, RGE_ETTHR, 0x3f);
CSR_WRITE_2(l, RGE_RMS, 0x8000);
CSR_WRITE_4(l, RGE_TCR, l->tcr);
CSR_WRITE_4(l, RGE_RCR, l->rcr);
CSR_WRITE_4(l, RGE_TNPDS, VTOPHYS(txd));
CSR_WRITE_4(l, RGE_RDSAR, VTOPHYS(rxd));
CSR_WRITE_4(l, RGE_TNPDS + 4, 0);
CSR_WRITE_4(l, RGE_RDSAR + 4, 0);
CSR_WRITE_2(l, RGE_ISR, ~0);
CSR_WRITE_2(l, RGE_IMR, 0);
return l;
}
int
rge_send(void *dev, char *buf, unsigned len)
{
struct local *l = dev;
volatile struct desc *txd;
unsigned loop;
wbinv(buf, len);
txd = &l->txd;
txd->xd2 = htole32(VTOPHYS(buf));
txd->xd1 = 0;
txd->xd0 = htole32(T0_OWN|T0_EOR|T0_FS|T0_LS| (len & T0_FRMASK));
wbinv(txd, sizeof(struct desc));
CSR_WRITE_1(l, RGE_TPPOLL, 0x40);
loop = 100;
do {
if ((le32toh(txd->xd0) & T0_OWN) == 0)
goto done;
DELAY(10);
inv(txd, sizeof(struct desc));
} while (--loop > 0);
printf("xmit failed\n");
return -1;
done:
return len;
}
int
rge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
struct local *l = dev;
volatile struct desc *rxd;
unsigned bound, rxstat, len;
uint8_t *ptr;
bound = 1000 * timo;
printf("recving with %u sec. timeout\n", timo);
again:
rxd = &l->rxd[l->rx];
do {
inv(rxd, sizeof(struct desc));
rxstat = le32toh(rxd->xd0);
if ((rxstat & R0_OWN) == 0)
goto gotone;
DELAY(1000); /* 1 milli second */
} while (--bound > 0);
errno = 0;
return -1;
gotone:
if (rxstat & R0_RES) {
rxd->xd0 &= htole32(R0_EOR);
rxd->xd0 |= htole32(R0_OWN | FRAMESIZE);
wbinv(rxd, sizeof(struct desc));
l->rx ^= 1;
goto again;
}
len = rxstat & R0_FRMASK;
if (len > maxlen)
len = maxlen;
ptr = l->rxstore[l->rx];
inv(ptr, len);
memcpy(buf, ptr, len);
rxd->xd0 &= htole32(R0_EOR);
rxd->xd0 |= htole32(R0_OWN | FRAMESIZE);
wbinv(rxd, sizeof(struct desc));
l->rx ^= 1;
return len;
}
static int
mii_read(struct local *l, int phy, int reg)
{
unsigned v, loop;
v = reg << 16;
CSR_WRITE_4(l, RGE_PHYAR, v);
loop = 100;
do {
v = CSR_READ_4(l, RGE_PHYAR);
} while ((v & (1U << 31)) == 0); /* wait for 0 -> 1 */
return v;
}
static void
mii_write(struct local *l, int phy, int reg, int data)
{
unsigned v;
v = (reg << 16) | (data & 0xffff) | (1U << 31);
CSR_WRITE_4(l, RGE_PHYAR, v);
do {
v = CSR_READ_4(l, RGE_PHYAR);
} while (v & (1U << 31)); /* wait for 1 -> 0 */
}
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define BMCR_RESET 0x8000 /* reset */
#define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
#define BMCR_ISO 0x0400 /* isolate */
#define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
#define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
#define BMSR_LINK 0x0004 /* Link status */
#define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
#define ANAR_FC 0x0400 /* local device supports PAUSE */
#define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
#define ANAR_TX 0x0080 /* local device supports 100bTx */
#define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
#define ANAR_10 0x0020 /* local device supports 10bT */
#define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
#define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
#define MII_GTCR 0x09 /* 1000baseT control */
#define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */
#define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */
#define MII_GTSR 0x0a /* 1000baseT status */
#define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */
#define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */
#define GLPA_ASM_DIR 0x0200 /* link partner asym. pause dir. capable */
static void
mii_initphy(struct local *l)
{
int phy, ctl, sts, bound;
for (phy = 0; phy < 32; phy++) {
ctl = mii_read(l, phy, MII_BMCR);
sts = mii_read(l, phy, MII_BMSR);
if (ctl != 0xffff && sts != 0xffff)
goto found;
}
printf("MII: no PHY found\n");
return;
found:
ctl = mii_read(l, phy, MII_BMCR);
mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
bound = 100;
do {
DELAY(10);
ctl = mii_read(l, phy, MII_BMCR);
if (ctl == 0xffff) {
printf("MII: PHY %d has died after reset\n", phy);
return;
}
} while (bound-- > 0 && (ctl & BMCR_RESET));
if (bound == 0) {
printf("PHY %d reset failed\n", phy);
}
ctl &= ~BMCR_ISO;
mii_write(l, phy, MII_BMCR, ctl);
sts = mii_read(l, phy, MII_BMSR) |
mii_read(l, phy, MII_BMSR); /* read twice */
l->phy = phy;
l->bmsr = sts;
}
void
mii_dealan(struct local *l, unsigned timo)
{
unsigned anar, gtcr, bound;
anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
anar |= ANAR_FC;
gtcr = GANA_1000TFDX | GANA_1000THDX;
mii_write(l, l->phy, MII_ANAR, anar);
mii_write(l, l->phy, MII_GTCR, gtcr);
mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
l->anlpar = 0;
bound = getsecs() + timo;
do {
l->bmsr = mii_read(l, l->phy, MII_BMSR) |
mii_read(l, l->phy, MII_BMSR); /* read twice */
if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
break;
}
DELAY(10 * 1000);
} while (getsecs() < bound);
return;
}