NetBSD/sys/arch/mac68k/mac68k/vm_machdep.c

405 lines
11 KiB
C

/* $NetBSD: vm_machdep.c,v 1.26 1998/01/06 07:49:44 thorpej Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
*
* @(#)vm_machdep.c 8.6 (Berkeley) 1/12/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/user.h>
#include <sys/vnode.h>
#include <sys/core.h>
#include <sys/exec.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <machine/cpu.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include <machine/reg.h>
void savectx __P((struct pcb *));
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the kernel stack and pcb, making the child
* ready to run, and marking it so that it can return differently
* than the parent. Returns 1 in the child process, 0 in the parent.
* We currently double-map the user area so that the stack is at the same
* address in each process; in the future we will probably relocate
* the frame pointers on the stack after copying.
*/
void
cpu_fork(p1, p2)
register struct proc *p1, *p2;
{
void child_return __P((struct proc *, struct frame)); /* XXX */
register struct pcb *pcb = &p2->p_addr->u_pcb;
register struct trapframe *tf;
register struct switchframe *sf;
extern struct pcb *curpcb;
p2->p_md.md_flags = p1->p_md.md_flags;
/* Sync curpcb (which is presumably p1's PCB) and copy it to p2. */
savectx(curpcb);
*pcb = p1->p_addr->u_pcb;
/*
* Copy the trap frame and arrange for the child to return directly
* through return_to_user().
*/
tf = (struct trapframe *)((u_int)p2->p_addr + USPACE) -1;
p2->p_md.md_regs = (int *)tf;
*tf = *(struct trapframe *)p1->p_md.md_regs;
sf = (struct switchframe *)tf - 1;
sf->sf_pc = (u_int)proc_trampoline;
pcb->pcb_regs[6] = (int)child_return; /* A2 */
pcb->pcb_regs[7] = (int)p2; /* A3 */
pcb->pcb_regs[11] = (int)sf; /* SSP */
}
/*
* cpu_set_kpc
* Arrange for in-kernel execution of a process to continue at the
* named PC as if the code at that address had been called as a function
* with one argument--the named process's process pointer.
*
* Note that it's assumed that whne the named process returns, rei()
* should be invoked to return to user mode.
*/
void
cpu_set_kpc(p, pc)
struct proc *p;
void (*pc) __P((struct proc *));
{
struct pcb *pcbp;
struct switchframe *sf;
pcbp = &p->p_addr->u_pcb;
sf = (struct switchframe *) pcbp->pcb_regs[11];
sf->sf_pc = (u_int) proc_trampoline;
pcbp->pcb_regs[6] = (int)pc; /* A2 */
pcbp->pcb_regs[7] = (int)p; /* A3 */
}
void switch_exit __P((struct proc *));
/*
* cpu_exit is called as the last action during exit.
* We release the address space and machine-dependent resources,
* block context switches and then call switch_exit() which will
* free our stack and user area and switch to another process.
* Thus, we never return.
*/
volatile void
cpu_exit(p)
struct proc *p;
{
vmspace_free(p->p_vmspace);
(void) splhigh();
cnt.v_swtch++;
switch_exit(p);
for(;;); /* Get rid of a compile warning */
/* NOTREACHED */
}
/*
* Dump the machine specific segment at the start of a core dump.
* This means the CPU and FPU registers. The format used here is
* the same one ptrace uses, so gdb can be machine independent.
*
* XXX - Generate Sun format core dumps for Sun executables?
*/
struct md_core {
struct reg intreg;
struct fpreg freg;
};
int
cpu_coredump(p, vp, cred, chdr)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
struct core *chdr;
{
int error;
struct md_core md_core;
struct coreseg cseg;
register struct user *up = p->p_addr;
register i;
CORE_SETMAGIC(*chdr, COREMAGIC, MID_M68K, 0);
chdr->c_hdrsize = ALIGN(sizeof(*chdr));
chdr->c_seghdrsize = ALIGN(sizeof(cseg));
chdr->c_cpusize = sizeof(md_core);
/* Save integer registers. */
{
register struct frame *f;
f = (struct frame*) p->p_md.md_regs;
for (i = 0; i < 16; i++) {
md_core.intreg.r_regs[i] = f->f_regs[i];
}
md_core.intreg.r_sr = f->f_sr;
md_core.intreg.r_pc = f->f_pc;
}
if (fputype) {
register struct fpframe *f;
f = &up->u_pcb.pcb_fpregs;
m68881_save(f);
for (i = 0; i < (8*3); i++) {
md_core.freg.r_regs[i] = f->fpf_regs[i];
}
md_core.freg.r_fpcr = f->fpf_fpcr;
md_core.freg.r_fpsr = f->fpf_fpsr;
md_core.freg.r_fpiar = f->fpf_fpiar;
} else {
bzero((caddr_t)&md_core.freg, sizeof(md_core.freg));
}
CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_M68K, CORE_CPU);
cseg.c_addr = 0;
cseg.c_size = chdr->c_cpusize;
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
(off_t)chdr->c_hdrsize, UIO_SYSSPACE,
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
if (error)
return error;
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core),
(off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
if (!error)
chdr->c_nseg++;
return error;
}
/*
* Move pages from one kernel virtual address to another.
* Both addresses are assumed to reside in the Sysmap,
* and size must be a multiple of CLSIZE.
*/
void
pagemove(from, to, size)
register caddr_t from, to;
size_t size;
{
register vm_offset_t pa;
#ifdef DEBUG
if (size % PAGE_SIZE)
panic("pagemove");
#endif
while (size > 0) {
pa = pmap_extract(pmap_kernel(), (vm_offset_t) from);
#ifdef DEBUG
if (pa == 0)
panic("pagemove 2");
if (pmap_extract(pmap_kernel(), (vm_offset_t) to) != 0)
panic("pagemove 3");
#endif
pmap_remove(pmap_kernel(),
(vm_offset_t)from, (vm_offset_t) from + PAGE_SIZE);
pmap_enter(pmap_kernel(),
(vm_offset_t)to, pa, VM_PROT_READ|VM_PROT_WRITE, 1);
from += PAGE_SIZE;
to += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
/*
* Map `size' bytes of physical memory starting at `paddr' into
* kernel VA space at `vaddr'. Read/write and cache-inhibit status
* are specified by `prot'.
*/
void
physaccess(vaddr, paddr, size, prot)
caddr_t vaddr, paddr;
register int size, prot;
{
register pt_entry_t *pte;
register u_int page;
pte = kvtopte(vaddr);
page = (u_int)paddr & PG_FRAME;
for (size = btoc(size); size; size--) {
*pte++ = PG_V | prot | page;
page += NBPG;
}
TBIAS();
}
void
physunaccess(vaddr, size)
caddr_t vaddr;
register int size;
{
register pt_entry_t *pte;
pte = kvtopte(vaddr);
for (size = btoc(size); size; size--)
*pte++ = PG_NV;
TBIAS();
}
void setredzone __P((void *, caddr_t));
/*
* Set a red zone in the kernel stack after the u. area.
* We don't support a redzone right now. It really isn't clear
* that it is a good idea since, if the kernel stack were to roll
* into a write protected page, the processor would lock up (since
* it cannot create an exception frame) and we would get no useful
* post-mortem info. Currently, under the DEBUG option, we just
* check at every clock interrupt to see if the current k-stack has
* gone too far (i.e. into the "redzone" page) and if so, panic.
* Look at _lev6intr in locore.s for more details.
*/
/*ARGSUSED*/
void
setredzone(pte, vaddr)
void *pte;
caddr_t vaddr;
{
}
int kvtop __P((register caddr_t addr));
/*
* Convert kernel VA to physical address
*/
int
kvtop(addr)
register caddr_t addr;
{
vm_offset_t va;
va = pmap_extract(pmap_kernel(), (vm_offset_t)addr);
if (va == 0)
panic("kvtop: zero page frame");
return((int)va);
}
extern vm_map_t phys_map;
/*
* Map an IO request into kernel virtual address space.
*
* XXX we allocate KVA space by using kmem_alloc_wait which we know
* allocates space without backing physical memory. This implementation
* is a total crock, the multiple mappings of these physical pages should
* be reflected in the higher-level VM structures to avoid problems.
*/
void
vmapbuf(bp, len)
struct buf *bp;
vm_size_t len;
{
struct pmap *upmap, *kpmap;
vm_offset_t uva; /* User VA (map from) */
vm_offset_t kva; /* Kernel VA (new to) */
vm_offset_t pa; /* physical address */
vm_size_t off;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
uva = m68k_trunc_page(bp->b_saveaddr = bp->b_data);
off = (vm_offset_t)bp->b_data - uva;
len = m68k_round_page(off + len);
kva = kmem_alloc_wait(phys_map, len);
bp->b_data = (caddr_t)(kva + off);
upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map);
kpmap = vm_map_pmap(phys_map);
do {
pa = pmap_extract(upmap, uva);
if (pa == 0)
panic("vmapbuf: null page frame");
pmap_enter(kpmap, kva, pa, VM_PROT_READ|VM_PROT_WRITE, TRUE);
uva += PAGE_SIZE;
kva += PAGE_SIZE;
len -= PAGE_SIZE;
} while (len);
}
/*
* Free the io map PTEs associated with this IO operation.
*/
void
vunmapbuf(bp, len)
struct buf *bp;
vm_size_t len;
{
vm_offset_t kva;
vm_size_t off;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
kva = m68k_trunc_page(bp->b_data);
off = (vm_offset_t)bp->b_data - kva;
len = m68k_round_page(off + len);
/*
* pmap_remove() is unnecessary here, as kmem_free_wakeup()
* will do it for us.
*/
kmem_free_wakeup(phys_map, kva, len);
bp->b_data = bp->b_saveaddr;
bp->b_saveaddr = 0;
}