NetBSD/sys/arch/arm32/rc7500/rc7500_machdep.c

1110 lines
33 KiB
C

/* $NetBSD: rc7500_machdep.c,v 1.3 1998/02/21 23:08:17 mark Exp $ */
/*
* Copyright (c) 1994-1996 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/reboot.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/buf.h>
#include <sys/map.h>
#include <sys/exec.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/device.h>
#include <sys/syscallargs.h>
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <vm/vm_kern.h>
#include <machine/signal.h>
#include <machine/frame.h>
#include <machine/bootconfig.h>
#include <machine/cpu.h>
#include <machine/io.h>
#include <machine/irqhandler.h>
#include <machine/katelib.h>
#include <machine/pte.h>
#include <machine/vidc.h>
#include <machine/vconsole.h>
#include <machine/undefined.h>
#include <machine/rtc.h>
#include <arm32/iomd/iomdreg.h>
#include "ipkdb.h"
#ifdef RC7500
#include <arm32/rc7500/rc7500_prom.h>
#endif
/* Describe different actions to take when boot() is called */
#define ACTION_HALT 0x01 /* Halt and boot */
#define ACTION_REBOOT 0x02 /* Halt and request RiscBSD reboot */
#define ACTION_KSHELL 0x04 /* Call kshell */
#define ACTION_DUMP 0x08 /* Dump the system to the dump dev if requested */
#define HALT_ACTION ACTION_HALT | ACTION_KSHELL | ACTION_DUMP /* boot(RB_HALT) */
#define REBOOT_ACTION ACTION_REBOOT | ACTION_DUMP /* boot(0) */
#define PANIC_ACTION ACTION_HALT | ACTION_DUMP /* panic() */
BootConfig bootconfig; /* Boot config storage */
videomemory_t videomemory; /* Video memory descriptor */
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
int physical_memoryblock;
u_int free_pages;
vm_offset_t pagetables_start;
int physmem = 0;
int debug_flags;
#ifndef PMAP_STATIC_L1S
int max_processes = 64;
#endif /* !PMAP_STATIC_L1S */
int cpu_cache;
int cpu_ctrl;
u_int memory_disc_size; /* Memory disc size */
u_int videodram_size; /* Amount of DRAM to reserve for video */
vm_offset_t videodram_start;
vm_offset_t physical_pt_start;
vm_offset_t virtual_pt_end;
typedef struct {
vm_offset_t physical;
vm_offset_t virtual;
} pv_addr_t;
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
#ifdef RC7500
pv_addr_t fiqstack;
#endif
pt_entry_t kernel_pt_table[15];
char *boot_args;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif /* PMAP_DEBUG */
#define KERNEL_PT_PAGEDIR 0 /* Page table for mapping proc0 pagetables */
#define KERNEL_PT_PDE 1 /* Page table for mapping L1 page dirs */
#define KERNEL_PT_PTE 2 /* */
#define KERNEL_PT_VMEM 3 /* Page table for mapping video memory */
#define KERNEL_PT_SYS 4 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 5 /* Page table for mapping kernel */
#define KERNEL_PT_VMDATA0 6 /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA1 7
#define KERNEL_PT_VMDATA2 8
#define KERNEL_PT_VMDATA3 9
#define KERNEL_PT_VMDATA4 10
#define KERNEL_PT_VMDATA5 11
#define KERNEL_PT_VMDATA6 12
#define KERNEL_PT_VMDATA7 13
#define NUM_KERNEL_PTS 14
struct user *proc0paddr;
extern int cold;
/* Prototypes */
void physconputchar __P((char));
void physcon_display_base __P((u_int addr));
extern void consinit __P((void));
void map_section __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
int cacheable));
void map_pagetable __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry_ro __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void pmap_bootstrap __P((vm_offset_t kernel_l1pt));
void process_kernel_args __P((void));
u_long strtoul __P((const char *s, char **ptr, int base));
caddr_t allocsys __P((caddr_t v));
void data_abort_handler __P((trapframe_t *frame));
void prefetch_abort_handler __P((trapframe_t *frame));
void undefinedinstruction_bounce __P((trapframe_t *frame));
void zero_page_readonly __P((void));
void zero_page_readwrite __P((void));
extern void dump_spl_masks __P((void));
extern pt_entry_t *pmap_pte __P((pmap_t pmap, vm_offset_t va));
extern void db_machine_init __P((void));
extern void console_flush __P((void));
extern void vidcconsole_reinit __P((void));
extern int vidcconsole_blank __P((struct vconsole *vc, int type));
extern void parse_mi_bootargs __P((char *args));
void parse_rc7500_bootargs __P((char *args));
extern void dumpsys __P((void));
/*
* void boot(int howto, char *bootstr)
*
* Reboots the system
*
* This gets called when a reboot is request by the user or after a panic.
* Call boot0() will reboot the machine. For the moment we will try and be
* clever and return to the booting environment. This may work if we
* have be booted with the Kate boot loader as long as we have not messed
* the system up to much. Until we have our own memory management running
* this should work. The only use of being able to return (to RISC OS)
* is so I don't have to wait while the machine reboots.
*/
/* NOTE: These variables will be removed, well some of them */
extern u_int spl_mask;
extern u_int current_mask;
extern u_int arm700bugcount;
void
cpu_reboot(howto, bootstr)
int howto;
char *bootstr;
{
int loop;
int action;
#ifdef DIAGNOSTIC
/* Info */
if (curproc == NULL)
printf("curproc = 0 - must have been in cpu_idle()\n");
/* if (curpcb)
printf("curpcb=%08x pcb_sp=%08x pcb_und_sp=%08x\n", curpcb, curpcb->pcb_sp, curpcb->pcb_und_sp);*/
#endif
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x %08x curproc=%08x\n", howto, spl_mask, (u_int)curproc);
printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_clock=%08x ipl_imp=%08x\n",
irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
irqmasks[IPL_CLOCK], irqmasks[IPL_IMP]);
dump_spl_masks();
/* Did we encounter the ARM700 bug we discovered ? */
if (arm700bugcount > 0)
printf("ARM700 PREFETCH/SWI bug count = %d\n", arm700bugcount);
#endif
/* If we are still cold then hit the air brakes and crash to earth fast */
if (cold) {
doshutdownhooks();
printf("Halted while still in the ICE age.\n");
printf("Hit a key to reboot\n");
cngetc();
boot0();
}
/* Disable console buffering */
cnpollc(1);
/*
* Depending on how we got here and with what intructions, choose
* the actions to take. (See the actions defined above)
*/
if (panicstr)
action = PANIC_ACTION;
else if (howto & RB_HALT)
action = HALT_ACTION;
else
action = REBOOT_ACTION;
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
* It looks like syslogd is getting woken up only to find that it cannot
* page part of the binary in as the filesystem has been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* If we need to do a dump, do it */
if ((howto & RB_DUMP) && (action & ACTION_DUMP)) {
dumpsys();
}
#ifdef KSHELL
cold = 0;
/* Now enter our crude debug shell if required. Soon to be replaced with DDB */
if (action & ACTION_KSHELL)
kshell();
#else
if (action & ACTION_KSHELL) {
printf("Halted.\n");
printf("Hit a key to reboot ");
cngetc();
}
#endif
/* Auto reboot overload protection */
/*
* This code stops the kernel entering an endless loop of reboot - panic
* cycles. This will only effect kernels that have been configured to
* reboot on a panic and will have the effect of stopping further reboots
* after it has rebooted 16 times after panics and clean halt or reboot
* will reset the counter.
*/
/*
* Have we done 16 reboots in a row ? If so halt rather than reboot
* since 16 panics in a row without 1 clean halt means something is
* seriously wrong
*/
if (cmos_read(RTC_ADDR_REBOOTCNT) > 16)
action = (action & ~ACTION_REBOOT) | ACTION_HALT;
/*
* If we are rebooting on a panic then up the reboot count otherwise reset
* This will thus be reset if the kernel changes the boot action from
* reboot to halt due to too any reboots.
*/
if ((action & ACTION_REBOOT) && panicstr)
cmos_write(RTC_ADDR_REBOOTCNT,
cmos_read(RTC_ADDR_REBOOTCNT) + 1);
else
cmos_write(RTC_ADDR_REBOOTCNT, 0);
/*
* If we need a RiscBSD reboot, request it but setting a bit in the CMOS RAM
* This can be detected by the RiscBSD boot loader during a RISC OS boot
* No other way to do this as RISC OS is in ROM.
*/
if (action & ACTION_REBOOT)
cmos_write(RTC_ADDR_BOOTOPTS,
cmos_read(RTC_ADDR_BOOTOPTS) | 0x02);
/* Run any shutdown hooks */
printf("Running shutdown hooks ...\n");
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
/* Tell the user we are booting */
printf("boot...");
/* Give the user time to read the last couple of lines of text. */
for (loop = 5; loop > 0; --loop) {
printf("%d..", loop);
delay(500000);
}
boot0();
}
char bootstring[64];
char bootargs[32];
void setleds();
u_int
initarm(prom_id)
struct prom_id *prom_id;
{
int loop;
int loop1;
u_int logical;
u_int physical;
u_int kerneldatasize;
u_int l1pagetable;
u_int l2pagetable;
u_int vdrambase;
u_int reserv_mem;
extern char page0[], page0_end[];
/* struct exec *kernexec = (struct exec *)KERNEL_BASE;*/
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
set_cpufuncs();
/*
* XXXX - FIX ME
*/
cpu_cache = 0x03;
boothowto = 0;
#ifndef MEMORY_DISK_SIZE
#define MEMORY_DISK_SIZE 0
#endif
memory_disc_size = MEMORY_DISK_SIZE * 1024;
#ifdef MEMORY_DISK_HOOKS
boot_args = "root=/dev/md0a";
#else
if (strcmp(prom_id->bootdev, "fd") == 0) {
boot_args = "root=/dev/fd0a";
} else {
strcpy(bootstring, "root=/dev/");
strcat(bootstring, prom_id->bootdev);
if (((prom_id->bootdevnum >> B_UNITSHIFT) & B_UNITMASK) == 0)
strcat(bootstring, "0a");
else
strcat(bootstring, "1a");
boot_args = bootstring;
}
#endif
strcpy(bootargs, prom_id->bootargs);
process_kernel_args();
IRQdisable;
/*
* The old version of ROM did not set kstart field which
* will be 0. The ROM reserve 32K bytes of memory at
* low memory location. I need to fix this!!!
*/
if (prom_id->kstart == 0 || !(prom_id->kstart & 0x10000000))
reserv_mem = 0x8000;
else
reserv_mem = prom_id->kstart - prom_id->physmem_start;
bootconfig.kernvirtualbase = KERNBASE;
bootconfig.kernphysicalbase = 0x10000000 + reserv_mem;
bootconfig.kernsize = (prom_id->ksize + NBPG - 1) & PG_FRAME;
bootconfig.display_start = 0x10000000 + prom_id->video_start;
bootconfig.display_size = prom_id->video_size;
bootconfig.width = prom_id->display_width - 1;
bootconfig.height = prom_id->display_height - 1;
bootconfig.bitsperpixel = 3; /* it's actually 8 */
bootconfig.dram[0].address = prom_id->physmem_start;
bootconfig.dram[0].pages = prom_id->ramsize / NBPG;
bootconfig.dramblocks = 1;
bootconfig.pagesize = 4096;
bootconfig.drampages = prom_id->ramsize / NBPG;
strcpy(&bootconfig.kernelname[0], prom_id->bootfile);
bootconfig.framerate = 0;
/*
videodram_size = 0x100000;
*/
videomemory.vidm_pbase = prom_id->physmem_end - videodram_size;
vdrambase = videomemory.vidm_pbase;
bootconfig.display_start = VMEM_VBASE;
/*
* Note: The video memory is not part of the managed memory.
* Exclude these memory off the available DRAM.
*/
bootconfig.dram[0].pages -= videodram_size / NBPG;
bootconfig.drampages -= videodram_size / NBPG;
#ifdef PROM_DEBUG
/*
* Initialise the prom console
*/
init_prom_interface();
/* Talk to the user */
printf("initarm...\n");
printf("Kernel loaded from file %s\n", bootconfig.kernelname);
#endif
/* Check to make sure the page size is correct */
if (NBPG != bootconfig.pagesize)
panic("Page size is not %d bytes\n", NBPG);
/*
* Ok now we have the hard bit.
* We have the kernel allocated up high. The rest of the memory map is
* available. We are still running on RISC OS page tables.
*
* We need to construct new page tables move the kernel in physical
* memory and switch to them.
*
* The booter will have left us 6 pages at the top of memory.
* Two of these are used as L2 page tables and the other 4 form the L1
* page table.
*/
/*
* Ok we must construct own own page table tables.
* Once we have these we can reorganise the memory as required
*/
/*
* We better check to make sure the booter has set up the scratch
* area for us correctly. We use this area to create temporary pagetables
* while we reorganise the memory map.
*/
/*
* Update the videomemory structure to reflect the mapping changes
*/
videomemory.vidm_vbase = VMEM_VBASE;
videomemory.vidm_pbase = vdrambase;
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
videomemory.vidm_size = videodram_size;
kerneldatasize = bootconfig.kernsize + bootconfig.argsize;
/*
* Ok we have finished the primary boot strap. All this has done is to
* allow us to access all the physical memory from known virtual
* location. We also now know that all the used pages are at the top
* of the physical memory and where they are in the virtual memory map.
*
* This should be the stage we are at at the end of the bootstrap when
* we have a two stage booter.
*
* The secondary bootstrap has the responcibility to sort locating the
* kernel to the correct address and for creating the kernel page tables.
* It must also set up various memory pointers that are used by pmap etc.
*/
#ifdef PROM_DEBUG
printf("initarm: Secondary bootstrap ... ");
#endif
/* Set up the variables that define the availablilty of physcial memory */
physical_start = bootconfig.dram[0].address;
physical_freestart = physical_start + reserv_mem;
physical_end = bootconfig.dram[bootconfig.dramblocks - 1].address
+ bootconfig.dram[bootconfig.dramblocks - 1].pages * NBPG;
physical_freeend = physical_end;
physical_memoryblock = 0;
free_pages = bootconfig.drampages - reserv_mem / NBPG;
bootconfig.dram[0].address += reserv_mem;
bootconfig.dram[0].pages -= reserv_mem / NBPG;
for (loop = 0; loop < bootconfig.dramblocks; ++loop)
physmem += bootconfig.dram[loop].pages;
#ifdef PROM_DEBUG
printf("physical_start=%x, physical_freestart=%x, physical_end=%x, physical_freeend=%x, free_pages=%x\n",
(u_int) physical_start, (u_int) physical_freestart,
(u_int) physical_end, (u_int) physical_freeend, free_pages);
#endif
/*
* Reserve some pages at the top of the memory for later use
*
* This area is not currently used but could be used for the allocation
* of L1 page tables for each process.
* The size of this memory would be determined by the maximum number of
* processes.
*
* For the moment we just reserve a few pages just to make sure the
* system copes.
*/
#if 0
/*
* Note: The DRAM video memory is already excluded from
* the free physical memory.
*/
physical_freeend -= videodram_size;
free_pages -= (videodram_size / NBPG);
videodram_start = physical_freeend;
#endif
#ifdef PROM_DEBUG
printf("physical_start=%x, physical_freestart=%x, physical_end=%x, physical_freeend=%x, free_pages=%x\n",
(u_int) physical_start, (u_int) physical_freestart,
(u_int) physical_end, (u_int) physical_freeend, free_pages);
#endif
/* Right We have the bottom meg of memory mapped to 0x00000000
* so was can get at it. The kernel will ocupy the start of it.
* After the kernel/args we allocate some the the fixed page tables
* we need to get the system going.
* We allocate one page directory and 8 page tables and store the
* physical addresses in the kernel_pt_table array.
* Must remember that neither the page L1 or L2 page tables are the same
* size as a page !
*
* Ok the next bit of physical allocate may look complex but it is
* simple really. I have done it like this so that no memory gets wasted
* during the allocate of various pages and tables that are all different
* sizes.
* The start address will be page aligned.
* We allocate the kernel page directory on the first free 16KB boundry
* we find.
* We allocate the kernel page tables on the first 1KB boundry we find.
* We allocate 9 PT's. This means that in the process we
* KNOW that we will encounter at least 1 16KB boundry.
*
* Eventually if the top end of the memory gets used for process L1 page
* tables the kernel L1 page table may be moved up there.
*/
physical = physical_start + kerneldatasize + reserv_mem;
#ifdef PROM_DEBUG
printf("physical=%08x next_phys=%08x\n", physical, pmap_next_phys_page(physical - NBPG));
#endif
loop1 = 1;
kernel_pt_table[0] = 0;
for (loop = 0; loop < 15; ++loop) {
if ((physical & (PD_SIZE-1)) == 0 && kernel_pt_table[0] == 0) {
kernel_pt_table[KERNEL_PT_PAGEDIR] = physical;
bzero((char *)(physical - physical_start), PD_SIZE);
physical += PD_SIZE;
} else {
kernel_pt_table[loop1] = physical;
bzero((char *)(physical - physical_start), PT_SIZE);
physical += PT_SIZE;
++loop1;
}
}
#ifdef PROM_DEBUG
/* A bit of debugging info */
for (loop=0; loop < 10; ++loop)
printf("%d - P%08x\n", loop, kernel_pt_table[loop]);
#endif
/* This should never be able to happen but better confirm that. */
if ((kernel_pt_table[0] & (PD_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory\n");
/* Update the address of the first free page of physical memory */
physical_freestart = physical;
#ifdef PROM_DEBUG
printf("physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart,
(u_int)pmap_next_phys_page(physical_freestart - NBPG));
#endif
free_pages -= (physical - physical_start - reserv_mem) / NBPG;
/* Allocate a page for the system page mapped to 0x00000000 */
systempage.physical = physical_freestart;
physical_freestart += NBPG;
#ifdef PROM_DEBUG
printf("(0)physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart,
(u_int)pmap_next_phys_page(physical_freestart - NBPG));
#endif
--free_pages;
/*
* Allocate a page for fiq.
*/
fiqstack.physical = physical_freestart;
physical_freestart += NBPG;
fiqstack.virtual = KERNEL_BASE + fiqstack.physical-physical_start;
free_pages--;
/* Allocate another 3 pages for the stacks in different CPU modes. */
irqstack.physical = physical_freestart;
physical_freestart += NBPG;
abtstack.physical = physical_freestart;
physical_freestart += NBPG;
undstack.physical = physical_freestart;
physical_freestart += NBPG;
bzero((char *)irqstack.physical - physical_start, 3*NBPG);
free_pages -= 3;
irqstack.virtual = KERNEL_BASE + irqstack.physical-physical_start;
abtstack.virtual = KERNEL_BASE + abtstack.physical-physical_start;
undstack.virtual = KERNEL_BASE + undstack.physical-physical_start;
#ifdef PROM_DEBUG
printf("(1)physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart,
(u_int)pmap_next_phys_page(physical_freestart - NBPG));
#endif
kernelstack.physical = physical_freestart;
physical_freestart += UPAGES * NBPG;
bzero((char *)kernelstack.physical - physical_start, UPAGES * NBPG);
free_pages -= UPAGES;
#ifdef PROM_DEBUG
printf("(2)physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart,
(u_int)pmap_next_phys_page(physical_freestart - NBPG));
#endif
kernelstack.virtual = KERNEL_BASE + kernelstack.physical - physical_start;
msgbufphys = physical_freestart;
physical_freestart += round_page(MSGBUFSIZE);
free_pages -= round_page(MSGBUFSIZE) / NBPG;
#ifdef PROM_DEBUG
printf("physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart,
(u_int)pmap_next_phys_page(physical_freestart - NBPG));
#endif
/*
* Ok we have allocated physical pages for the primary kernel page tables
* Now we fill in the L2 pagetable for the kernel code/data
*/
l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL] - physical_start;
#if 0
if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
#ifdef PROM_DEBUG
printf("[ktext read-only] ");
printf("[%08x %08x %08x] \n", (u_int)kerneldatasize, (u_int)kernexec->a_text,
(u_int)(kernexec->a_text+kernexec->a_data+kernexec->a_bss));
#if 0
printf("physical start=%08x physical freestart=%08x\n", physical_start, physical_freestart);
#endif
#endif
for (logical = 0; logical < 0x00/*kernexec->a_text*/;
logical += NBPG)
map_entry_ro(l2pagetable, logical, physical_start + reserv_mem
+ logical);
for (; logical < kerneldatasize; logical += NBPG)
map_entry(l2pagetable, logical, physical_start + reserv_mem
+ logical);
} else
#endif
for (logical = 0; logical < kerneldatasize; logical += NBPG)
map_entry(l2pagetable, logical, physical_start + reserv_mem
+ logical);
/* Map the stack pages */
map_entry(l2pagetable, fiqstack.physical-physical_start,
fiqstack.physical);
map_entry(l2pagetable, irqstack.physical-physical_start,
irqstack.physical);
map_entry(l2pagetable, abtstack.physical-physical_start,
abtstack.physical);
map_entry(l2pagetable, undstack.physical-physical_start,
undstack.physical);
map_entry(l2pagetable, kernelstack.physical - physical_start,
kernelstack.physical);
map_entry(l2pagetable, kernelstack.physical + NBPG - physical_start,
kernelstack.physical + NBPG);
/* Now we fill in the L2 pagetable for the VRAM */
/*
* Current architectures mean that the VRAM is always in 1 continuous
* bank.
* This means that we can just map the 2 meg that the VRAM would occupy.
* In theory we don't need a page table for VRAM, we could section map
* it but we would need the page tables if DRAM was in use.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_VMEM] - physical_start;
for (logical = 0; logical < videodram_size; logical += NBPG) {
map_entry(l2pagetable, logical, vdrambase + logical);
map_entry(l2pagetable, logical + videodram_size, vdrambase + logical);
}
/* Map entries in the page table used to map PDE's */
l2pagetable = kernel_pt_table[KERNEL_PT_PDE] - physical_start;
map_entry(l2pagetable, 0x0000000,
kernel_pt_table[KERNEL_PT_PAGEDIR]);
map_entry(l2pagetable, 0x0001000,
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x1000);
map_entry(l2pagetable, 0x0002000,
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x2000);
map_entry(l2pagetable, 0x0003000,
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x3000);
/*
* Map entries in the page table used to map PTE's
* Basically every kernel page table gets mapped here
*/
l2pagetable = kernel_pt_table[KERNEL_PT_PTE] - physical_start;
map_entry(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_KERNEL]);
map_entry(l2pagetable, (PAGE_DIRS_BASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_PDE]);
map_entry(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_PTE]);
map_entry(l2pagetable, (VMEM_VBASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMEM]);
map_entry(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_SYS]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00000000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA0]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00400000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA1]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00800000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA2]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00c00000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA3]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01000000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA4]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01400000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA5]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01800000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA6]);
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01c00000) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA7]);
map_entry(l2pagetable, (0xf5000000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x0000);
map_entry(l2pagetable, (0xf5400000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x1000);
map_entry(l2pagetable, (0xf5800000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x2000);
map_entry(l2pagetable, (0xf5c00000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x3000);
/*
* Map the system page in the kernel page table for the bottom 1Meg
* of the virtual memory map.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_SYS] - physical_start;
map_entry(l2pagetable, 0x0000000, systempage.physical);
/* Now we construct the L1 pagetable */
l1pagetable = kernel_pt_table[KERNEL_PT_PAGEDIR] - physical_start;
/* Map the VIDC20, IOMD, COMBO and podules */
/* Map the VIDC20 */
map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE, 0);
/* Map the IOMD (and SLOW and MEDIUM simple podules) */
map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE, 0);
/* Map the COMBO (and module space) */
map_section(l1pagetable, IO_BASE, IO_HW_BASE, 0);
/* Map the L2 pages tables in the L1 page table */
map_pagetable(l1pagetable, 0x00000000,
kernel_pt_table[KERNEL_PT_SYS]);
map_pagetable(l1pagetable, KERNEL_BASE,
kernel_pt_table[KERNEL_PT_KERNEL]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00000000,
kernel_pt_table[KERNEL_PT_VMDATA0]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00400000,
kernel_pt_table[KERNEL_PT_VMDATA1]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00800000,
kernel_pt_table[KERNEL_PT_VMDATA2]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00c00000,
kernel_pt_table[KERNEL_PT_VMDATA3]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01000000,
kernel_pt_table[KERNEL_PT_VMDATA4]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01400000,
kernel_pt_table[KERNEL_PT_VMDATA5]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01800000,
kernel_pt_table[KERNEL_PT_VMDATA6]);
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01c00000,
kernel_pt_table[KERNEL_PT_VMDATA7]);
map_pagetable(l1pagetable, PAGE_DIRS_BASE,
kernel_pt_table[KERNEL_PT_PDE]);
map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
kernel_pt_table[KERNEL_PT_PTE]);
map_pagetable(l1pagetable, VMEM_VBASE,
kernel_pt_table[KERNEL_PT_VMEM]);
#ifdef PROM_DEBUG
/* Bit more debugging info */
printf("page tables look like this ...\n");
printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000));
printf("V0x03200000 - %08x\n", ReadWord(l1pagetable + 0x00c8));
printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4));
printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00));
printf("V0xf1000000 - %08x\n", ReadWord(l1pagetable + 0x3c40));
printf("V0xf2000000 - %08x\n", ReadWord(l1pagetable + 0x3c80));
printf("V0xf3000000 - %08x\n", ReadWord(l1pagetable + 0x3cc0));
printf("V0xf3300000 - %08x\n", ReadWord(l1pagetable + 0x3ccc));
printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00));
printf("V0xf6000000 - %08x\n", ReadWord(l1pagetable + 0x3d80));
printf("V0xefc00000 - %08x\n", ReadWord(l1pagetable + 0x3bf8));
printf("V0xef800000 - %08x\n", ReadWord(l1pagetable + 0x3bfc));
promcngetc();
#endif
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page tables.
*/
/*
* The last thing we must do is copy the kernel down to the new memory.
* This copies all our kernel data structures and variables as well
* which is why it is left to the last moment.
*/
#if 0
bcopy((char *)KERNEL_BASE, (char *)0x00000000, kerneldatasize);
#endif
cpu_domains(DOMAIN_CLIENT);
/*
* When we get here, the ROM is still running, we need to
* turn all the interrupts off before switching TTB.
*/
irq_init();
IRQdisable;
setleds(LEDOFF); /* turns off LEDs */
/* Switch tables */
setttb(kernel_pt_table[KERNEL_PT_PAGEDIR]);
setleds(LEDALL);
consinit();
setleds(LEDOFF);
/* Right set up the vectors at the bottom of page 0 */
bcopy(page0, (char *)0x00000000, page0_end - page0);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef DIAGNOSTIC
printf("FIQ stack V%08x P%08x\n", (u_int) fiqstack.virtual,
(u_int) fiqstack.physical);
printf("IRQ stack V%08x P%08x\n", (u_int) irqstack.virtual,
(u_int) irqstack.physical);
printf("ABT stack V%08x P%08x\n", (u_int) abtstack.virtual,
(u_int) abtstack.physical);
printf("UND stack V%08x P%08x\n", (u_int) undstack.virtual,
(u_int) undstack.physical);
#endif
printf("init subsystems: stacks ");
set_stackptr(PSR_FIQ32_MODE, fiqstack.virtual + NBPG);
set_stackptr(PSR_IRQ32_MODE, irqstack.virtual + NBPG);
set_stackptr(PSR_ABT32_MODE, abtstack.virtual + NBPG);
set_stackptr(PSR_UND32_MODE, undstack.virtual + NBPG);
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("kstack V%08x P%08x\n", (int) kernelstack.virtual,
(int) kernelstack.physical);
#endif
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
printf("vectors ");
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
#if 0
/* Diagnostic stuff. while writing the boot code */
for (loop = 0x0; loop < 0x1000; ++loop) {
if (ReadWord(PAGE_DIRS_BASE + loop * 4) != 0)
printf("Pagetable for V%08x = %08x\n", loop << 20,
ReadWord(0xf2000000 + loop * 4));
}
for (loop = 0x0; loop < 0x400; ++loop) {
if (ReadWord(kernel_pt_table[KERNEL_PT_PTE] + loop * 4) != 0)
printf("Pagetable for V%08x P%08x = %08x\n",
loop << 22, kernel_pt_table[KERNEL_PT_PTE]+loop*4,
ReadWord(kernel_pt_table[KERNEL_PT_PTE]+loop * 4));
}
#endif
/* At last !
* We now have the kernel in physical memory from the bottom upwards.
* Kernel page tables are physically above this.
* The kernel is mapped to 0xf0000000
* The kernel data PTs will handle the mapping of 0xf1000000-0xf1ffffff
* 2Meg of VRAM is mapped to 0xf4000000
* The kernel page directory is mapped to 0xf3000000
* The page tables are mapped to 0xefc00000
* The IOMD is mapped to 0xf6000000
* The VIDC is mapped to 0xf6100000
*/
/* Initialise the undefined instruction handlers */
printf("undefined ");
undefined_init();
/* Boot strap pmap telling it where the kernel page table is */
printf("pmap ");
pmap_bootstrap(PAGE_DIRS_BASE);
/* Setup the IRQ system */
printf("irq ");
irq_init();
printf("done.\n");
#ifdef DDB
printf("ddb: ");
db_machine_init();
ddb_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* We return the new stack pointer address */
return(kernelstack.virtual + USPACE_SVC_STACK_TOP);
}
int wdresethack = 0;
void
process_kernel_args()
{
parse_mi_bootargs(bootargs);
parse_rc7500_bootargs(bootargs);
}
void
parse_rc7500_bootargs(args)
char *args;
{
int integer;
videodram_size = 0x100000;
if (get_bootconf_option(args, "m", BOOTOPT_TYPE_INT, &integer)) {
if (integer >= 2 || integer <= 4)
videodram_size *= integer;
}
}
void
setleds(led)
int led;
{
outb(LEDPORT, ~led & 0xff);
}
/* End of rc7500_machdep.c */