761 lines
18 KiB
C
761 lines
18 KiB
C
/* $NetBSD: sgec.c,v 1.6 2000/06/05 02:28:19 matt Exp $ */
|
|
/*
|
|
* Copyright (c) 1999 Ludd, University of Lule}, Sweden. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed at Ludd, University of
|
|
* Lule}, Sweden and its contributors.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for the SGEC (Second Generation Ethernet Controller), sitting
|
|
* on for example the VAX 4000/300 (KA670).
|
|
*
|
|
* The SGEC looks like a mixture of the DEQNA and the TULIP. Fun toy.
|
|
*
|
|
* Even though the chip is capable to use virtual addresses (read the
|
|
* System Page Table directly) this driver doesn't do so, and there
|
|
* is no benefit in doing it either in NetBSD of today.
|
|
*
|
|
* Things that is still to do:
|
|
* Collect statistics.
|
|
* Use imperfect filtering when many multicast addresses.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/device.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_dl.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/ic/sgecreg.h>
|
|
#include <dev/ic/sgecvar.h>
|
|
|
|
static void zeinit __P((struct ze_softc *));
|
|
static void zestart __P((struct ifnet *));
|
|
static int zeioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static int ze_add_rxbuf __P((struct ze_softc *, int));
|
|
static void ze_setup __P((struct ze_softc *));
|
|
static void zetimeout __P((struct ifnet *));
|
|
static int zereset __P((struct ze_softc *));
|
|
|
|
#define ZE_WCSR(csr, val) \
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, csr, val)
|
|
#define ZE_RCSR(csr) \
|
|
bus_space_read_4(sc->sc_iot, sc->sc_ioh, csr)
|
|
|
|
/*
|
|
* Interface exists: make available by filling in network interface
|
|
* record. System will initialize the interface when it is ready
|
|
* to accept packets.
|
|
*/
|
|
void
|
|
sgec_attach(sc)
|
|
struct ze_softc *sc;
|
|
{
|
|
struct ifnet *ifp = (struct ifnet *)&sc->sc_if;
|
|
struct ze_tdes *tp;
|
|
struct ze_rdes *rp;
|
|
bus_dma_segment_t seg;
|
|
int i, rseg, error;
|
|
|
|
/*
|
|
* Allocate DMA safe memory for descriptors and setup memory.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct ze_cdata), NBPG, 0, &seg, 1, &rseg,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
printf(": unable to allocate control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct ze_cdata), (caddr_t *)&sc->sc_zedata,
|
|
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
|
|
printf(": unable to map control data, error = %d\n", error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct ze_cdata), 1,
|
|
sizeof(struct ze_cdata), 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_cmap)) != 0) {
|
|
printf(": unable to create control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cmap,
|
|
sc->sc_zedata, sizeof(struct ze_cdata), NULL,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
printf(": unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Zero the newly allocated memory.
|
|
*/
|
|
bzero(sc->sc_zedata, sizeof(struct ze_cdata));
|
|
/*
|
|
* Create the transmit descriptor DMA maps.
|
|
*/
|
|
for (i = 0; i < TXDESCS; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
|
|
&sc->sc_xmtmap[i]))) {
|
|
printf(": unable to create tx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < RXDESCS; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_rcvmap[i]))) {
|
|
printf(": unable to create rx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_5;
|
|
}
|
|
}
|
|
/*
|
|
* Pre-allocate the receive buffers.
|
|
*/
|
|
for (i = 0; i < RXDESCS; i++) {
|
|
if ((error = ze_add_rxbuf(sc, i)) != 0) {
|
|
printf(": unable to allocate or map rx buffer %d\n,"
|
|
" error = %d\n", i, error);
|
|
goto fail_6;
|
|
}
|
|
}
|
|
|
|
/* For vmstat -i
|
|
*/
|
|
evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
|
|
sc->sc_dev.dv_xname, "intr");
|
|
|
|
/*
|
|
* Create ring loops of the buffer chains.
|
|
* This is only done once.
|
|
*/
|
|
sc->sc_pzedata = (struct ze_cdata *)sc->sc_cmap->dm_segs[0].ds_addr;
|
|
|
|
rp = sc->sc_zedata->zc_recv;
|
|
rp[RXDESCS].ze_framelen = ZE_FRAMELEN_OW;
|
|
rp[RXDESCS].ze_rdes1 = ZE_RDES1_CA;
|
|
rp[RXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_recv;
|
|
|
|
tp = sc->sc_zedata->zc_xmit;
|
|
tp[TXDESCS].ze_tdr = ZE_TDR_OW;
|
|
tp[TXDESCS].ze_tdes1 = ZE_TDES1_CA;
|
|
tp[TXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_xmit;
|
|
|
|
if (zereset(sc))
|
|
return;
|
|
|
|
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = zestart;
|
|
ifp->if_ioctl = zeioctl;
|
|
ifp->if_watchdog = zetimeout;
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
printf("\n%s: hardware address %s\n", sc->sc_dev.dv_xname,
|
|
ether_sprintf(sc->sc_enaddr));
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_6:
|
|
for (i = 0; i < RXDESCS; i++) {
|
|
if (sc->sc_rxmbuf[i] != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
|
|
m_freem(sc->sc_rxmbuf[i]);
|
|
}
|
|
}
|
|
fail_5:
|
|
for (i = 0; i < RXDESCS; i++) {
|
|
if (sc->sc_xmtmap[i] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_xmtmap[i]);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < TXDESCS; i++) {
|
|
if (sc->sc_rcvmap[i] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rcvmap[i]);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cmap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cmap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_zedata,
|
|
sizeof(struct ze_cdata));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface.
|
|
*/
|
|
void
|
|
zeinit(sc)
|
|
struct ze_softc *sc;
|
|
{
|
|
struct ifnet *ifp = (struct ifnet *)&sc->sc_if;
|
|
struct ze_cdata *zc = sc->sc_zedata;
|
|
int i;
|
|
|
|
/*
|
|
* Reset the interface.
|
|
*/
|
|
if (zereset(sc))
|
|
return;
|
|
|
|
sc->sc_nexttx = sc->sc_inq = sc->sc_lastack = 0;
|
|
/*
|
|
* Release and init transmit descriptors.
|
|
*/
|
|
for (i = 0; i < TXDESCS; i++) {
|
|
if (sc->sc_txmbuf[i]) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
|
|
m_freem(sc->sc_txmbuf[i]);
|
|
sc->sc_txmbuf[i] = 0;
|
|
}
|
|
zc->zc_xmit[i].ze_tdr = 0; /* Clear valid bit */
|
|
}
|
|
|
|
|
|
/*
|
|
* Init receive descriptors.
|
|
*/
|
|
for (i = 0; i < RXDESCS; i++)
|
|
zc->zc_recv[i].ze_framelen = ZE_FRAMELEN_OW;
|
|
sc->sc_nextrx = 0;
|
|
|
|
ZE_WCSR(ZE_CSR6, ZE_NICSR6_IE|ZE_NICSR6_BL_8|ZE_NICSR6_ST|
|
|
ZE_NICSR6_SR|ZE_NICSR6_DC);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Send a setup frame.
|
|
* This will start the transmit machinery as well.
|
|
*/
|
|
ze_setup(sc);
|
|
|
|
}
|
|
|
|
/*
|
|
* Start output on interface.
|
|
*/
|
|
void
|
|
zestart(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ze_softc *sc = ifp->if_softc;
|
|
struct ze_cdata *zc = sc->sc_zedata;
|
|
paddr_t buffer;
|
|
struct mbuf *m, *m0;
|
|
int idx, len, s, i, totlen, error;
|
|
int old_inq = sc->sc_inq;
|
|
short orword;
|
|
|
|
s = splimp();
|
|
while (sc->sc_inq < (TXDESCS - 1)) {
|
|
|
|
if (sc->sc_setup) {
|
|
ze_setup(sc);
|
|
continue;
|
|
}
|
|
idx = sc->sc_nexttx;
|
|
IF_DEQUEUE(&sc->sc_if.if_snd, m);
|
|
if (m == 0)
|
|
goto out;
|
|
/*
|
|
* Count number of mbufs in chain.
|
|
* Always do DMA directly from mbufs, therefore the transmit
|
|
* ring is really big.
|
|
*/
|
|
for (m0 = m, i = 0; m0; m0 = m0->m_next)
|
|
if (m0->m_len)
|
|
i++;
|
|
if (i >= TXDESCS)
|
|
panic("zestart"); /* XXX */
|
|
|
|
if ((i + sc->sc_inq) >= (TXDESCS - 1)) {
|
|
IF_PREPEND(&sc->sc_if.if_snd, m);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
goto out;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
/*
|
|
* m now points to a mbuf chain that can be loaded.
|
|
* Loop around and set it.
|
|
*/
|
|
totlen = 0;
|
|
for (m0 = m; m0; m0 = m0->m_next) {
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->sc_xmtmap[idx],
|
|
mtod(m0, void *), m0->m_len, 0, 0);
|
|
buffer = sc->sc_xmtmap[idx]->dm_segs[0].ds_addr;
|
|
len = m0->m_len;
|
|
if (len == 0)
|
|
continue;
|
|
|
|
totlen += len;
|
|
/* Word alignment calc */
|
|
orword = 0;
|
|
if (totlen == len)
|
|
orword = ZE_TDES1_FS;
|
|
if (totlen == m->m_pkthdr.len) {
|
|
if (totlen < ETHER_MIN_LEN)
|
|
len += (ETHER_MIN_LEN - totlen);
|
|
orword |= ZE_TDES1_LS;
|
|
sc->sc_txmbuf[idx] = m;
|
|
}
|
|
zc->zc_xmit[idx].ze_bufsize = len;
|
|
zc->zc_xmit[idx].ze_bufaddr = (char *)buffer;
|
|
zc->zc_xmit[idx].ze_tdes1 = orword | ZE_TDES1_IC;
|
|
zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;
|
|
|
|
if (++idx == TXDESCS)
|
|
idx = 0;
|
|
sc->sc_inq++;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (totlen != m->m_pkthdr.len)
|
|
panic("zestart: len fault");
|
|
#endif
|
|
|
|
/*
|
|
* Kick off the transmit logic, if it is stopped.
|
|
*/
|
|
if ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
|
|
ZE_WCSR(ZE_CSR1, -1);
|
|
sc->sc_nexttx = idx;
|
|
}
|
|
if (sc->sc_inq == (TXDESCS - 1))
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
out: if (old_inq < sc->sc_inq)
|
|
ifp->if_timer = 5; /* If transmit logic dies */
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
sgec_intr(sc)
|
|
struct ze_softc *sc;
|
|
{
|
|
struct ze_cdata *zc = sc->sc_zedata;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
int csr, len;
|
|
|
|
csr = ZE_RCSR(ZE_CSR5);
|
|
if ((csr & ZE_NICSR5_IS) == 0) /* Wasn't we */
|
|
return 0;
|
|
ZE_WCSR(ZE_CSR5, csr);
|
|
|
|
if (csr & ZE_NICSR5_RI)
|
|
while ((zc->zc_recv[sc->sc_nextrx].ze_framelen &
|
|
ZE_FRAMELEN_OW) == 0) {
|
|
|
|
ifp->if_ipackets++;
|
|
m = sc->sc_rxmbuf[sc->sc_nextrx];
|
|
len = zc->zc_recv[sc->sc_nextrx].ze_framelen;
|
|
ze_add_rxbuf(sc, sc->sc_nextrx);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
if (++sc->sc_nextrx == RXDESCS)
|
|
sc->sc_nextrx = 0;
|
|
eh = mtod(m, struct ether_header *);
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
|
|
((eh->ether_dhost[0] & 1) == 0) &&
|
|
bcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
|
|
ETHER_ADDR_LEN) != 0) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* ALLMULTI means PROMISC in this driver.
|
|
*/
|
|
if ((ifp->if_flags & IFF_ALLMULTI) &&
|
|
((eh->ether_dhost[0] & 1) == 0) &&
|
|
bcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
|
|
ETHER_ADDR_LEN)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
if (csr & ZE_NICSR5_TI) {
|
|
while ((zc->zc_xmit[sc->sc_lastack].ze_tdr & ZE_TDR_OW) == 0) {
|
|
int idx = sc->sc_lastack;
|
|
|
|
if (sc->sc_lastack == sc->sc_nexttx)
|
|
break;
|
|
sc->sc_inq--;
|
|
if (++sc->sc_lastack == TXDESCS)
|
|
sc->sc_lastack = 0;
|
|
|
|
if ((zc->zc_xmit[idx].ze_tdes1 & ZE_TDES1_DT) ==
|
|
ZE_TDES1_DT_SETUP)
|
|
continue;
|
|
/* XXX collect statistics */
|
|
if (zc->zc_xmit[idx].ze_tdes1 & ZE_TDES1_LS)
|
|
ifp->if_opackets++;
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[idx]);
|
|
if (sc->sc_txmbuf[idx]) {
|
|
m_freem(sc->sc_txmbuf[idx]);
|
|
sc->sc_txmbuf[idx] = 0;
|
|
}
|
|
}
|
|
if (sc->sc_inq == 0)
|
|
ifp->if_timer = 0;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
zestart(ifp); /* Put in more in queue */
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
int
|
|
zeioctl(ifp, cmd, data)
|
|
struct ifnet *ifp;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
{
|
|
struct ze_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
int s = splnet(), error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
switch(ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
zeinit(sc);
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running,
|
|
* stop it. (by disabling receive mechanism).
|
|
*/
|
|
ZE_WCSR(ZE_CSR6, ZE_RCSR(ZE_CSR6) &
|
|
~(ZE_NICSR6_ST|ZE_NICSR6_SR));
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface it marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
zeinit(sc);
|
|
} else if ((ifp->if_flags & IFF_UP) != 0) {
|
|
/*
|
|
* Send a new setup packet to match any new changes.
|
|
* (Like IFF_PROMISC etc)
|
|
*/
|
|
ze_setup(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* Update our multicast list.
|
|
*/
|
|
error = (cmd == SIOCADDMULTI) ?
|
|
ether_addmulti(ifr, &sc->sc_ec):
|
|
ether_delmulti(ifr, &sc->sc_ec);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
ze_setup(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
|
|
}
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
ze_add_rxbuf(sc, i)
|
|
struct ze_softc *sc;
|
|
int i;
|
|
{
|
|
struct mbuf *m;
|
|
struct ze_rdes *rp;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (sc->sc_rxmbuf[i] != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->sc_rcvmap[i],
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error)
|
|
panic("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, i, error);
|
|
sc->sc_rxmbuf[i] = m;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_rcvmap[i], 0,
|
|
sc->sc_rcvmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
/*
|
|
* We know that the mbuf cluster is page aligned. Also, be sure
|
|
* that the IP header will be longword aligned.
|
|
*/
|
|
m->m_data += 2;
|
|
rp = &sc->sc_zedata->zc_recv[i];
|
|
rp->ze_bufsize = (m->m_ext.ext_size - 2);
|
|
rp->ze_bufaddr = (char *)sc->sc_rcvmap[i]->dm_segs[0].ds_addr + 2;
|
|
rp->ze_framelen = ZE_FRAMELEN_OW;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create a setup packet and put in queue for sending.
|
|
*/
|
|
void
|
|
ze_setup(sc)
|
|
struct ze_softc *sc;
|
|
{
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
struct ze_cdata *zc = sc->sc_zedata;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
u_int8_t *enaddr = LLADDR(ifp->if_sadl);
|
|
int j, idx, s, reg;
|
|
|
|
s = splimp();
|
|
if (sc->sc_inq == (TXDESCS - 1)) {
|
|
sc->sc_setup = 1;
|
|
splx(s);
|
|
return;
|
|
}
|
|
sc->sc_setup = 0;
|
|
/*
|
|
* Init the setup packet with valid info.
|
|
*/
|
|
memset(zc->zc_setup, 0xff, sizeof(zc->zc_setup)); /* Broadcast */
|
|
bcopy(enaddr, zc->zc_setup, ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* Multicast handling. The SGEC can handle up to 16 direct
|
|
* ethernet addresses.
|
|
*/
|
|
j = 16;
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, 6)) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
break;
|
|
}
|
|
bcopy(enm->enm_addrlo, &zc->zc_setup[j], ETHER_ADDR_LEN);
|
|
j += 8;
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
if ((enm != NULL)&& (j == 128)) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fiddle with the receive logic.
|
|
*/
|
|
reg = ZE_RCSR(ZE_CSR6);
|
|
DELAY(10);
|
|
ZE_WCSR(ZE_CSR6, reg & ~ZE_NICSR6_SR); /* Stop rx */
|
|
reg &= ~ZE_NICSR6_AF;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
reg |= ZE_NICSR6_AF_PROM;
|
|
else if (ifp->if_flags & IFF_ALLMULTI)
|
|
reg |= ZE_NICSR6_AF_ALLM;
|
|
DELAY(10);
|
|
ZE_WCSR(ZE_CSR6, reg);
|
|
/*
|
|
* Only send a setup packet if needed.
|
|
*/
|
|
if ((ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) == 0) {
|
|
idx = sc->sc_nexttx;
|
|
zc->zc_xmit[idx].ze_tdes1 = ZE_TDES1_DT_SETUP;
|
|
zc->zc_xmit[idx].ze_bufsize = 128;
|
|
zc->zc_xmit[idx].ze_bufaddr = sc->sc_pzedata->zc_setup;
|
|
zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;
|
|
|
|
if ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
|
|
ZE_WCSR(ZE_CSR1, -1);
|
|
|
|
sc->sc_inq++;
|
|
if (++sc->sc_nexttx == TXDESCS)
|
|
sc->sc_nexttx = 0;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Check for dead transmit logic.
|
|
*/
|
|
void
|
|
zetimeout(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ze_softc *sc = ifp->if_softc;
|
|
|
|
if (sc->sc_inq == 0)
|
|
return;
|
|
|
|
printf("%s: xmit logic died, resetting...\n", sc->sc_dev.dv_xname);
|
|
/*
|
|
* Do a reset of interface, to get it going again.
|
|
* Will it work by just restart the transmit logic?
|
|
*/
|
|
zeinit(sc);
|
|
}
|
|
|
|
/*
|
|
* Reset chip:
|
|
* Set/reset the reset flag.
|
|
* Write interrupt vector.
|
|
* Write ring buffer addresses.
|
|
* Write SBR.
|
|
*/
|
|
int
|
|
zereset(sc)
|
|
struct ze_softc *sc;
|
|
{
|
|
int reg, i, s;
|
|
|
|
ZE_WCSR(ZE_CSR6, ZE_NICSR6_RE);
|
|
DELAY(50000);
|
|
if (ZE_RCSR(ZE_CSR6) & ZE_NICSR5_SF) {
|
|
printf("%s: selftest failed\n", sc->sc_dev.dv_xname);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Get the vector that were set at match time, and remember it.
|
|
* WHICH VECTOR TO USE? Take one unused. XXX
|
|
* Funny way to set vector described in the programmers manual.
|
|
*/
|
|
reg = ZE_NICSR0_IPL14 | sc->sc_intvec | 0x1fff0003; /* SYNC/ASYNC??? */
|
|
i = 10;
|
|
s = splimp();
|
|
do {
|
|
if (i-- == 0) {
|
|
printf("Failing SGEC CSR0 init\n");
|
|
splx(s);
|
|
return 1;
|
|
}
|
|
ZE_WCSR(ZE_CSR0, reg);
|
|
} while (ZE_RCSR(ZE_CSR0) != reg);
|
|
splx(s);
|
|
|
|
ZE_WCSR(ZE_CSR3, (vaddr_t)sc->sc_pzedata->zc_recv);
|
|
ZE_WCSR(ZE_CSR4, (vaddr_t)sc->sc_pzedata->zc_xmit);
|
|
return 0;
|
|
}
|