NetBSD/sys/dev/pci/eap.c

1924 lines
48 KiB
C

/* $NetBSD: eap.c,v 1.81 2005/12/24 20:27:42 perry Exp $ */
/* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
/*
* Copyright (c) 1998, 1999, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson <augustss@NetBSD.org>, Charles M. Hannum, and
* Antti Kantee <pooka@NetBSD.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Debugging: Andreas Gustafsson <gson@araneus.fi>
* Testing: Chuck Cranor <chuck@maria.wustl.edu>
* Phil Nelson <phil@cs.wwu.edu>
*
* ES1371/AC97: Ezra Story <ezy@panix.com>
*/
/*
* Ensoniq ES1370 + AK4531 and ES1371/ES1373 + AC97
*
* Documentation links:
*
* ftp://ftp.alsa-project.org/pub/manuals/ensoniq/
* ftp://ftp.alsa-project.org/pub/manuals/asahi_kasei/4531.pdf
* ftp://download.intel.com/ial/scalableplatforms/audio/ac97r21.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: eap.c,v 1.81 2005/12/24 20:27:42 perry Exp $");
#include "midi.h"
#include "joy_eap.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/select.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/midi_if.h>
#include <dev/audiovar.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/ic/ac97var.h>
#include <machine/bus.h>
#include <dev/pci/eapreg.h>
#include <dev/pci/eapvar.h>
#define PCI_CBIO 0x10
/* Debug */
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (eapdebug) printf x
#define DPRINTFN(n,x) if (eapdebug>(n)) printf x
int eapdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
static int eap_match(struct device *, struct cfdata *, void *);
static void eap_attach(struct device *, struct device *, void *);
static int eap_detach(struct device *, int);
static int eap_intr(void *);
struct eap_dma {
bus_dmamap_t map;
caddr_t addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
struct eap_dma *next;
};
#define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
#define KERNADDR(p) ((void *)((p)->addr))
/*
* The card has two DACs. Using them is a bit twisted: we use DAC2
* as default and DAC1 as the optional secondary DAC.
*/
#define EAP_DAC1 1
#define EAP_DAC2 0
#define EAP_I1 EAP_DAC2
#define EAP_I2 EAP_DAC1
struct eap_instance {
struct device *parent;
int index;
void (*ei_pintr)(void *); /* DMA completion intr handler */
void *ei_parg; /* arg for ei_intr() */
struct device *ei_audiodev; /* audio device, for detach */
#ifdef DIAGNOSTIC
char ei_prun;
#endif
};
struct eap_softc {
struct device sc_dev; /* base device */
void *sc_ih; /* interrupt vectoring */
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_size_t iosz;
bus_dma_tag_t sc_dmatag; /* DMA tag */
struct eap_dma *sc_dmas;
void (*sc_rintr)(void *); /* DMA completion intr handler */
void *sc_rarg; /* arg for sc_intr() */
#ifdef DIAGNOSTIC
char sc_rrun;
#endif
#if NMIDI > 0
void (*sc_iintr)(void *, int); /* midi input ready handler */
void (*sc_ointr)(void *); /* midi output ready handler */
void *sc_arg;
struct device *sc_mididev;
#endif
#if NJOY_EAP > 0
struct device *sc_gameport;
#endif
u_short sc_port[AK_NPORTS]; /* mirror of the hardware setting */
u_int sc_record_source; /* recording source mask */
u_int sc_input_source; /* input source mask */
u_int sc_mic_preamp;
char sc_1371; /* Using ES1371/AC97 codec */
struct ac97_codec_if *codec_if;
struct ac97_host_if host_if;
struct eap_instance sc_ei[2];
pci_chipset_tag_t sc_pc; /* For detach */
};
static int eap_allocmem(struct eap_softc *, size_t, size_t,
struct eap_dma *);
static int eap_freemem(struct eap_softc *, struct eap_dma *);
#define EWRITE1(sc, r, x) bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x))
#define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
#define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define EREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
#define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
#define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
CFATTACH_DECL(eap, sizeof(struct eap_softc),
eap_match, eap_attach, eap_detach, NULL);
static int eap_open(void *, int);
static int eap_query_encoding(void *, struct audio_encoding *);
static int eap_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int eap_round_blocksize(void *, int, int, const audio_params_t *);
static int eap_trigger_output(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int eap_trigger_input(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int eap_halt_output(void *);
static int eap_halt_input(void *);
static void eap1370_write_codec(struct eap_softc *, int, int);
static int eap_getdev(void *, struct audio_device *);
static int eap1370_mixer_set_port(void *, mixer_ctrl_t *);
static int eap1370_mixer_get_port(void *, mixer_ctrl_t *);
static int eap1371_mixer_set_port(void *, mixer_ctrl_t *);
static int eap1371_mixer_get_port(void *, mixer_ctrl_t *);
static int eap1370_query_devinfo(void *, mixer_devinfo_t *);
static void *eap_malloc(void *, int, size_t, struct malloc_type *, int);
static void eap_free(void *, void *, struct malloc_type *);
static size_t eap_round_buffersize(void *, int, size_t);
static paddr_t eap_mappage(void *, void *, off_t, int);
static int eap_get_props(void *);
static void eap1370_set_mixer(struct eap_softc *, int, int);
static uint32_t eap1371_src_wait(struct eap_softc *);
static void eap1371_set_adc_rate(struct eap_softc *, int);
static void eap1371_set_dac_rate(struct eap_instance *, int);
static int eap1371_src_read(struct eap_softc *, int);
static void eap1371_src_write(struct eap_softc *, int, int);
static int eap1371_query_devinfo(void *, mixer_devinfo_t *);
static int eap1371_attach_codec(void *, struct ac97_codec_if *);
static int eap1371_read_codec(void *, uint8_t, uint16_t *);
static int eap1371_write_codec(void *, uint8_t, uint16_t );
static int eap1371_reset_codec(void *);
#if NMIDI > 0
static void eap_midi_close(void *);
static void eap_midi_getinfo(void *, struct midi_info *);
static int eap_midi_open(void *, int, void (*)(void *, int),
void (*)(void *), void *);
static int eap_midi_output(void *, int);
#endif
static const struct audio_hw_if eap1370_hw_if = {
eap_open,
NULL, /* close */
NULL,
eap_query_encoding,
eap_set_params,
eap_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
eap_halt_output,
eap_halt_input,
NULL,
eap_getdev,
NULL,
eap1370_mixer_set_port,
eap1370_mixer_get_port,
eap1370_query_devinfo,
eap_malloc,
eap_free,
eap_round_buffersize,
eap_mappage,
eap_get_props,
eap_trigger_output,
eap_trigger_input,
NULL,
};
static const struct audio_hw_if eap1371_hw_if = {
eap_open,
NULL, /* close */
NULL,
eap_query_encoding,
eap_set_params,
eap_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
eap_halt_output,
eap_halt_input,
NULL,
eap_getdev,
NULL,
eap1371_mixer_set_port,
eap1371_mixer_get_port,
eap1371_query_devinfo,
eap_malloc,
eap_free,
eap_round_buffersize,
eap_mappage,
eap_get_props,
eap_trigger_output,
eap_trigger_input,
NULL,
};
#if NMIDI > 0
static const struct midi_hw_if eap_midi_hw_if = {
eap_midi_open,
eap_midi_close,
eap_midi_output,
eap_midi_getinfo,
0, /* ioctl */
};
#endif
static struct audio_device eap_device = {
"Ensoniq AudioPCI",
"",
"eap"
};
#define EAP_NFORMATS 4
static const struct audio_format eap_formats[EAP_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {4000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 0, {4000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
2, AUFMT_STEREO, 0, {4000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 0, {4000, 48000}},
};
static int
eap_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa;
pa = (struct pci_attach_args *)aux;
switch (PCI_VENDOR(pa->pa_id)) {
case PCI_VENDOR_CREATIVELABS:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_CREATIVELABS_EV1938:
return 1;
}
break;
case PCI_VENDOR_ENSONIQ:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_ENSONIQ_AUDIOPCI:
case PCI_PRODUCT_ENSONIQ_AUDIOPCI97:
case PCI_PRODUCT_ENSONIQ_CT5880:
return 1;
}
break;
}
return 0;
}
static void
eap1370_write_codec(struct eap_softc *sc, int a, int d)
{
int icss, to;
to = EAP_WRITE_TIMEOUT;
do {
icss = EREAD4(sc, EAP_ICSS);
DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
if (!to--) {
printf("eap: timeout writing to codec\n");
return;
}
} while(icss & EAP_CWRIP); /* XXX could use CSTAT here */
EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
}
/*
* Reading and writing the CODEC is very convoluted. This mimics the
* FreeBSD and Linux drivers.
*/
static inline void
eap1371_ready_codec(struct eap_softc *sc, uint8_t a, uint32_t wd)
{
int to, s;
uint32_t src, t;
for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
break;
delay(1);
}
if (to >= EAP_WRITE_TIMEOUT)
printf("%s: eap1371_ready_codec timeout 1\n",
sc->sc_dev.dv_xname);
s = splaudio();
src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
for (to = 0; to < EAP_READ_TIMEOUT; to++) {
t = EREAD4(sc, E1371_SRC);
if ((t & E1371_SRC_STATE_MASK) == 0)
break;
delay(1);
}
if (to >= EAP_READ_TIMEOUT)
printf("%s: eap1371_ready_codec timeout 2\n",
sc->sc_dev.dv_xname);
for (to = 0; to < EAP_READ_TIMEOUT; to++) {
t = EREAD4(sc, E1371_SRC);
if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
break;
delay(1);
}
if (to >= EAP_READ_TIMEOUT)
printf("%s: eap1371_ready_codec timeout 3\n",
sc->sc_dev.dv_xname);
EWRITE4(sc, E1371_CODEC, wd);
eap1371_src_wait(sc);
EWRITE4(sc, E1371_SRC, src);
splx(s);
}
static int
eap1371_read_codec(void *sc_, uint8_t a, uint16_t *d)
{
struct eap_softc *sc;
int to;
uint32_t t;
sc = sc_;
eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
break;
}
if (to > EAP_WRITE_TIMEOUT)
printf("%s: eap1371_read_codec timeout 1\n",
sc->sc_dev.dv_xname);
for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
t = EREAD4(sc, E1371_CODEC);
if (t & E1371_CODEC_VALID)
break;
}
if (to > EAP_WRITE_TIMEOUT)
printf("%s: eap1371_read_codec timeout 2\n",
sc->sc_dev.dv_xname);
*d = (uint16_t)t;
DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
return 0;
}
static int
eap1371_write_codec(void *sc_, uint8_t a, uint16_t d)
{
struct eap_softc *sc;
sc = sc_;
eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, d));
DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
return 0;
}
static uint32_t
eap1371_src_wait(struct eap_softc *sc)
{
int to;
u_int32_t src;
for (to = 0; to < EAP_READ_TIMEOUT; to++) {
src = EREAD4(sc, E1371_SRC);
if (!(src & E1371_SRC_RBUSY))
return src;
delay(1);
}
printf("%s: eap1371_src_wait timeout\n", sc->sc_dev.dv_xname);
return src;
}
static int
eap1371_src_read(struct eap_softc *sc, int a)
{
int to;
uint32_t src, t;
src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
src |= E1371_SRC_ADDR(a);
EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
t = eap1371_src_wait(sc);
if ((t & E1371_SRC_STATE_MASK) != E1371_SRC_STATE_OK) {
for (to = 0; to < EAP_READ_TIMEOUT; to++) {
t = EREAD4(sc, E1371_SRC);
if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
break;
delay(1);
}
}
EWRITE4(sc, E1371_SRC, src);
return t & E1371_SRC_DATAMASK;
}
static void
eap1371_src_write(struct eap_softc *sc, int a, int d)
{
uint32_t r;
r = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
EWRITE4(sc, E1371_SRC, r);
}
static void
eap1371_set_adc_rate(struct eap_softc *sc, int rate)
{
int freq, n, truncm;
int out;
int s;
/* Whatever, it works, so I'll leave it :) */
if (rate > 48000)
rate = 48000;
if (rate < 4000)
rate = 4000;
n = rate / 3000;
if ((1 << n) & SRC_MAGIC)
n--;
truncm = ((21 * n) - 1) | 1;
freq = ((48000 << 15) / rate) * n;
if (rate >= 24000) {
if (truncm > 239)
truncm = 239;
out = ESRC_SET_TRUNC((239 - truncm) / 2);
} else {
if (truncm > 119)
truncm = 119;
out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
}
out |= ESRC_SET_N(n);
s = splaudio();
eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
ESRC_SET_VFI(freq >> 15));
eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
splx(s);
}
static void
eap1371_set_dac_rate(struct eap_instance *ei, int rate)
{
struct eap_softc *sc;
int dac;
int freq, r;
int s;
DPRINTFN(2, ("eap1371_set_dac_date: set rate for %d\n", ei->index));
sc = (struct eap_softc *)ei->parent;
dac = ei->index == EAP_DAC1 ? ESRC_DAC1 : ESRC_DAC2;
/* Whatever, it works, so I'll leave it :) */
if (rate > 48000)
rate = 48000;
if (rate < 4000)
rate = 4000;
freq = ((rate << 15) + 1500) / 3000;
s = splaudio();
eap1371_src_wait(sc);
r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
r |= ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
EWRITE4(sc, E1371_SRC, r);
r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
r &= ~(ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
EWRITE4(sc, E1371_SRC, r);
splx(s);
}
static void
eap_attach(struct device *parent, struct device *self, void *aux)
{
struct eap_softc *sc;
struct pci_attach_args *pa;
pci_chipset_tag_t pc;
const struct audio_hw_if *eap_hw_if;
char const *intrstr;
pci_intr_handle_t ih;
pcireg_t csr;
char devinfo[256];
mixer_ctrl_t ctl;
int i;
int revision, ct5880;
const char *revstr;
#if NJOY_EAP > 0
struct eap_gameport_args gpargs;
#endif
sc = (struct eap_softc *)self;
pa = (struct pci_attach_args *)aux;
pc = pa->pa_pc;
revstr = "";
aprint_naive(": Audio controller\n");
/* Stash this away for detach */
sc->sc_pc = pc;
/* Flag if we're "creative" */
sc->sc_1371 = !(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI);
/*
* The vendor and product ID's are quite "interesting". Just
* trust the following and be happy.
*/
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
revision = PCI_REVISION(pa->pa_class);
ct5880 = 0;
if (sc->sc_1371) {
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_CT5880) {
ct5880 = 1;
switch (revision) {
case EAP_CT5880_C: revstr = "CT5880-C "; break;
case EAP_CT5880_D: revstr = "CT5880-D "; break;
case EAP_CT5880_E: revstr = "CT5880-E "; break;
}
} else {
switch (revision) {
case EAP_EV1938_A: revstr = "EV1938-A "; break;
case EAP_ES1373_A: revstr = "ES1373-A "; break;
case EAP_ES1373_B: revstr = "ES1373-B "; break;
case EAP_CT5880_A: revstr = "CT5880-A "; ct5880=1;break;
case EAP_ES1373_8: revstr = "ES1373-8" ; ct5880=1;break;
case EAP_ES1371_B: revstr = "ES1371-B "; break;
}
}
}
aprint_normal(": %s %s(rev. 0x%02x)\n", devinfo, revstr, revision);
/* Map I/O register */
if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&sc->iot, &sc->ioh, NULL, &sc->iosz)) {
aprint_error("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
return;
}
sc->sc_dmatag = pa->pa_dmat;
/* Enable the device. */
csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: couldn't map interrupt\n",
sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
aprint_normal("\n");
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
sc->sc_ei[EAP_I1].parent = (struct device *)sc;
sc->sc_ei[EAP_I1].index = EAP_DAC2;
sc->sc_ei[EAP_I2].parent = (struct device *)sc;
sc->sc_ei[EAP_I2].index = EAP_DAC1;
if (!sc->sc_1371) {
/* Enable interrupts and looping mode. */
/* enable the parts we need */
EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
/* reset codec */
/* normal operation */
/* select codec clocks */
eap1370_write_codec(sc, AK_RESET, AK_PD);
eap1370_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
eap1370_write_codec(sc, AK_CS, 0x0);
eap_hw_if = &eap1370_hw_if;
/* Enable all relevant mixer switches. */
ctl.dev = EAP_INPUT_SOURCE;
ctl.type = AUDIO_MIXER_SET;
ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
1 << EAP_CD_VOL | 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL |
1 << EAP_MIC_VOL;
eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
ctl.type = AUDIO_MIXER_VALUE;
ctl.un.value.num_channels = 1;
for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
ctl.dev++) {
ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
}
ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
ctl.dev = EAP_MIC_PREAMP;
ctl.type = AUDIO_MIXER_ENUM;
ctl.un.ord = 0;
eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
ctl.dev = EAP_RECORD_SOURCE;
ctl.type = AUDIO_MIXER_SET;
ctl.un.mask = 1 << EAP_MIC_VOL;
eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
} else {
/* clean slate */
EWRITE4(sc, EAP_SIC, 0);
EWRITE4(sc, EAP_ICSC, 0);
EWRITE4(sc, E1371_LEGACY, 0);
if (ct5880) {
EWRITE4(sc, EAP_ICSS, EAP_CT5880_AC97_RESET);
/* Let codec wake up */
delay(20000);
}
/* Reset from es1371's perspective */
EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
delay(20);
EWRITE4(sc, EAP_ICSC, 0);
/*
* Must properly reprogram sample rate converter,
* or it locks up. Set some defaults for the life of the
* machine, and set up a sb default sample rate.
*/
EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
for (i = 0; i < 0x80; i++)
eap1371_src_write(sc, i, 0);
eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
eap1371_set_adc_rate(sc, 22050);
eap1371_set_dac_rate(&sc->sc_ei[0], 22050);
eap1371_set_dac_rate(&sc->sc_ei[1], 22050);
EWRITE4(sc, E1371_SRC, 0);
/* Reset codec */
/* Interrupt enable */
sc->host_if.arg = sc;
sc->host_if.attach = eap1371_attach_codec;
sc->host_if.read = eap1371_read_codec;
sc->host_if.write = eap1371_write_codec;
sc->host_if.reset = eap1371_reset_codec;
if (ac97_attach(&sc->host_if, self) == 0) {
/* Interrupt enable */
EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
} else
return;
eap_hw_if = &eap1371_hw_if;
}
sc->sc_ei[EAP_I1].ei_audiodev =
audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I1], &sc->sc_dev);
#ifdef EAP_USE_BOTH_DACS
aprint_normal("%s: attaching secondary DAC\n", sc->sc_dev.dv_xname);
sc->sc_ei[EAP_I2].ei_audiodev =
audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I2], &sc->sc_dev);
#endif
#if NMIDI > 0
sc->sc_mididev = midi_attach_mi(&eap_midi_hw_if, sc, &sc->sc_dev);
#endif
#if NJOY_EAP > 0
if (sc->sc_1371) {
gpargs.gpa_iot = sc->iot;
gpargs.gpa_ioh = sc->ioh;
sc->sc_gameport = eap_joy_attach(&sc->sc_dev, &gpargs);
}
#endif
}
static int
eap_detach(struct device *self, int flags)
{
struct eap_softc *sc;
int res;
#if NJOY_EAP > 0
struct eap_gameport_args gpargs;
sc = (struct eap_softc *)self;
if (sc->sc_gameport) {
gpargs.gpa_iot = sc->iot;
gpargs.gpa_ioh = sc->ioh;
res = eap_joy_detach(sc->sc_gameport, &gpargs);
if (res)
return res;
}
#else
sc = (struct eap_softc *)self;
#endif
#if NMIDI > 0
if (sc->sc_mididev != NULL) {
res = config_detach(sc->sc_mididev, 0);
if (res)
return res;
}
#endif
#ifdef EAP_USE_BOTH_DACS
if (sc->sc_ei[EAP_I2].ei_audiodev != NULL) {
res = config_detach(sc->sc_ei[EAP_I2].ei_audiodev, 0);
if (res)
return res;
}
#endif
if (sc->sc_ei[EAP_I1].ei_audiodev != NULL) {
res = config_detach(sc->sc_ei[EAP_I1].ei_audiodev, 0);
if (res)
return res;
}
bus_space_unmap(sc->iot, sc->ioh, sc->iosz);
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
return 0;
}
static int
eap1371_attach_codec(void *sc_, struct ac97_codec_if *codec_if)
{
struct eap_softc *sc;
sc = sc_;
sc->codec_if = codec_if;
return 0;
}
static int
eap1371_reset_codec(void *sc_)
{
struct eap_softc *sc;
uint32_t icsc;
int s;
sc = sc_;
s = splaudio();
icsc = EREAD4(sc, EAP_ICSC);
EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
delay(20);
EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
delay(1);
splx(s);
return 0;
}
static int
eap_intr(void *p)
{
struct eap_softc *sc;
uint32_t intr, sic;
sc = p;
intr = EREAD4(sc, EAP_ICSS);
if (!(intr & EAP_INTR))
return 0;
sic = EREAD4(sc, EAP_SIC);
DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
if (intr & EAP_I_ADC) {
#if 0
/*
* XXX This is a hack!
* The EAP chip sometimes generates the recording interrupt
* while it is still transferring the data. To make sure
* it has all arrived we busy wait until the count is right.
* The transfer we are waiting for is 8 longwords.
*/
int s, nw, n;
EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
s = EREAD4(sc, EAP_ADC_CSR);
nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
n = 0;
while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
delay(10);
if (++n > 100) {
printf("eapintr: DMA fix timeout");
break;
}
}
/* Continue with normal interrupt handling. */
#endif
EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
if (sc->sc_rintr)
sc->sc_rintr(sc->sc_rarg);
}
if (intr & EAP_I_DAC2) {
EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
EWRITE4(sc, EAP_SIC, sic | EAP_P2_INTR_EN);
if (sc->sc_ei[EAP_DAC2].ei_pintr)
sc->sc_ei[EAP_DAC2].ei_pintr(sc->sc_ei[EAP_DAC2].ei_parg);
}
if (intr & EAP_I_DAC1) {
EWRITE4(sc, EAP_SIC, sic & ~EAP_P1_INTR_EN);
EWRITE4(sc, EAP_SIC, sic | EAP_P1_INTR_EN);
if (sc->sc_ei[EAP_DAC1].ei_pintr)
sc->sc_ei[EAP_DAC1].ei_pintr(sc->sc_ei[EAP_DAC1].ei_parg);
}
if (intr & EAP_I_MCCB)
panic("eap_intr: unexpected MCCB interrupt");
#if NMIDI > 0
if ((intr & EAP_I_UART) && sc->sc_iintr != NULL) {
uint32_t data;
if (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXINT) {
while (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXRDY) {
data = EREAD1(sc, EAP_UART_DATA);
sc->sc_iintr(sc->sc_arg, data);
}
}
}
#endif
return 1;
}
static int
eap_allocmem(struct eap_softc *sc, size_t size, size_t align, struct eap_dma *p)
{
int error;
p->size = size;
error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
&p->nsegs, BUS_DMA_NOWAIT);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
0, BUS_DMA_NOWAIT, &p->map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
BUS_DMA_NOWAIT);
if (error)
goto destroy;
return (0);
destroy:
bus_dmamap_destroy(sc->sc_dmatag, p->map);
unmap:
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
free:
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return error;
}
static int
eap_freemem(struct eap_softc *sc, struct eap_dma *p)
{
bus_dmamap_unload(sc->sc_dmatag, p->map);
bus_dmamap_destroy(sc->sc_dmatag, p->map);
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return 0;
}
static int
eap_open(void *addr, int flags)
{
struct eap_instance *ei;
ei = addr;
/* there is only one ADC */
if (ei->index == EAP_I2 && flags & FREAD)
return EOPNOTSUPP;
return 0;
}
static int
eap_query_encoding(void *addr, struct audio_encoding *fp)
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
return 0;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return 0;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
default:
return EINVAL;
}
}
static int
eap_set_params(void *addr, int setmode, int usemode,
audio_params_t *play, audio_params_t *rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct eap_instance *ei;
struct eap_softc *sc;
struct audio_params *p;
stream_filter_list_t *fil;
int mode, i;
uint32_t div;
ei = addr;
sc = (struct eap_softc *)ei->parent;
/*
* The es1370 only has one clock, so make the sample rates match.
* This only applies for ADC/DAC2. The FM DAC is handled below.
*/
if (!sc->sc_1371 && ei->index == EAP_DAC2) {
if (play->sample_rate != rec->sample_rate &&
usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
if (setmode == AUMODE_PLAY) {
rec->sample_rate = play->sample_rate;
setmode |= AUMODE_RECORD;
} else if (setmode == AUMODE_RECORD) {
play->sample_rate = rec->sample_rate;
setmode |= AUMODE_PLAY;
} else
return EINVAL;
}
}
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = mode == AUMODE_PLAY ? play : rec;
if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
(p->precision != 8 && p->precision != 16) ||
(p->channels != 1 && p->channels != 2))
return EINVAL;
fil = mode == AUMODE_PLAY ? pfil : rfil;
i = auconv_set_converter(eap_formats, EAP_NFORMATS,
mode, p, FALSE, fil);
if (i < 0)
return EINVAL;
}
if (sc->sc_1371) {
eap1371_set_dac_rate(ei, play->sample_rate);
eap1371_set_adc_rate(sc, rec->sample_rate);
} else if (ei->index == EAP_DAC2) {
/* Set the speed */
DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
EREAD4(sc, EAP_ICSC)));
div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
/*
* XXX
* The -2 isn't documented, but seemed to make the wall
* time match
* what I expect. - mycroft
*/
if (usemode == AUMODE_RECORD)
div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
rec->sample_rate - 2);
else
div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
play->sample_rate - 2);
#if 0
div |= EAP_CCB_INTRM;
#else
/*
* It is not obvious how to acknowledge MCCB interrupts, so
* we had better not enable them.
*/
#endif
EWRITE4(sc, EAP_ICSC, div);
DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
} else {
/*
* The FM DAC has only a few fixed-frequency choises, so
* pick out the best candidate.
*/
div = EREAD4(sc, EAP_ICSC);
DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n", div));
div &= ~EAP_WTSRSEL;
if (play->sample_rate < 8268)
div |= EAP_WTSRSEL_5;
else if (play->sample_rate < 16537)
div |= EAP_WTSRSEL_11;
else if (play->sample_rate < 33075)
div |= EAP_WTSRSEL_22;
else
div |= EAP_WTSRSEL_44;
EWRITE4(sc, EAP_ICSC, div);
DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
}
return 0;
}
static int
eap_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
{
return blk & -32; /* keep good alignment */
}
static int
eap_trigger_output(
void *addr,
void *start,
void *end,
int blksize,
void (*intr)(void *),
void *arg,
const audio_params_t *param)
{
struct eap_instance *ei;
struct eap_softc *sc;
struct eap_dma *p;
uint32_t icsc, sic;
int sampshift;
ei = addr;
sc = (struct eap_softc *)ei->parent;
#ifdef DIAGNOSTIC
if (ei->ei_prun)
panic("eap_trigger_output: already running");
ei->ei_prun = 1;
#endif
DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
"blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
ei->ei_pintr = intr;
ei->ei_parg = arg;
sic = EREAD4(sc, EAP_SIC);
sic &= ~(EAP_S_EB(ei->index) | EAP_S_MB(ei->index) | EAP_INC_BITS);
if (ei->index == EAP_DAC2)
sic |= EAP_SET_P2_ST_INC(0)
| EAP_SET_P2_END_INC(param->precision / 8);
sampshift = 0;
if (param->precision == 16) {
sic |= EAP_S_EB(ei->index);
sampshift++;
}
if (param->channels == 2) {
sic |= EAP_S_MB(ei->index);
sampshift++;
}
EWRITE4(sc, EAP_SIC, sic & ~EAP_P_INTR_EN(ei->index));
EWRITE4(sc, EAP_SIC, sic | EAP_P_INTR_EN(ei->index));
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
continue;
if (!p) {
printf("eap_trigger_output: bad addr %p\n", start);
return EINVAL;
}
if (ei->index == EAP_DAC2) {
DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
(int)DMAADDR(p),
(int)EAP_SET_SIZE(0,
(((char *)end - (char *)start) >> 2) - 1)));
EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
EWRITE4(sc, EAP_DAC2_SIZE,
EAP_SET_SIZE(0,
((char *)end - (char *)start) >> 2) - 1);
EWRITE4(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
} else if (ei->index == EAP_DAC1) {
DPRINTF(("eap_trigger_output: DAC1_ADDR=0x%x, DAC1_SIZE=0x%x\n",
(int)DMAADDR(p),
(int)EAP_SET_SIZE(0,
(((char *)end - (char *)start) >> 2) - 1)));
EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
EWRITE4(sc, EAP_DAC1_ADDR, DMAADDR(p));
EWRITE4(sc, EAP_DAC1_SIZE,
EAP_SET_SIZE(0,
((char *)end - (char *)start) >> 2) - 1);
EWRITE4(sc, EAP_DAC1_CSR, (blksize >> sampshift) - 1);
}
#ifdef DIAGNOSTIC
else
panic("eap_trigger_output: impossible instance %d", ei->index);
#endif
if (sc->sc_1371)
EWRITE4(sc, E1371_SRC, 0);
icsc = EREAD4(sc, EAP_ICSC);
icsc |= EAP_DAC_EN(ei->index);
EWRITE4(sc, EAP_ICSC, icsc);
DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
return 0;
}
static int
eap_trigger_input(
void *addr,
void *start,
void *end,
int blksize,
void (*intr)(void *),
void *arg,
const audio_params_t *param)
{
struct eap_instance *ei;
struct eap_softc *sc;
struct eap_dma *p;
uint32_t icsc, sic;
int sampshift;
ei = addr;
sc = (struct eap_softc *)ei->parent;
#ifdef DIAGNOSTIC
if (sc->sc_rrun)
panic("eap_trigger_input: already running");
sc->sc_rrun = 1;
#endif
DPRINTFN(1, ("eap_trigger_input: ei=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
addr, start, end, blksize, intr, arg));
sc->sc_rintr = intr;
sc->sc_rarg = arg;
sic = EREAD4(sc, EAP_SIC);
sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
sampshift = 0;
if (param->precision == 16) {
sic |= EAP_R1_S_EB;
sampshift++;
}
if (param->channels == 2) {
sic |= EAP_R1_S_MB;
sampshift++;
}
EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
continue;
if (!p) {
printf("eap_trigger_input: bad addr %p\n", start);
return (EINVAL);
}
DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
(int)DMAADDR(p),
(int)EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
EWRITE4(sc, EAP_ADC_SIZE,
EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
EWRITE4(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
if (sc->sc_1371)
EWRITE4(sc, E1371_SRC, 0);
icsc = EREAD4(sc, EAP_ICSC);
icsc |= EAP_ADC_EN;
EWRITE4(sc, EAP_ICSC, icsc);
DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
return 0;
}
static int
eap_halt_output(void *addr)
{
struct eap_instance *ei;
struct eap_softc *sc;
uint32_t icsc;
DPRINTF(("eap: eap_halt_output\n"));
ei = addr;
sc = (struct eap_softc *)ei->parent;
icsc = EREAD4(sc, EAP_ICSC);
EWRITE4(sc, EAP_ICSC, icsc & ~(EAP_DAC_EN(ei->index)));
ei->ei_pintr = 0;
#ifdef DIAGNOSTIC
ei->ei_prun = 0;
#endif
return 0;
}
static int
eap_halt_input(void *addr)
{
struct eap_instance *ei;
struct eap_softc *sc;
uint32_t icsc;
#define EAP_USE_FMDAC_ALSO
DPRINTF(("eap: eap_halt_input\n"));
ei = addr;
sc = (struct eap_softc *)ei->parent;
icsc = EREAD4(sc, EAP_ICSC);
EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
sc->sc_rintr = 0;
#ifdef DIAGNOSTIC
sc->sc_rrun = 0;
#endif
return 0;
}
static int
eap_getdev(void *addr, struct audio_device *retp)
{
*retp = eap_device;
return 0;
}
static int
eap1371_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct eap_instance *ei;
struct eap_softc *sc;
ei = addr;
sc = (struct eap_softc *)ei->parent;
return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
}
static int
eap1371_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct eap_instance *ei;
struct eap_softc *sc;
ei = addr;
sc = (struct eap_softc *)ei->parent;
return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
}
static int
eap1371_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
struct eap_instance *ei;
struct eap_softc *sc;
ei = addr;
sc = (struct eap_softc *)ei->parent;
return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
}
static void
eap1370_set_mixer(struct eap_softc *sc, int a, int d)
{
eap1370_write_codec(sc, a, d);
sc->sc_port[a] = d;
DPRINTFN(1, ("eap1370_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
}
static int
eap1370_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct eap_instance *ei;
struct eap_softc *sc;
int lval, rval, l, r, la, ra;
int l1, r1, l2, r2, m, o1, o2;
ei = addr;
sc = (struct eap_softc *)ei->parent;
if (cp->dev == EAP_RECORD_SOURCE) {
if (cp->type != AUDIO_MIXER_SET)
return EINVAL;
m = sc->sc_record_source = cp->un.mask;
l1 = l2 = r1 = r2 = 0;
if (m & (1 << EAP_VOICE_VOL))
l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
if (m & (1 << EAP_FM_VOL))
l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
if (m & (1 << EAP_CD_VOL))
l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
if (m & (1 << EAP_LINE_VOL))
l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
if (m & (1 << EAP_AUX_VOL))
l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
if (m & (1 << EAP_MIC_VOL))
l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
eap1370_set_mixer(sc, AK_IN_MIXER1_L, l1);
eap1370_set_mixer(sc, AK_IN_MIXER1_R, r1);
eap1370_set_mixer(sc, AK_IN_MIXER2_L, l2);
eap1370_set_mixer(sc, AK_IN_MIXER2_R, r2);
return 0;
}
if (cp->dev == EAP_INPUT_SOURCE) {
if (cp->type != AUDIO_MIXER_SET)
return EINVAL;
m = sc->sc_input_source = cp->un.mask;
o1 = o2 = 0;
if (m & (1 << EAP_VOICE_VOL))
o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
if (m & (1 << EAP_FM_VOL))
o1 |= AK_M_FM_L | AK_M_FM_R;
if (m & (1 << EAP_CD_VOL))
o1 |= AK_M_CD_L | AK_M_CD_R;
if (m & (1 << EAP_LINE_VOL))
o1 |= AK_M_LINE_L | AK_M_LINE_R;
if (m & (1 << EAP_AUX_VOL))
o2 |= AK_M_AUX_L | AK_M_AUX_R;
if (m & (1 << EAP_MIC_VOL))
o1 |= AK_M_MIC;
eap1370_set_mixer(sc, AK_OUT_MIXER1, o1);
eap1370_set_mixer(sc, AK_OUT_MIXER2, o2);
return 0;
}
if (cp->dev == EAP_MIC_PREAMP) {
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
if (cp->un.ord != 0 && cp->un.ord != 1)
return EINVAL;
sc->sc_mic_preamp = cp->un.ord;
eap1370_set_mixer(sc, AK_MGAIN, cp->un.ord);
return 0;
}
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
if (cp->un.value.num_channels == 1)
lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
else if (cp->un.value.num_channels == 2) {
lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
} else
return EINVAL;
ra = -1;
switch (cp->dev) {
case EAP_MASTER_VOL:
l = VOL_TO_ATT5(lval);
r = VOL_TO_ATT5(rval);
la = AK_MASTER_L;
ra = AK_MASTER_R;
break;
case EAP_MIC_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
la = AK_MIC;
goto lr;
case EAP_VOICE_VOL:
la = AK_VOICE_L;
ra = AK_VOICE_R;
goto lr;
case EAP_FM_VOL:
la = AK_FM_L;
ra = AK_FM_R;
goto lr;
case EAP_CD_VOL:
la = AK_CD_L;
ra = AK_CD_R;
goto lr;
case EAP_LINE_VOL:
la = AK_LINE_L;
ra = AK_LINE_R;
goto lr;
case EAP_AUX_VOL:
la = AK_AUX_L;
ra = AK_AUX_R;
lr:
l = VOL_TO_GAIN5(lval);
r = VOL_TO_GAIN5(rval);
break;
default:
return EINVAL;
}
eap1370_set_mixer(sc, la, l);
if (ra >= 0) {
eap1370_set_mixer(sc, ra, r);
}
return 0;
}
static int
eap1370_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct eap_instance *ei;
struct eap_softc *sc;
int la, ra, l, r;
ei = addr;
sc = (struct eap_softc *)ei->parent;
switch (cp->dev) {
case EAP_RECORD_SOURCE:
if (cp->type != AUDIO_MIXER_SET)
return EINVAL;
cp->un.mask = sc->sc_record_source;
return 0;
case EAP_INPUT_SOURCE:
if (cp->type != AUDIO_MIXER_SET)
return EINVAL;
cp->un.mask = sc->sc_input_source;
return 0;
case EAP_MIC_PREAMP:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
cp->un.ord = sc->sc_mic_preamp;
return 0;
case EAP_MASTER_VOL:
l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
break;
case EAP_MIC_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
la = ra = AK_MIC;
goto lr;
case EAP_VOICE_VOL:
la = AK_VOICE_L;
ra = AK_VOICE_R;
goto lr;
case EAP_FM_VOL:
la = AK_FM_L;
ra = AK_FM_R;
goto lr;
case EAP_CD_VOL:
la = AK_CD_L;
ra = AK_CD_R;
goto lr;
case EAP_LINE_VOL:
la = AK_LINE_L;
ra = AK_LINE_R;
goto lr;
case EAP_AUX_VOL:
la = AK_AUX_L;
ra = AK_AUX_R;
lr:
l = GAIN5_TO_VOL(sc->sc_port[la]);
r = GAIN5_TO_VOL(sc->sc_port[ra]);
break;
default:
return EINVAL;
}
if (cp->un.value.num_channels == 1)
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
else if (cp->un.value.num_channels == 2) {
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
} else
return EINVAL;
return 0;
}
static int
eap1370_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
switch (dip->index) {
case EAP_MASTER_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmaster);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_VOICE_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_FM_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_CD_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_LINE_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_AUX_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNaux);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_MIC_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = EAP_MIC_PREAMP;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case EAP_RECORD_SOURCE:
dip->mixer_class = EAP_RECORD_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_SET;
dip->un.s.num_mem = 6;
strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNcd);
dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
strcpy(dip->un.s.member[4].label.name, AudioNaux);
dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
strcpy(dip->un.s.member[5].label.name, AudioNdac);
dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
return 0;
case EAP_INPUT_SOURCE:
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_SET;
dip->un.s.num_mem = 6;
strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNcd);
dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
strcpy(dip->un.s.member[4].label.name, AudioNaux);
dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
strcpy(dip->un.s.member[5].label.name, AudioNdac);
dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
return 0;
case EAP_MIC_PREAMP:
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = EAP_MIC_VOL;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNpreamp);
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
case EAP_OUTPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = EAP_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
return 0;
case EAP_RECORD_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = EAP_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
return 0;
case EAP_INPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = EAP_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
return 0;
}
return ENXIO;
}
static void *
eap_malloc(void *addr, int direction, size_t size,
struct malloc_type *pool, int flags)
{
struct eap_instance *ei;
struct eap_softc *sc;
struct eap_dma *p;
int error;
p = malloc(sizeof(*p), pool, flags);
if (!p)
return NULL;
ei = addr;
sc = (struct eap_softc *)ei->parent;
error = eap_allocmem(sc, size, 16, p);
if (error) {
free(p, pool);
return NULL;
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return KERNADDR(p);
}
static void
eap_free(void *addr, void *ptr, struct malloc_type *pool)
{
struct eap_instance *ei;
struct eap_softc *sc;
struct eap_dma **pp, *p;
ei = addr;
sc = (struct eap_softc *)ei->parent;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
if (KERNADDR(p) == ptr) {
eap_freemem(sc, p);
*pp = p->next;
free(p, pool);
return;
}
}
}
static size_t
eap_round_buffersize(void *addr, int direction, size_t size)
{
return size;
}
static paddr_t
eap_mappage(void *addr, void *mem, off_t off, int prot)
{
struct eap_instance *ei;
struct eap_softc *sc;
struct eap_dma *p;
if (off < 0)
return -1;
ei = addr;
sc = (struct eap_softc *)ei->parent;
for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
continue;
if (!p)
return -1;
return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
off, prot, BUS_DMA_WAITOK);
}
static int
eap_get_props(void *addr)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
AUDIO_PROP_FULLDUPLEX;
}
#if NMIDI > 0
static int
eap_midi_open(void *addr, int flags,
void (*iintr)(void *, int),
void (*ointr)(void *),
void *arg)
{
struct eap_softc *sc;
uint32_t uctrl;
sc = addr;
sc->sc_iintr = iintr;
sc->sc_ointr = ointr;
sc->sc_arg = arg;
EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) | EAP_UART_EN);
uctrl = 0;
if (flags & FREAD)
uctrl |= EAP_UC_RXINTEN;
#if 0
/* I don't understand ../midi.c well enough to use output interrupts */
if (flags & FWRITE)
uctrl |= EAP_UC_TXINTEN; */
#endif
EWRITE1(sc, EAP_UART_CONTROL, uctrl);
return 0;
}
static void
eap_midi_close(void *addr)
{
struct eap_softc *sc;
sc = addr;
tsleep(sc, PWAIT, "eapclm", hz/10); /* give uart a chance to drain */
EWRITE1(sc, EAP_UART_CONTROL, 0);
EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) & ~EAP_UART_EN);
sc->sc_iintr = 0;
sc->sc_ointr = 0;
}
static int
eap_midi_output(void *addr, int d)
{
struct eap_softc *sc;
int x;
sc = addr;
for (x = 0; x != MIDI_BUSY_WAIT; x++) {
if (EREAD1(sc, EAP_UART_STATUS) & EAP_US_TXRDY) {
EWRITE1(sc, EAP_UART_DATA, d);
return 0;
}
delay(MIDI_BUSY_DELAY);
}
return EIO;
}
static void
eap_midi_getinfo(void *addr, struct midi_info *mi)
{
mi->name = "AudioPCI MIDI UART";
mi->props = MIDI_PROP_CAN_INPUT;
}
#endif