600 lines
14 KiB
C
600 lines
14 KiB
C
/* $NetBSD: cdbw.c,v 1.1 2010/04/25 00:54:46 joerg Exp $ */
|
|
/*-
|
|
* Copyright (c) 2009, 2010 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Joerg Sonnenberger.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#if HAVE_NBTOOL_CONFIG_H
|
|
#include "nbtool_config.h"
|
|
#endif
|
|
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: cdbw.c,v 1.1 2010/04/25 00:54:46 joerg Exp $");
|
|
|
|
#include "namespace.h"
|
|
|
|
#include <sys/endian.h>
|
|
#include <sys/queue.h>
|
|
#include <cdbw.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef __weak_alias
|
|
__weak_alias(cdbw_close,_cdbw_close)
|
|
__weak_alias(cdbw_open,_cdbw_open)
|
|
__weak_alias(cdbw_output,_cdbw_output)
|
|
__weak_alias(cdbw_put,_cdbw_put)
|
|
__weak_alias(cdbw_put_data,_cdbw_put_data)
|
|
__weak_alias(cdbw_put_key,_cdbw_put_key)
|
|
#endif
|
|
|
|
struct key_hash {
|
|
SLIST_ENTRY(key_hash) link;
|
|
uint32_t hashes[3];
|
|
uint32_t idx;
|
|
void *key;
|
|
size_t keylen;
|
|
};
|
|
|
|
SLIST_HEAD(key_hash_head, key_hash);
|
|
|
|
struct cdbw {
|
|
size_t data_counter;
|
|
size_t data_allocated;
|
|
size_t data_size;
|
|
size_t *data_len;
|
|
void **data_ptr;
|
|
|
|
size_t hash_size;
|
|
struct key_hash_head *hash;
|
|
size_t key_counter;
|
|
};
|
|
|
|
/* Max. data counter that allows the index size to be 32bit. */
|
|
static const uint32_t max_data_counter = 0xccccccccU;
|
|
|
|
struct cdbw *
|
|
cdbw_open(void)
|
|
{
|
|
struct cdbw *cdbw;
|
|
size_t i;
|
|
|
|
cdbw = calloc(sizeof(*cdbw), 1);
|
|
if (cdbw == NULL)
|
|
return NULL;
|
|
|
|
cdbw->hash_size = 1024;
|
|
cdbw->hash = calloc(cdbw->hash_size, sizeof(*cdbw->hash));
|
|
if (cdbw->hash == NULL) {
|
|
free(cdbw);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < cdbw->hash_size; ++i)
|
|
SLIST_INIT(cdbw->hash + i);
|
|
|
|
return cdbw;
|
|
}
|
|
|
|
int
|
|
cdbw_put(struct cdbw *cdbw, const void *key, size_t keylen,
|
|
const void *data, size_t datalen)
|
|
{
|
|
uint32_t idx;
|
|
int rv;
|
|
|
|
rv = cdbw_put_data(cdbw, data, datalen, &idx);
|
|
if (rv)
|
|
return rv;
|
|
rv = cdbw_put_key(cdbw, key, keylen, idx);
|
|
if (rv) {
|
|
--cdbw->data_counter;
|
|
free(cdbw->data_ptr[cdbw->data_counter]);
|
|
cdbw->data_size -= datalen;
|
|
return rv;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cdbw_put_data(struct cdbw *cdbw, const void *data, size_t datalen,
|
|
uint32_t *idx)
|
|
{
|
|
|
|
if (cdbw->data_counter == max_data_counter)
|
|
return -1;
|
|
|
|
if (cdbw->data_size + datalen < cdbw->data_size ||
|
|
cdbw->data_size + datalen > 0xffffffffU)
|
|
return -1; /* Overflow */
|
|
|
|
if (cdbw->data_allocated == cdbw->data_counter) {
|
|
void **new_data_ptr;
|
|
size_t *new_data_len;
|
|
size_t new_allocated;
|
|
|
|
if (cdbw->data_allocated == 0)
|
|
new_allocated = 256;
|
|
else
|
|
new_allocated = cdbw->data_allocated * 2;
|
|
|
|
new_data_ptr = realloc(cdbw->data_ptr,
|
|
sizeof(*cdbw->data_ptr) * new_allocated);
|
|
if (new_data_ptr == NULL)
|
|
return -1;
|
|
cdbw->data_ptr = new_data_ptr;
|
|
|
|
new_data_len = realloc(cdbw->data_len,
|
|
sizeof(*cdbw->data_len) * new_allocated);
|
|
if (new_data_len == NULL)
|
|
return -1;
|
|
cdbw->data_len = new_data_len;
|
|
|
|
cdbw->data_allocated = new_allocated;
|
|
}
|
|
|
|
cdbw->data_ptr[cdbw->data_counter] = malloc(datalen);
|
|
if (cdbw->data_ptr[cdbw->data_counter] == NULL)
|
|
return -1;
|
|
memcpy(cdbw->data_ptr[cdbw->data_counter], data, datalen);
|
|
cdbw->data_len[cdbw->data_counter] = datalen;
|
|
cdbw->data_size += datalen;
|
|
*idx = cdbw->data_counter++;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cdbw_put_key(struct cdbw *cdbw, const void *key, size_t keylen, uint32_t idx)
|
|
{
|
|
uint32_t hashes[3];
|
|
struct key_hash_head *head, *head2, *new_head;
|
|
struct key_hash *key_hash;
|
|
size_t new_hash_size, i;
|
|
|
|
if (idx >= cdbw->data_counter ||
|
|
cdbw->key_counter == max_data_counter)
|
|
return -1;
|
|
|
|
mi_vector_hash(key, keylen, 0, hashes);
|
|
|
|
head = cdbw->hash + (hashes[0] & (cdbw->hash_size - 1));
|
|
SLIST_FOREACH(key_hash, head, link) {
|
|
if (key_hash->keylen != keylen)
|
|
continue;
|
|
if (key_hash->hashes[0] != hashes[0])
|
|
continue;
|
|
if (key_hash->hashes[1] != hashes[1])
|
|
continue;
|
|
if (key_hash->hashes[2] != hashes[2])
|
|
continue;
|
|
if (memcmp(key, key_hash->key, keylen))
|
|
continue;
|
|
return -1;
|
|
}
|
|
key_hash = malloc(sizeof(*key_hash));
|
|
if (key_hash == NULL)
|
|
return -1;
|
|
key_hash->key = malloc(keylen);
|
|
if (key_hash->key == NULL) {
|
|
free(key_hash);
|
|
return -1;
|
|
}
|
|
memcpy(key_hash->key, key, keylen);
|
|
key_hash->hashes[0] = hashes[0];
|
|
key_hash->hashes[1] = hashes[1];
|
|
key_hash->hashes[2] = hashes[2];
|
|
key_hash->keylen = keylen;
|
|
key_hash->idx = idx;
|
|
SLIST_INSERT_HEAD(head, key_hash, link);
|
|
++cdbw->key_counter;
|
|
|
|
if (cdbw->key_counter <= cdbw->hash_size)
|
|
return 0;
|
|
|
|
/* Try to resize the hash table, but ignore errors. */
|
|
new_hash_size = cdbw->hash_size * 2;
|
|
new_head = calloc(sizeof(*new_head), new_hash_size);
|
|
if (new_head == NULL)
|
|
return 0;
|
|
|
|
head = &cdbw->hash[hashes[0] & (cdbw->hash_size - 1)];
|
|
for (i = 0; i < new_hash_size; ++i)
|
|
SLIST_INIT(new_head + i);
|
|
|
|
for (i = 0; i < cdbw->hash_size; ++i) {
|
|
head = cdbw->hash + i;
|
|
|
|
while ((key_hash = SLIST_FIRST(head)) != NULL) {
|
|
SLIST_REMOVE_HEAD(head, link);
|
|
head2 = new_head +
|
|
(key_hash->hashes[0] & (new_hash_size - 1));
|
|
SLIST_INSERT_HEAD(head2, key_hash, link);
|
|
}
|
|
}
|
|
free(cdbw->hash);
|
|
cdbw->hash_size = new_hash_size;
|
|
cdbw->hash = new_head;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cdbw_close(struct cdbw *cdbw)
|
|
{
|
|
struct key_hash_head *head;
|
|
struct key_hash *key_hash;
|
|
size_t i;
|
|
|
|
for (i = 0; i < cdbw->hash_size; ++i) {
|
|
head = cdbw->hash + i;
|
|
while ((key_hash = SLIST_FIRST(head)) != NULL) {
|
|
SLIST_REMOVE_HEAD(head, link);
|
|
free(key_hash->key);
|
|
free(key_hash);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < cdbw->data_counter; ++i)
|
|
free(cdbw->data_ptr[i]);
|
|
free(cdbw->data_ptr);
|
|
free(cdbw->data_len);
|
|
free(cdbw->hash);
|
|
free(cdbw);
|
|
}
|
|
|
|
#define unused 0xffffffffU
|
|
|
|
struct vertex {
|
|
uint32_t l_edge, m_edge, r_edge;
|
|
};
|
|
|
|
struct edge {
|
|
uint32_t idx;
|
|
|
|
uint32_t left, middle, right;
|
|
uint32_t l_prev, m_prev, l_next;
|
|
uint32_t r_prev, m_next, r_next;
|
|
};
|
|
|
|
struct state {
|
|
uint32_t data_entries;
|
|
uint32_t entries;
|
|
uint32_t keys;
|
|
uint32_t seed;
|
|
|
|
uint32_t *g;
|
|
char *visited;
|
|
|
|
struct vertex *verts;
|
|
struct edge *edges;
|
|
uint32_t output_index;
|
|
uint32_t *output_order;
|
|
};
|
|
|
|
static void
|
|
remove_vertex(struct state *state, struct vertex *v)
|
|
{
|
|
struct edge *e;
|
|
struct vertex *vl, *vm, *vr;
|
|
|
|
if (v->l_edge != unused && v->m_edge != unused)
|
|
return;
|
|
if (v->l_edge != unused && v->r_edge != unused)
|
|
return;
|
|
if (v->m_edge != unused && v->r_edge != unused)
|
|
return;
|
|
if (v->l_edge == unused && v->m_edge == unused && v->r_edge == unused)
|
|
return;
|
|
|
|
if (v->l_edge != unused) {
|
|
e = &state->edges[v->l_edge];
|
|
if (e->l_next != unused)
|
|
return;
|
|
} else if (v->m_edge != unused) {
|
|
e = &state->edges[v->m_edge];
|
|
if (e->m_next != unused)
|
|
return;
|
|
} else {
|
|
if (v->r_edge == unused)
|
|
abort();
|
|
e = &state->edges[v->r_edge];
|
|
if (e->r_next != unused)
|
|
return;
|
|
}
|
|
|
|
state->output_order[--state->output_index] = e - state->edges;
|
|
|
|
vl = &state->verts[e->left];
|
|
vm = &state->verts[e->middle];
|
|
vr = &state->verts[e->right];
|
|
|
|
if (e->l_prev == unused)
|
|
vl->l_edge = e->l_next;
|
|
else
|
|
state->edges[e->l_prev].l_next = e->l_next;
|
|
if (e->l_next != unused)
|
|
state->edges[e->l_next].l_prev = e->l_prev;
|
|
|
|
if (e->m_prev == unused)
|
|
vm->m_edge = e->m_next;
|
|
else
|
|
state->edges[e->m_prev].m_next = e->m_next;
|
|
if (e->m_next != unused)
|
|
state->edges[e->m_next].m_prev = e->m_prev;
|
|
|
|
if (e->r_prev == unused)
|
|
vr->r_edge = e->r_next;
|
|
else
|
|
state->edges[e->r_prev].r_next = e->r_next;
|
|
if (e->r_next != unused)
|
|
state->edges[e->r_next].r_prev = e->r_prev;
|
|
}
|
|
|
|
static int
|
|
build_graph(struct cdbw *cdbw, struct state *state)
|
|
{
|
|
struct key_hash_head *head;
|
|
struct key_hash *key_hash;
|
|
struct vertex *v;
|
|
struct edge *e;
|
|
uint32_t hashes[3];
|
|
size_t i;
|
|
|
|
e = state->edges;
|
|
for (i = 0; i < cdbw->hash_size; ++i) {
|
|
head = &cdbw->hash[i];
|
|
SLIST_FOREACH(key_hash, head, link) {
|
|
e->idx = key_hash->idx;
|
|
mi_vector_hash(key_hash->key, key_hash->keylen,
|
|
state->seed, hashes);
|
|
e->left = hashes[0] % state->entries;
|
|
e->middle = hashes[1] % state->entries;
|
|
e->right = hashes[2] % state->entries;
|
|
|
|
++e;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < state->entries; ++i) {
|
|
v = state->verts + i;
|
|
v->l_edge = unused;
|
|
v->m_edge = unused;
|
|
v->r_edge = unused;
|
|
}
|
|
|
|
for (i = 0; i < state->keys; ++i) {
|
|
e = state->edges + i;
|
|
v = state->verts + e->left;
|
|
if (v->l_edge != unused)
|
|
state->edges[v->l_edge].l_prev = i;
|
|
e->l_next = v->l_edge;
|
|
e->l_prev = unused;
|
|
v->l_edge = i;
|
|
|
|
v = &state->verts[e->middle];
|
|
if (v->m_edge != unused)
|
|
state->edges[v->m_edge].m_prev = i;
|
|
e->m_next = v->m_edge;
|
|
e->m_prev = unused;
|
|
v->m_edge = i;
|
|
|
|
v = &state->verts[e->right];
|
|
if (v->r_edge != unused)
|
|
state->edges[v->r_edge].r_prev = i;
|
|
e->r_next = v->r_edge;
|
|
e->r_prev = unused;
|
|
v->r_edge = i;
|
|
}
|
|
|
|
state->output_index = state->keys;
|
|
for (i = 0; i < state->entries; ++i)
|
|
remove_vertex(state, state->verts + i);
|
|
|
|
i = state->keys;
|
|
while (i > 0 && i > state->output_index) {
|
|
--i;
|
|
e = state->edges + state->output_order[i];
|
|
remove_vertex(state, state->verts + e->left);
|
|
remove_vertex(state, state->verts + e->middle);
|
|
remove_vertex(state, state->verts + e->right);
|
|
}
|
|
|
|
return state->output_index == 0 ? 0 : -1;
|
|
}
|
|
|
|
static void
|
|
assign_nodes(struct state *state)
|
|
{
|
|
struct edge *e;
|
|
size_t i;
|
|
|
|
for (i = 0; i < state->keys; ++i) {
|
|
e = state->edges + state->output_order[i];
|
|
|
|
if (!state->visited[e->left]) {
|
|
state->g[e->left] =
|
|
(2 * state->data_entries + e->idx
|
|
- state->g[e->middle] - state->g[e->right])
|
|
% state->data_entries;
|
|
} else if (!state->visited[e->middle]) {
|
|
state->g[e->middle] =
|
|
(2 * state->data_entries + e->idx
|
|
- state->g[e->left] - state->g[e->right])
|
|
% state->data_entries;
|
|
} else {
|
|
state->g[e->right] =
|
|
(2 * state->data_entries + e->idx
|
|
- state->g[e->left] - state->g[e->middle])
|
|
% state->data_entries;
|
|
}
|
|
state->visited[e->left] = 1;
|
|
state->visited[e->middle] = 1;
|
|
state->visited[e->right] = 1;
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
compute_size(uint32_t size)
|
|
{
|
|
if (size < 0x100)
|
|
return 1;
|
|
else if (size < 0x10000)
|
|
return 2;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
#define COND_FLUSH_BUFFER(n) do { \
|
|
if (__predict_false(cur_pos + (n) >= sizeof(buf))) { \
|
|
ret = write(fd, buf, cur_pos); \
|
|
if (ret == -1 || (size_t)ret != cur_pos) \
|
|
return -1; \
|
|
cur_pos = 0; \
|
|
} \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
static int
|
|
print_hash(struct cdbw *cdbw, struct state *state, int fd, const char *descr)
|
|
{
|
|
uint32_t data_size;
|
|
uint8_t buf[90000];
|
|
size_t i, size, size2, cur_pos;
|
|
ssize_t ret;
|
|
|
|
memcpy(buf, "NBCDB\n\0", 7);
|
|
buf[7] = 1;
|
|
strncpy((char *)buf + 8, descr, 16);
|
|
le32enc(buf + 24, cdbw->data_size);
|
|
le32enc(buf + 28, cdbw->data_counter);
|
|
le32enc(buf + 32, state->entries);
|
|
le32enc(buf + 36, state->seed);
|
|
cur_pos = 40;
|
|
|
|
size = compute_size(state->entries);
|
|
for (i = 0; i < state->entries; ++i) {
|
|
COND_FLUSH_BUFFER(4);
|
|
le32enc(buf + cur_pos, state->g[i]);
|
|
cur_pos += size;
|
|
}
|
|
size2 = compute_size(cdbw->data_size);
|
|
size = size * state->entries % size2;
|
|
if (size != 0) {
|
|
size = size2 - size;
|
|
COND_FLUSH_BUFFER(4);
|
|
le32enc(buf + cur_pos, 0);
|
|
cur_pos += size;
|
|
}
|
|
for (data_size = 0, i = 0; i < cdbw->data_counter; ++i) {
|
|
COND_FLUSH_BUFFER(4);
|
|
le32enc(buf + cur_pos, data_size);
|
|
cur_pos += size2;
|
|
data_size += cdbw->data_len[i];
|
|
}
|
|
COND_FLUSH_BUFFER(4);
|
|
le32enc(buf + cur_pos, data_size);
|
|
cur_pos += size2;
|
|
|
|
for (i = 0; i < cdbw->data_counter; ++i) {
|
|
COND_FLUSH_BUFFER(cdbw->data_len[i]);
|
|
if (cdbw->data_len[i] < sizeof(buf)) {
|
|
memcpy(buf + cur_pos, cdbw->data_ptr[i],
|
|
cdbw->data_len[i]);
|
|
cur_pos += cdbw->data_len[i];
|
|
} else {
|
|
ret = write(fd, cdbw->data_ptr[i], cdbw->data_len[i]);
|
|
if (ret == -1 || (size_t)ret != cdbw->data_len[i])
|
|
return -1;
|
|
}
|
|
}
|
|
if (cur_pos != 0) {
|
|
ret = write(fd, buf, cur_pos);
|
|
if (ret == -1 || (size_t)ret != cur_pos)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cdbw_output(struct cdbw *cdbw, int fd, const char descr[16],
|
|
uint32_t (*seedgen)(void))
|
|
{
|
|
struct state state;
|
|
int rv;
|
|
|
|
if (cdbw->data_counter == 0 || cdbw->key_counter == 0) {
|
|
state.entries = 0;
|
|
state.seed = 0;
|
|
print_hash(cdbw, &state, fd, descr);
|
|
return 0;
|
|
}
|
|
|
|
if (seedgen == NULL)
|
|
seedgen = arc4random;
|
|
|
|
rv = 0;
|
|
|
|
state.keys = cdbw->key_counter;
|
|
state.data_entries = cdbw->data_counter;
|
|
state.entries = state.keys + (state.keys + 3) / 4;
|
|
if (state.entries < 10)
|
|
state.entries = 10;
|
|
|
|
#define NALLOC(var, n) var = calloc(sizeof(*var), n)
|
|
NALLOC(state.g, state.entries);
|
|
NALLOC(state.visited, state.entries);
|
|
NALLOC(state.verts, state.entries);
|
|
NALLOC(state.edges, state.entries);
|
|
NALLOC(state.output_order, state.keys);
|
|
#undef NALLOC
|
|
|
|
if (state.g == NULL || state.visited == NULL || state.verts == NULL ||
|
|
state.edges == NULL || state.output_order == NULL) {
|
|
rv = -1;
|
|
goto release;
|
|
}
|
|
|
|
do {
|
|
state.seed = (*seedgen)();
|
|
} while (build_graph(cdbw, &state));
|
|
|
|
assign_nodes(&state);
|
|
rv = print_hash(cdbw, &state, fd, descr);
|
|
|
|
release:
|
|
free(state.g);
|
|
free(state.visited);
|
|
free(state.verts);
|
|
free(state.edges);
|
|
free(state.output_order);
|
|
|
|
return rv;
|
|
}
|