NetBSD/sys/dev/audio.c

1895 lines
42 KiB
C

/* $NetBSD: audio.c,v 1.50 1997/05/27 23:24:56 augustss Exp $ */
/*
* Copyright (c) 1991-1993 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Computer Systems
* Engineering Group at Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This is a (partially) SunOS-compatible /dev/audio driver for NetBSD.
*
* This code tries to do something half-way sensible with
* half-duplex hardware, such as with the SoundBlaster hardware. With
* half-duplex hardware allowing O_RDWR access doesn't really make
* sense. However, closing and opening the device to "turn around the
* line" is relatively expensive and costs a card reset (which can
* take some time, at least for the SoundBlaster hardware). Instead
* we allow O_RDWR access, and provide an ioctl to set the "mode",
* i.e. playing or recording.
*
* If you write to a half-duplex device in record mode, the data is
* tossed. If you read from the device in play mode, you get silence
* filled buffers at the rate at which samples are naturally
* generated.
*
* If you try to set both play and record mode on a half-duplex
* device, playing takes precedence.
*/
/*
* Todo:
* - Add softaudio() isr processing for wakeup, poll and signals.
* - Allow opens for READ and WRITE (one open each)
* - Setup for single isr for full-duplex
* - Add SIGIO generation for changes in the mixer device
* - Fixup SunOS compat for mixer device changes in ioctl.
*/
#include "audio.h"
#if NAUDIO > 0
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/select.h>
#include <sys/poll.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/kernel.h>
#include <sys/signalvar.h>
#include <sys/conf.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/audiovar.h>
#include <machine/endian.h>
#ifdef AUDIO_DEBUG
#include <machine/stdarg.h>
void Dprintf __P((const char *, ...));
void
#ifdef __STDC__
Dprintf(const char *fmt, ...)
#else
Dprintf(fmt, va_alist)
char *fmt;
#endif
{
va_list ap;
va_start(ap, fmt);
log(LOG_DEBUG, "%:", fmt, ap);
va_end(ap);
}
#define DPRINTF(x) if (audiodebug) Dprintf x
int audiodebug = 0;
#else
#define DPRINTF(x)
#endif
int audio_blk_ms = AUDIO_BLK_MS;
int audio_backlog = AUDIO_BACKLOG;
struct audio_softc **audio_softc;
int naudio = 0; /* Current size of audio_softc */
int audiosetinfo __P((struct audio_softc *, struct audio_info *));
int audiogetinfo __P((struct audio_softc *, struct audio_info *));
int audio_open __P((dev_t, int, int, struct proc *));
int audio_close __P((dev_t, int, int, struct proc *));
int audio_read __P((dev_t, struct uio *, int));
int audio_write __P((dev_t, struct uio *, int));
int audio_ioctl __P((dev_t, int, caddr_t, int, struct proc *));
int audio_poll __P((dev_t, int, struct proc *));
int audio_mmap __P((dev_t, int, int));
int mixer_open __P((dev_t, int, int, struct proc *));
int mixer_close __P((dev_t, int, int, struct proc *));
int mixer_ioctl __P((dev_t, int, caddr_t, int, struct proc *));
void audio_init_record __P((struct audio_softc *));
void audio_init_play __P((struct audio_softc *));
void audiostartr __P((struct audio_softc *));
void audiostartp __P((struct audio_softc *));
void audio_rint __P((void *));
void audio_pint __P((void *));
void audio_rpint __P((void *));
int audio_check_params __P((struct audio_params *));
int audio_calc_blksize __P((struct audio_softc *));
void audio_fill_silence __P((struct audio_params *, u_char *, int));
int audio_silence_copyout __P((struct audio_softc *, int, struct uio *));
void audio_alloc_auzero __P((struct audio_softc *, int));
void audio_printsc __P((struct audio_softc *));
void audioattach __P((int));
int audio_hardware_attach __P((struct audio_hw_if *, void *));
void audio_init_ring __P((struct audio_buffer *, int));
void audio_initbufs __P((struct audio_softc *));
static __inline int audio_sleep_timo __P((int *, char *, int));
static __inline int audio_sleep __P((int *, char *));
static __inline void audio_wakeup __P((int *));
int audio_drain __P((struct audio_softc *));
void audio_clear __P((struct audio_softc *));
/* The default audio mode: 8 kHz mono ulaw */
struct audio_params audio_default =
{ 8000, AUDIO_ENCODING_ULAW, 8, 1, 0 };
#ifdef AUDIO_DEBUG
void
audio_printsc(sc)
struct audio_softc *sc;
{
printf("hwhandle %p hw_if %p ", sc->hw_hdl, sc->hw_if);
printf("open %x mode %x\n", sc->sc_open, sc->sc_mode);
printf("rchan %x wchan %x ", sc->sc_rchan, sc->sc_wchan);
printf("rring blk %x pring nblk %x\n", sc->rr.nblk, sc->pr.nblk);
printf("rbus %x pbus %x ", sc->sc_rbus, sc->sc_pbus);
printf("blksz %d sib %d ", sc->sc_blksize, sc->sc_smpl_in_blk);
printf("sp50ms %d backlog %d\n", sc->sc_50ms, sc->sc_backlog);
printf("hiwat %d lowat %d rblks %d\n", sc->sc_hiwat, sc->sc_lowat,
sc->sc_rblks);
}
#endif
void
audioattach(num)
int num;
{
}
/*
* Called from hardware driver.
*/
int
audio_hardware_attach(hwp, hdlp)
struct audio_hw_if *hwp;
void *hdlp;
{
struct audio_softc *sc;
int n;
/* Find a free slot. */
for(n = 0; n < naudio && audio_softc[n]; n++)
;
if (n >= naudio) {
/* No free slots, allocate one */
struct audio_softc **new;
naudio++;
new = malloc(naudio * sizeof(struct audio_softc *),
M_DEVBUF, M_WAITOK);
bcopy(audio_softc, new,
n * sizeof(struct audio_softc *));
if (audio_softc)
free(audio_softc, M_DEVBUF);
audio_softc = new;
audio_softc[n] = 0;
}
/* Malloc a softc for the device. */
sc = malloc(sizeof(struct audio_softc), M_DEVBUF, M_WAITOK);
bzero(sc, sizeof(struct audio_softc));
/* XXX too paranoid? */
if (hwp->open == 0 ||
hwp->close == 0 ||
hwp->query_encoding == 0 ||
hwp->set_params == 0 ||
hwp->round_blocksize == 0 ||
hwp->set_out_port == 0 ||
hwp->get_out_port == 0 ||
hwp->set_in_port == 0 ||
hwp->get_in_port == 0 ||
hwp->commit_settings == 0 ||
hwp->start_output == 0 ||
hwp->start_input == 0 ||
hwp->halt_output == 0 ||
hwp->halt_input == 0 ||
hwp->cont_output == 0 ||
hwp->cont_input == 0 ||
hwp->getdev == 0 ||
hwp->set_port == 0 ||
hwp->get_port == 0 ||
hwp->query_devinfo == 0) {
free(sc, M_DEVBUF);
return(EINVAL);
}
sc->hw_if = hwp;
sc->hw_hdl = hdlp;
/*
* Alloc DMA play and record buffers
*/
sc->rr.bp = malloc(AU_RING_SIZE, M_DEVBUF, M_WAITOK);
if (sc->rr.bp == 0) {
free(sc, M_DEVBUF);
return (ENOMEM);
}
sc->pr.bp = malloc(AU_RING_SIZE, M_DEVBUF, M_WAITOK);
if (sc->pr.bp == 0) {
free(sc->rr.bp, M_DEVBUF);
free(sc, M_DEVBUF);
return (ENOMEM);
}
audio_softc[n] = sc;
/*
* Set default softc params
*/
sc->sc_pparams = audio_default;
sc->sc_rparams = audio_default;
/*
* Return the audio unit number
*/
hwp->audio_unit = n;
#ifdef AUDIO_DEBUG
printf("audio: unit %d attached\n", hwp->audio_unit);
#endif
return(0);
}
int
audio_hardware_detach(hwp)
struct audio_hw_if *hwp;
{
struct audio_softc *sc;
#ifdef DIAGNOSTIC
if (!hwp)
panic("audio_hardware_detach: null hwp");
if (hwp->audio_unit > naudio)
panic("audio_hardware_detach: invalid audio unit");
#endif
sc = audio_softc[hwp->audio_unit];
if (hwp != sc->hw_if)
return(EINVAL);
if (sc->sc_open != 0)
return(EBUSY);
sc->hw_if = 0;
/* Free audio buffers */
free(sc->rr.bp, M_DEVBUF);
free(sc->pr.bp, M_DEVBUF);
free(sc, M_DEVBUF);
audio_softc[hwp->audio_unit] = NULL;
return(0);
}
int
audioopen(dev, flags, ifmt, p)
dev_t dev;
int flags, ifmt;
struct proc *p;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_open(dev, flags, ifmt, p));
case MIXER_DEVICE:
return (mixer_open(dev, flags, ifmt, p));
default:
return (ENXIO);
}
}
int
audioclose(dev, flags, ifmt, p)
dev_t dev;
int flags, ifmt;
struct proc *p;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_close(dev, flags, ifmt, p));
case MIXER_DEVICE:
return (mixer_close(dev, flags, ifmt, p));
default:
return (ENXIO);
}
}
int
audioread(dev, uio, ioflag)
dev_t dev;
struct uio *uio;
int ioflag;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_read(dev, uio, ioflag));
case MIXER_DEVICE:
return (ENODEV);
default:
return (ENXIO);
}
}
int
audiowrite(dev, uio, ioflag)
dev_t dev;
struct uio *uio;
int ioflag;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_write(dev, uio, ioflag));
case MIXER_DEVICE:
return (ENODEV);
default:
return (ENXIO);
}
}
int
audioioctl(dev, cmd, addr, flag, p)
dev_t dev;
u_long cmd;
caddr_t addr;
int flag;
struct proc *p;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_ioctl(dev, cmd, addr, flag, p));
case MIXER_DEVICE:
return (mixer_ioctl(dev, cmd, addr, flag, p));
default:
return (ENXIO);
}
}
int
audiopoll(dev, events, p)
dev_t dev;
int events;
struct proc *p;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_poll(dev, events, p));
case MIXER_DEVICE:
return (0);
default:
return (0);
}
}
int
audiommap(dev, off, prot)
dev_t dev;
int off, prot;
{
switch (AUDIODEV(dev)) {
case SOUND_DEVICE:
case AUDIO_DEVICE:
return (audio_mmap(dev, off, prot));
case MIXER_DEVICE:
return (ENODEV);
default:
return (ENXIO);
}
}
/*
* Audio driver
*/
void
audio_init_ring(rp, blksize)
struct audio_buffer *rp;
int blksize;
{
int nblk = AU_RING_SIZE / blksize;
rp->ep = rp->bp + nblk * blksize;
rp->hp = rp->tp = rp->bp;
rp->maxblk = nblk;
rp->nblk = 0;
rp->cb_drops = 0;
rp->cb_pdrops = 0;
}
void
audio_initbufs(sc)
struct audio_softc *sc;
{
int nblk = AU_RING_SIZE / sc->sc_blksize;
audio_init_ring(&sc->rr, sc->sc_blksize);
audio_init_ring(&sc->pr, sc->sc_blksize);
sc->sc_lowat = nblk * 3 / 4;
sc->sc_hiwat = nblk;
}
static __inline int
audio_sleep_timo(chan, label, timo)
int *chan;
char *label;
int timo;
{
int st;
if (!label)
label = "audio";
*chan = 1;
st = (tsleep(chan, PWAIT | PCATCH, label, timo));
*chan = 0;
if (st != 0) {
DPRINTF(("audio_sleep: %d\n", st));
}
return (st);
}
static __inline int
audio_sleep(chan, label)
int *chan;
char *label;
{
return audio_sleep_timo(chan, label, 0);
}
static __inline void
audio_wakeup(chan)
int *chan;
{
if (*chan) {
wakeup(chan);
*chan = 0;
}
}
int
audio_open(dev, flags, ifmt, p)
dev_t dev;
int flags, ifmt;
struct proc *p;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc;
int s, error;
struct audio_hw_if *hw;
if (unit >= naudio || !audio_softc[unit]) {
DPRINTF(("audio_open: invalid device unit - %d\n", unit));
return (ENODEV);
}
sc = audio_softc[unit];
hw = sc->hw_if;
DPRINTF(("audio_open: dev=0x%x flags=0x%x sc=0x%x hdl=0x%x\n", dev, flags, sc, sc->hw_hdl));
if (hw == 0) /* Hardware has not attached to us... */
return (ENXIO);
if ((sc->sc_open & (AUOPEN_READ|AUOPEN_WRITE)) != 0) /* XXX use flags */
return (EBUSY);
if ((error = hw->open(dev, flags)) != 0)
return (error);
if (flags&FREAD)
sc->sc_open |= AUOPEN_READ;
if (flags&FWRITE)
sc->sc_open |= AUOPEN_WRITE;
/*
* Multiplex device: /dev/audio (MU-Law) and /dev/sound (linear)
* The /dev/audio is always (re)set to 8-bit MU-Law mono
* For the other devices, you get what they were last set to.
*/
if (ISDEVAUDIO(dev)) {
/* /dev/audio */
sc->sc_rparams = audio_default;
sc->sc_pparams = audio_default;
/** XXX should we abort on error? */
error = hw->set_params(sc->hw_hdl, AUMODE_RECORD,
&sc->sc_rparams, &sc->sc_pparams);
if (error)
return (error);
error = hw->set_params(sc->hw_hdl, AUMODE_PLAY,
&sc->sc_pparams, &sc->sc_rparams);
if (error)
return (error);
}
/*
* Sample rate and precision are supposed to be set to proper
* default values by the hardware driver, so that it may give
* us these values.
*/
#ifdef DIAGNOSTIC
if (sc->sc_rparams.precision == 0 || sc->sc_pparams.precision == 0) {
printf("audio_open: 0 precision\n");
return EINVAL;
}
#endif
sc->sc_blksize = audio_calc_blksize(sc);
audio_alloc_auzero(sc, sc->sc_blksize);
sc->sc_smpl_in_blk = sc->sc_blksize / (sc->sc_pparams.precision / NBBY);
sc->sc_50ms = 50 * sc->sc_pparams.sample_rate / 1000;
audio_initbufs(sc);
sc->sc_backlog = audio_backlog;
DPRINTF(("audio_open: rr.bp=%x-%x pr.bp=%x-%x\n",
sc->rr.bp, sc->rr.ep, sc->pr.bp, sc->pr.ep));
hw->commit_settings(sc->hw_hdl);
s = splaudio();
/* nothing read or written yet */
sc->sc_rseek = 0;
sc->sc_wseek = 0;
sc->sc_rchan = 0;
sc->sc_wchan = 0;
sc->sc_rbus = 0;
sc->sc_pbus = 0;
if ((flags & FWRITE) != 0) {
audio_init_play(sc);
/* audio_pint(sc); ??? */
}
if ((flags & FREAD) != 0) {
/* Play takes precedence if HW is half-duplex */
if (hw->full_duplex || ((flags & FWRITE) == 0)) {
audio_init_record(sc);
/* audiostartr(sc); don't start recording until read */
}
}
if (ISDEVAUDIO(dev)) {
/* if open only for read or only for write, then set specific mode */
if ((flags & (FWRITE|FREAD)) == FWRITE) {
sc->sc_mode = AUMODE_PLAY;
sc->pr.cb_pause = 0;
sc->rr.cb_pause = 1;
audiostartp(sc);
} else if ((flags & (FWRITE|FREAD)) == FREAD) {
sc->sc_mode = AUMODE_RECORD;
sc->rr.cb_pause = 0;
sc->pr.cb_pause = 1;
audiostartr(sc);
}
}
/* Play all sample, and don't pad short writes by default */
sc->sc_mode |= AUMODE_PLAY_ALL;
splx(s);
return (0);
}
/*
* Must be called from task context.
*/
void
audio_init_record(sc)
struct audio_softc *sc;
{
int s = splaudio();
sc->sc_mode |= AUMODE_RECORD;
if (sc->hw_if->speaker_ctl &&
(!sc->hw_if->full_duplex || (sc->sc_mode & AUMODE_PLAY) == 0))
sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_OFF);
splx(s);
}
/*
* Must be called from task context.
*/
void
audio_init_play(sc)
struct audio_softc *sc;
{
int s = splaudio();
sc->sc_mode |= AUMODE_PLAY;
sc->sc_rblks = sc->sc_wblks = 0;
if (sc->hw_if->speaker_ctl)
sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_ON);
splx(s);
}
int
audio_drain(sc)
struct audio_softc *sc;
{
int error;
while (sc->pr.nblk > 0) {
DPRINTF(("audio_drain: nblk=%d\n", sc->pr.nblk));
/*
* XXX
* When the process is exiting, it ignores all signals and
* we can't interrupt this sleep, so we set a 1-minute
* timeout.
*/
error = audio_sleep_timo(&sc->sc_wchan, "aud dr", 60*hz);
if (error)
return (error);
}
return (0);
}
/*
* Close an audio chip.
*/
/* ARGSUSED */
int
audio_close(dev, flags, ifmt, p)
dev_t dev;
int flags, ifmt;
struct proc *p;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc = audio_softc[unit];
struct audio_hw_if *hw = sc->hw_if;
int s;
DPRINTF(("audio_close: unit=%d\n", unit));
/*
* Block until output drains, but allow ^C interrupt.
*/
sc->sc_lowat = 0; /* avoid excessive wakeups */
s = splaudio();
/*
* If there is pending output, let it drain (unless
* the output is paused).
*/
if (sc->sc_pbus && sc->pr.nblk > 0 && !sc->pr.cb_pause) {
if (!audio_drain(sc) && hw->drain)
(void)hw->drain(sc->hw_hdl);
}
hw->close(sc->hw_hdl);
if (flags&FREAD)
sc->sc_open &= ~AUOPEN_READ;
if (flags&FWRITE)
sc->sc_open &= ~AUOPEN_WRITE;
sc->sc_async = 0;
splx(s);
DPRINTF(("audio_close: done\n"));
return (0);
}
int
audio_read(dev, uio, ioflag)
dev_t dev;
struct uio *uio;
int ioflag;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc = audio_softc[unit];
struct audio_hw_if *hw = sc->hw_if;
struct audio_buffer *cb = &sc->rr;
u_char *hp;
int blocksize = sc->sc_blksize;
int error, s;
DPRINTF(("audio_read: cc=%d mode=%d rblks=%d\n",
uio->uio_resid, sc->sc_mode, sc->sc_rblks));
if (uio->uio_resid == 0)
return (0);
if (uio->uio_resid < blocksize)
return (EINVAL);
/* First sample we'll read in sample space */
sc->sc_rseek = cb->au_stamp - AU_RING_LEN(cb);
/*
* If hardware is half-duplex and currently playing, return
* silence blocks based on the number of blocks we have output.
*/
if ((!hw->full_duplex) &&
(sc->sc_mode & AUMODE_PLAY)) {
do {
s = splaudio();
while (sc->sc_rblks <= 0) {
DPRINTF(("audio_read: sc_rblks=%d\n", sc->sc_rblks));
if (ioflag & IO_NDELAY) {
splx(s);
return (EWOULDBLOCK);
}
error = audio_sleep(&sc->sc_rchan, "aud hr");
if (error) {
splx(s);
return (error);
}
}
splx(s);
error = audio_silence_copyout(sc, blocksize, uio);
if (error)
break;
s = splaudio();
--sc->sc_rblks;
splx(s);
} while (uio->uio_resid >= blocksize);
return (error);
}
error = 0;
do {
while (cb->nblk <= 0) {
if (ioflag & IO_NDELAY) {
error = EWOULDBLOCK;
return (error);
}
s = splaudio();
if (!sc->sc_rbus)
audiostartr(sc);
error = audio_sleep(&sc->sc_rchan, "aud rd");
splx(s);
if (error)
return (error);
}
hp = cb->hp;
if (sc->sc_rparams.sw_code)
sc->sc_rparams.sw_code(sc->hw_hdl, hp, blocksize);
error = uiomove(hp, blocksize, uio);
if (error)
break;
hp += blocksize;
if (hp >= cb->ep)
hp = cb->bp;
cb->hp = hp;
--cb->nblk;
} while (uio->uio_resid >= blocksize);
return (error);
}
void
audio_clear(sc)
struct audio_softc *sc;
{
int s = splaudio();
if (sc->sc_rbus || sc->sc_pbus) {
sc->hw_if->halt_output(sc->hw_hdl);
sc->hw_if->halt_input(sc->hw_hdl);
sc->sc_rbus = 0;
sc->sc_pbus = 0;
}
AU_RING_INIT(&sc->rr);
AU_RING_INIT(&sc->pr);
sc->sc_rblks = sc->sc_wblks = 0;
splx(s);
}
int
audio_calc_blksize(sc)
struct audio_softc *sc;
{
struct audio_hw_if *hw = sc->hw_if;
int bs;
bs = sc->sc_pparams.sample_rate * audio_blk_ms / 1000;
if (bs == 0)
bs = 1;
bs *= sc->sc_pparams.channels;
bs *= sc->sc_pparams.precision / NBBY;
if (bs > AU_RING_SIZE/2)
bs = AU_RING_SIZE/2;
bs = hw->round_blocksize(sc->hw_hdl, bs);
if (bs > AU_RING_SIZE)
bs = AU_RING_SIZE;
return(bs);
}
void
audio_fill_silence(params, p, n)
struct audio_params *params;
u_char *p;
int n;
{
u_char auzero[2];
int nfill = 1;
switch (params->encoding) {
case AUDIO_ENCODING_ULAW:
auzero[0] = 0x7f;
break;
case AUDIO_ENCODING_ALAW:
auzero[0] = 0x55;
break;
case AUDIO_ENCODING_ADPCM: /* is this right XXX */
case AUDIO_ENCODING_LINEAR_LE:
case AUDIO_ENCODING_LINEAR_BE:
auzero[0] = 0; /* fortunately this works for both 8 and 16 bits */
break;
case AUDIO_ENCODING_ULINEAR_LE:
case AUDIO_ENCODING_ULINEAR_BE:
if (params->precision == 16) {
nfill = 2;
if (params->encoding == AUDIO_ENCODING_ULINEAR_LE) {
auzero[0] = 0;
auzero[1] = 0x80;
} else {
auzero[0] = 0x80;
auzero[1] = 0;
}
} else
auzero[0] = 0x80;
break;
default:
printf("audio: bad encoding %d\n", params->encoding);
auzero[0] = 0;
break;
}
if (nfill == 1) {
while (--n >= 0)
*p++ = auzero[0]; /* XXX memset */
} else /* must be 2 */ {
while (n > 1) {
*p++ = auzero[0];
*p++ = auzero[1];
n -= 2;
}
}
}
int
audio_silence_copyout(sc, n, uio)
struct audio_softc *sc;
int n;
struct uio *uio;
{
int error;
int k;
u_char zerobuf[128];
audio_fill_silence(&sc->sc_rparams, zerobuf, sizeof zerobuf);
error = 0;
while (n > 0 && uio->uio_resid > 0 && !error) {
k = min(n, min(uio->uio_resid, sizeof zerobuf));
error = uiomove(zerobuf, k, uio);
n -= k;
}
return (error);
}
void
audio_alloc_auzero(sc, bs)
struct audio_softc *sc;
int bs;
{
if (sc->auzero_block)
free(sc->auzero_block, M_DEVBUF);
sc->auzero_block = malloc(bs, M_DEVBUF, M_WAITOK);
#ifdef DIAGNOSTIC
if (sc->auzero_block == 0) {
panic("audio_alloc_auzero: malloc auzero_block failed");
}
#endif
audio_fill_silence(&sc->sc_pparams, sc->auzero_block, bs);
if (sc->sc_pparams.sw_code)
sc->sc_pparams.sw_code(sc->hw_hdl, sc->auzero_block, bs);
}
int
audio_write(dev, uio, ioflag)
dev_t dev;
struct uio *uio;
int ioflag;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc = audio_softc[unit];
struct audio_hw_if *hw = sc->hw_if;
struct audio_buffer *cb = &sc->pr;
u_char *tp;
int error, s, cc;
int blocksize = sc->sc_blksize;
DPRINTF(("audio_write: cc=%d hiwat=%d\n", uio->uio_resid, sc->sc_hiwat));
/*
* If half-duplex and currently recording, throw away data.
*/
if (!hw->full_duplex &&
(sc->sc_mode & AUMODE_RECORD)) {
uio->uio_offset += uio->uio_resid;
uio->uio_resid = 0;
DPRINTF(("audio_write: half-dpx read busy\n"));
return (0);
}
error = 0;
while (uio->uio_resid > 0) {
if (cb->fill > 0) {
if (sc->sc_pbus == 0) {
/* playing has stopped, ignore fill */
cb->fill = 0;
} else {
/* Write samples in the silence fill space.
* We don't know where the DMA is
* happening in the buffer, but if we
* are lucky we will fill the buffer before
* playing has reached the point we move to.
* If we are unlucky some sample will
* not be played.
*/
cc = min(cb->fill, uio->uio_resid);
error = uiomove(cb->otp, cc, uio);
if (error == 0) {
if (sc->sc_pparams.sw_code)
sc->sc_pparams.sw_code(sc->hw_hdl,
cb->otp, cc);
cb->fill -= cc;
cb->otp += cc;
}
continue;
}
}
if (cb->nblk >= sc->sc_hiwat) {
do {
DPRINTF(("audio_write: nblk=%d hiwat=%d lowat=%d\n", cb->nblk, sc->sc_hiwat, sc->sc_lowat));
if (ioflag & IO_NDELAY)
return (EWOULDBLOCK);
error = audio_sleep(&sc->sc_wchan, "aud wr");
if (error)
return (error);
} while (cb->nblk >= sc->sc_lowat);
}
#if 0
if (cb->nblk == 0 &&
cb->maxblk > sc->sc_backlog &&
uio->uio_resid <= blocksize &&
(cb->au_stamp - sc->sc_wseek) > sc->sc_50ms) {
/*
* the write is 'small', the buffer is empty
* and we have been silent for at least 50ms
* so we might be dealing with an application
* that writes frames synchronously with
* reading them. If so, we need an output
* backlog to cover scheduling delays or
* there will be gaps in the sound output.
* Also take this opportunity to reset the
* buffer pointers in case we ended up on
* a bad boundary (odd byte, blksize bytes
* from end, etc.).
*/
DPRINTF(("audiowrite: set backlog %d\n", sc->sc_backlog));
s = splaudio();
cb->hp = cb->bp;
cb->nblk = sc->sc_backlog;
cb->tp = cb->hp + sc->sc_backlog * blocksize;
splx(s);
audio_fill_silence(&sc->sc_pparams, cb->hp, sc->sc_backlog * blocksize);
}
#endif
/* Calculate sample number of first sample in block we write */
s = splaudio();
sc->sc_wseek = AU_RING_LEN(cb) + cb->au_stamp;
splx(s);
tp = cb->tp;
cc = uio->uio_resid;
#ifdef AUDIO_DEBUG
if (audiodebug > 1) {
int left = cb->ep - tp;
Dprintf("audio_write: cc=%d tp=%p bs=%d nblk=%d left=%d\n", cc, tp, blocksize, cb->nblk, left);
}
#endif
#ifdef DIAGNOSTIC
{
int towrite = (cc < blocksize)?cc:blocksize;
/* check for an overwrite. Should never happen */
if ((tp + towrite) > cb->ep) {
DPRINTF(("audio_write: overwrite tp=%p towrite=%d ep=0x%x bs=%d\n",
tp, towrite, cb->ep, blocksize));
printf("audio_write: overwrite tp=%p towrite=%d ep=%p\n",
tp, towrite, cb->ep);
tp = cb->bp;
}
}
#endif
if (cc < blocksize) {
error = uiomove(tp, cc, uio);
if (error == 0) {
/* fill with audio silence */
tp += cc;
cc = blocksize - cc;
cb->fill = cc;
cb->otp = tp;
audio_fill_silence(&sc->sc_pparams, tp, cc);
DPRINTF(("audio_write: auzero 0x%x %d 0x%x\n",
tp, cc, *tp));
tp += cc;
}
} else {
error = uiomove(tp, blocksize, uio);
if (error == 0) {
tp += blocksize;
}
}
if (error) {
#ifdef AUDIO_DEBUG
printf("audio_write:(1) uiomove failed %d; cc=%d tp=%p bs=%d\n", error, cc, tp, blocksize);
#endif
break;
}
if (sc->sc_pparams.sw_code)
sc->sc_pparams.sw_code(sc->hw_hdl, cb->tp, blocksize);
/* wrap the ring buffer if at end */
s = splaudio();
if ((sc->sc_mode & AUMODE_PLAY_ALL) == 0 && sc->sc_wblks)
/*
* discard the block if we sent out a silence
* packet that hasn't yet been countered
* by user data. (They must supply enough
* data to catch up to "real time").
*/
sc->sc_wblks--;
else {
if (tp >= cb->ep)
tp = cb->bp;
cb->tp = tp;
++cb->nblk; /* account for buffer filled */
/*
* If output isn't active, start it up.
*/
if (sc->sc_pbus == 0)
audiostartp(sc);
}
splx(s);
}
return (error);
}
int
audio_ioctl(dev, cmd, addr, flag, p)
dev_t dev;
int cmd;
caddr_t addr;
int flag;
struct proc *p;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc = audio_softc[unit];
struct audio_hw_if *hw = sc->hw_if;
int error = 0, s;
DPRINTF(("audio_ioctl(%d,'%c',%d)\n",
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff));
switch (cmd) {
case FIOASYNC:
if (*(int *)addr) {
if (sc->sc_async)
return (EBUSY);
sc->sc_async = p;
} else
sc->sc_async = 0;
break;
case FIONBIO: /* to be removed? */
break;
case AUDIO_FLUSH:
DPRINTF(("AUDIO_FLUSH\n"));
audio_clear(sc);
s = splaudio();
if ((sc->sc_mode & AUMODE_PLAY) && (sc->sc_pbus == 0))
audiostartp(sc);
/* Again, play takes precedence on half-duplex hardware */
if ((sc->sc_mode & AUMODE_RECORD) &&
(hw->full_duplex ||
((sc->sc_mode & AUMODE_PLAY) == 0)))
audiostartr(sc);
splx(s);
break;
/*
* Number of read (write) samples dropped. We don't know where or
* when they were dropped.
*/
case AUDIO_RERROR:
*(int *)addr = sc->rr.cb_drops;
break;
case AUDIO_PERROR:
*(int *)addr = sc->pr.cb_drops;
break;
/*
* How many samples will elapse until mike hears the first
* sample of what we last wrote?
*/
case AUDIO_WSEEK:
s = splaudio();
*(u_long *)addr = sc->sc_wseek - sc->pr.au_stamp
+ AU_RING_LEN(&sc->rr);
splx(s);
break;
case AUDIO_SETINFO:
DPRINTF(("AUDIO_SETINFO\n"));
error = audiosetinfo(sc, (struct audio_info *)addr);
break;
case AUDIO_GETINFO:
DPRINTF(("AUDIO_GETINFO\n"));
error = audiogetinfo(sc, (struct audio_info *)addr);
break;
case AUDIO_DRAIN:
DPRINTF(("AUDIO_DRAIN\n"));
error = audio_drain(sc);
if (!error && hw->drain)
error = hw->drain(sc->hw_hdl);
break;
case AUDIO_GETDEV:
DPRINTF(("AUDIO_GETDEV\n"));
error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
break;
case AUDIO_GETENC:
DPRINTF(("AUDIO_GETENC\n"));
error = hw->query_encoding(sc->hw_hdl, (struct audio_encoding *)addr);
break;
case AUDIO_GETFD:
DPRINTF(("AUDIO_GETFD\n"));
*(int *)addr = hw->full_duplex;
break;
case AUDIO_SETFD:
DPRINTF(("AUDIO_SETFD\n"));
error = hw->setfd(sc->hw_hdl, *(int *)addr);
break;
default:
DPRINTF(("audio_ioctl: unknown ioctl\n"));
error = EINVAL;
break;
}
DPRINTF(("audio_ioctl(%d,'%c',%d) result %d\n",
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff, error));
return (error);
}
int
audio_poll(dev, events, p)
dev_t dev;
int events;
struct proc *p;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc = audio_softc[unit];
int revents = 0;
int s = splaudio();
#if 0
DPRINTF(("audio_poll: events=%d mode=%d rblks=%d rr.nblk=%d\n",
events, sc->sc_mode, sc->sc_rblks, sc->rr.nblk));
#endif
if (events & (POLLIN | POLLRDNORM))
if ((sc->sc_mode & AUMODE_PLAY) ?
(sc->sc_rblks > 0) : (sc->rr.nblk > 0))
revents |= events & (POLLIN | POLLRDNORM);
if (events & (POLLOUT | POLLWRNORM))
if ((sc->sc_mode & AUMODE_RECORD) ?
1 : (sc->pr.nblk <= sc->sc_lowat))
revents |= events & (POLLOUT | POLLWRNORM);
if (revents == 0) {
if (events & (POLLIN | POLLRDNORM))
selrecord(p, &sc->sc_rsel);
if (events & (POLLOUT | POLLWRNORM))
selrecord(p, &sc->sc_wsel);
}
splx(s);
return (revents);
}
int
audio_mmap(dev, off, prot)
dev_t dev;
int off, prot;
{
/* XXX placeholder */
return (-1);
}
void
audiostartr(sc)
struct audio_softc *sc;
{
int error;
DPRINTF(("audiostartr: tp=%p\n", sc->rr.tp));
error = sc->hw_if->start_input(sc->hw_hdl, sc->rr.tp, sc->sc_blksize,
audio_rint, (void *)sc);
if (error) {
DPRINTF(("audiostartr failed: %d\n", error));
audio_clear(sc);
}
else
sc->sc_rbus = 1;
}
void
audiostartp(sc)
struct audio_softc *sc;
{
int error;
DPRINTF(("audiostartp: hp=0x%x nblk=%d\n", sc->pr.hp, sc->pr.nblk));
if (sc->pr.nblk > 0) {
u_char *hp = sc->pr.hp;
error = sc->hw_if->start_output(sc->hw_hdl, hp, sc->sc_blksize,
audio_rpint, (void *)sc);
if (error) {
DPRINTF(("audiostartp: failed: %d\n", error));
}
else {
sc->sc_pbus = 1;
hp += sc->sc_blksize;
if (hp >= sc->pr.ep)
hp = sc->pr.bp;
sc->pr.hp = hp;
}
}
}
/*
* Use this routine as DMA callback if we played user data. We need to
* account for user data and silence separately.
*/
void
audio_rpint(v)
void *v;
{
struct audio_softc *sc = v;
sc->pr.nblk--;
audio_pint(v); /* 'twas a real audio block */
}
/*
* Called from HW driver module on completion of dma output.
* Start output of new block, wrap in ring buffer if needed.
* If no more buffers to play, output zero instead.
* Do a wakeup if necessary.
*/
void
audio_pint(v)
void *v;
{
struct audio_softc *sc = v;
u_char *hp;
int cc = sc->sc_blksize;
struct audio_hw_if *hw = sc->hw_if;
struct audio_buffer *cb = &sc->pr;
int error;
/*
* XXX
* if there is only one buffer in the ring, this test
* always fails and the output is always silence after the
* first block.
*/
if (cb->nblk > 0) {
hp = cb->hp;
if (cb->cb_pause) {
cb->cb_pdrops++;
#ifdef AUDIO_DEBUG
if (audiodebug > 2)
Dprintf("audio_pint: paused %d\n", cb->cb_pdrops);
#endif
goto psilence;
}
else {
#ifdef AUDIO_DEBUG
if (audiodebug > 2)
Dprintf("audio_pint: hp=0x%x cc=%d\n", hp, cc);
#endif
error = hw->start_output(sc->hw_hdl, hp, cc,
audio_rpint, (void *)sc);
if (error) {
DPRINTF(("audio_pint restart failed: %d\n", error));
audio_clear(sc);
}
else {
hp += cc;
if (hp >= cb->ep)
hp = cb->bp;
cb->hp = hp;
cb->au_stamp += sc->sc_smpl_in_blk;
++sc->sc_rblks;
}
}
}
else {
cb->cb_drops++;
#ifdef AUDIO_DEBUG
if (audiodebug > 2)
Dprintf("audio_pint: drops=%d auzero %d 0x%x\n", cb->cb_drops, cc, *(int *)sc->auzero_block);
#endif
psilence:
error = hw->start_output(sc->hw_hdl,
sc->auzero_block, cc,
audio_pint, (void *)sc);
if (error) {
DPRINTF(("audio_pint zero failed: %d\n", error));
audio_clear(sc);
} else
++sc->sc_wblks;
}
#ifdef AUDIO_DEBUG
if (audiodebug > 1)
Dprintf("audio_pint: mode=%d pause=%d nblk=%d lowat=%d\n",
sc->sc_mode, cb->cb_pause, cb->nblk, sc->sc_lowat);
#endif
if ((sc->sc_mode & AUMODE_PLAY) && !cb->cb_pause) {
if (cb->nblk <= sc->sc_lowat) {
audio_wakeup(&sc->sc_wchan);
selwakeup(&sc->sc_wsel);
if (sc->sc_async)
psignal(sc->sc_async, SIGIO);
}
}
/*
* XXX
* possible to return one or more "phantom blocks" now.
* Only in half duplex?
*/
if (hw->full_duplex) {
audio_wakeup(&sc->sc_rchan);
selwakeup(&sc->sc_rsel);
if (sc->sc_async)
psignal(sc->sc_async, SIGIO);
}
}
/*
* Called from HW driver module on completion of dma input.
* Mark it as input in the ring buffer (fiddle pointers).
* Do a wakeup if necessary.
*/
void
audio_rint(v)
void *v;
{
struct audio_softc *sc = v;
u_char *tp;
int cc = sc->sc_blksize;
struct audio_hw_if *hw = sc->hw_if;
struct audio_buffer *cb = &sc->rr;
int error;
tp = cb->tp;
if (cb->cb_pause) {
cb->cb_pdrops++;
DPRINTF(("audio_rint: pdrops %d\n", cb->cb_pdrops));
}
else {
tp += cc;
if (tp >= cb->ep)
tp = cb->bp;
if (++cb->nblk < cb->maxblk) {
#ifdef AUDIO_DEBUG
if (audiodebug > 2)
Dprintf("audio_rint: tp=%p cc=%d\n", tp, cc);
#endif
error = hw->start_input(sc->hw_hdl, tp, cc,
audio_rint, (void *)sc);
if (error) {
DPRINTF(("audio_rint: start failed: %d\n",
error));
audio_clear(sc);
}
cb->au_stamp += sc->sc_smpl_in_blk;
} else {
/*
* XXX
* How do we count dropped input samples due to overrun?
* Start a "dummy DMA transfer" when the input ring buffer
* is full and count # of these? Seems pretty lame to
* me, but how else are we going to do this?
*/
cb->cb_drops++;
sc->sc_rbus = 0;
DPRINTF(("audio_rint: drops %d\n", cb->cb_drops));
}
cb->tp = tp;
audio_wakeup(&sc->sc_rchan);
selwakeup(&sc->sc_rsel);
if (sc->sc_async)
psignal(sc->sc_async, SIGIO);
}
}
int
audio_check_params(p)
struct audio_params *p;
{
if (p->encoding == AUDIO_ENCODING_LINEAR)
#if BYTE_ORDER == LITTLE_ENDIAN
p->encoding = AUDIO_ENCODING_LINEAR_LE;
#else
p->encoding = AUDIO_ENCODING_LINEAR_BE;
#endif
if (p->encoding == AUDIO_ENCODING_ULINEAR)
#if BYTE_ORDER == LITTLE_ENDIAN
p->encoding = AUDIO_ENCODING_ULINEAR_LE;
#else
p->encoding = AUDIO_ENCODING_ULINEAR_BE;
#endif
switch (p->encoding) {
case AUDIO_ENCODING_ULAW:
case AUDIO_ENCODING_ALAW:
case AUDIO_ENCODING_ADPCM:
if (p->precision != 8)
return (EINVAL);
break;
case AUDIO_ENCODING_LINEAR_LE:
case AUDIO_ENCODING_LINEAR_BE:
case AUDIO_ENCODING_ULINEAR_LE:
case AUDIO_ENCODING_ULINEAR_BE:
if (p->precision != 8 && p->precision != 16)
return (EINVAL);
break;
default:
return (EINVAL);
}
return (0);
}
int
audiosetinfo(sc, ai)
struct audio_softc *sc;
struct audio_info *ai;
{
struct audio_prinfo *r = &ai->record, *p = &ai->play;
int cleared = 0;
int s, bsize, error = 0;
struct audio_hw_if *hw = sc->hw_if;
mixer_ctrl_t ct;
struct audio_params pp, rp;
int np, nr;
if (hw == 0) /* HW has not attached */
return(ENXIO);
pp = sc->sc_pparams;
rp = sc->sc_rparams;
nr = np = 0;
if (p->sample_rate != ~0) {
pp.sample_rate = p->sample_rate;
np++;
}
if (r->sample_rate != ~0) {
rp.sample_rate = r->sample_rate;
nr++;
}
if (p->encoding != ~0) {
pp.encoding = p->encoding;
np++;
}
if (r->encoding != ~0) {
rp.encoding = r->encoding;
nr++;
}
if (p->precision != ~0) {
pp.precision = p->precision;
np++;
}
if (r->precision != ~0) {
rp.precision = r->precision;
nr++;
}
if (p->channels != ~0) {
pp.channels = p->channels;
np++;
}
if (r->channels != ~0) {
rp.channels = r->channels;
nr++;
}
if (nr && (error = audio_check_params(&rp)))
return error;
if (np && (error = audio_check_params(&pp)))
return error;
if (nr) {
audio_clear(sc);
error = hw->set_params(sc->hw_hdl, AUMODE_RECORD, &rp, &sc->sc_pparams);
if (error)
return (error);
sc->sc_rparams = rp;
sc->sc_blksize = audio_calc_blksize(sc);
}
if (np) {
if (!cleared)
audio_clear(sc);
cleared = 1;
error = hw->set_params(sc->hw_hdl, AUMODE_PLAY, &pp, &sc->sc_rparams);
if (error)
return (error);
sc->sc_pparams = pp;
sc->sc_blksize = audio_calc_blksize(sc);
}
if (p->port != ~0) {
if (!cleared)
audio_clear(sc);
cleared = 1;
error = hw->set_out_port(sc->hw_hdl, p->port);
if (error)
return(error);
}
if (r->port != ~0) {
if (!cleared)
audio_clear(sc);
cleared = 1;
error = hw->set_in_port(sc->hw_hdl, r->port);
if (error)
return(error);
}
if (p->gain != ~0) {
ct.dev = hw->get_out_port(sc->hw_hdl);
ct.type = AUDIO_MIXER_VALUE;
ct.un.value.num_channels = 1;
ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = p->gain;
error = hw->set_port(sc->hw_hdl, &ct);
if (error)
return(error);
}
if (r->gain != ~0) {
ct.dev = hw->get_in_port(sc->hw_hdl);
ct.type = AUDIO_MIXER_VALUE;
ct.un.value.num_channels = 1;
ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = r->gain;
error = hw->set_port(sc->hw_hdl, &ct);
if (error)
return(error);
}
if (p->pause != (u_char)~0) {
sc->pr.cb_pause = p->pause;
if (!p->pause) {
s = splaudio();
audiostartp(sc);
splx(s);
}
}
if (r->pause != (u_char)~0) {
sc->rr.cb_pause = r->pause;
if (!r->pause) {
s = splaudio();
audiostartr(sc);
splx(s);
}
}
if (ai->blocksize != ~0) {
/* Block size specified explicitly. */
if (!cleared)
audio_clear(sc);
cleared = 1;
if (ai->blocksize == 0)
bsize = sc->sc_blksize;
else if (ai->blocksize > AU_RING_SIZE/2)
bsize = AU_RING_SIZE/2;
else
bsize = ai->blocksize;
bsize = hw->round_blocksize(sc->hw_hdl, bsize);
if (bsize > AU_RING_SIZE)
bsize = AU_RING_SIZE;
sc->sc_blksize = bsize;
}
if (np || nr || ai->blocksize != ~0) {
audio_alloc_auzero(sc, sc->sc_blksize);
sc->sc_smpl_in_blk = sc->sc_blksize / (sc->sc_pparams.precision / NBBY);
sc->sc_50ms = 50 * sc->sc_pparams.sample_rate / 1000;
audio_initbufs(sc);
}
if (ai->hiwat != ~0) {
if ((unsigned)ai->hiwat > sc->pr.maxblk)
ai->hiwat = sc->pr.maxblk;
if (sc->sc_hiwat != 0)
sc->sc_hiwat = ai->hiwat;
}
if (ai->lowat != ~0) {
if ((unsigned)ai->lowat > sc->pr.maxblk)
ai->lowat = sc->pr.maxblk;
sc->sc_lowat = ai->lowat;
}
if (ai->backlog != ~0) {
if ((unsigned)ai->backlog > (sc->pr.maxblk/2))
ai->backlog = sc->pr.maxblk/2;
sc->sc_backlog = ai->backlog;
}
if (ai->mode != ~0) {
if (!cleared)
audio_clear(sc);
cleared = 1;
sc->sc_mode = ai->mode;
if (sc->sc_mode & AUMODE_PLAY) {
audio_init_play(sc);
if (!hw->full_duplex) /* Play takes precedence */
sc->sc_mode &= ~(AUMODE_RECORD);
}
if (sc->sc_mode & AUMODE_RECORD)
audio_init_record(sc);
}
error = hw->commit_settings(sc->hw_hdl);
if (error)
return (error);
if (cleared) {
s = splaudio();
if (sc->sc_mode & AUMODE_PLAY)
audiostartp(sc);
if (sc->sc_mode & AUMODE_RECORD)
audiostartr(sc);
splx(s);
}
return (0);
}
int
audiogetinfo(sc, ai)
struct audio_softc *sc;
struct audio_info *ai;
{
struct audio_prinfo *r = &ai->record, *p = &ai->play;
struct audio_hw_if *hw = sc->hw_if;
mixer_ctrl_t ct;
if (hw == 0) /* HW has not attached */
return(ENXIO);
p->sample_rate = sc->sc_pparams.sample_rate;
r->sample_rate = sc->sc_rparams.sample_rate;
p->channels = sc->sc_pparams.channels;
r->channels = sc->sc_rparams.channels;
p->precision = sc->sc_pparams.precision;
r->precision = sc->sc_rparams.precision;
p->encoding = sc->sc_pparams.encoding;
r->encoding = sc->sc_rparams.encoding;
r->port = hw->get_in_port(sc->hw_hdl);
p->port = hw->get_out_port(sc->hw_hdl);
ct.dev = r->port;
ct.type = AUDIO_MIXER_VALUE;
ct.un.value.num_channels = 1;
if (hw->get_port(sc->hw_hdl, &ct) == 0)
r->gain = ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
else
r->gain = AUDIO_MAX_GAIN/2;
ct.dev = p->port;
ct.un.value.num_channels = 1;
if (hw->get_port(sc->hw_hdl, &ct) == 0)
p->gain = ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
else
p->gain = AUDIO_MAX_GAIN/2;
p->pause = sc->pr.cb_pause;
r->pause = sc->rr.cb_pause;
p->error = sc->pr.cb_drops != 0;
r->error = sc->rr.cb_drops != 0;
p->open = ((sc->sc_open & AUOPEN_WRITE) != 0);
r->open = ((sc->sc_open & AUOPEN_READ) != 0);
p->samples = sc->pr.au_stamp - sc->pr.cb_pdrops;
r->samples = sc->rr.au_stamp - sc->rr.cb_pdrops;
p->seek = sc->sc_wseek;
r->seek = sc->sc_rseek;
ai->buffersize = AU_RING_SIZE;
ai->blocksize = sc->sc_blksize;
ai->hiwat = sc->sc_hiwat;
ai->lowat = sc->sc_lowat;
ai->backlog = sc->sc_backlog;
ai->mode = sc->sc_mode;
return (0);
}
/*
* Mixer driver
*/
int
mixer_open(dev, flags, ifmt, p)
dev_t dev;
int flags, ifmt;
struct proc *p;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc;
struct audio_hw_if *hw;
if (unit >= naudio || !audio_softc[unit]) {
DPRINTF(("mixer_open: invalid device unit - %d\n", unit));
return (ENODEV);
}
sc = audio_softc[unit];
hw = sc->hw_if;
DPRINTF(("mixer_open: dev=%x flags=0x%x sc=0x%x\n", dev, flags, sc));
if (hw == 0) /* Hardware has not attached to us... */
return (ENXIO);
return (0);
}
/*
* Close a mixer device
*/
/* ARGSUSED */
int
mixer_close(dev, flags, ifmt, p)
dev_t dev;
int flags, ifmt;
struct proc *p;
{
DPRINTF(("mixer_close: unit %d\n", AUDIOUNIT(dev)));
return (0);
}
int
mixer_ioctl(dev, cmd, addr, flag, p)
dev_t dev;
int cmd;
caddr_t addr;
int flag;
struct proc *p;
{
int unit = AUDIOUNIT(dev);
struct audio_softc *sc = audio_softc[unit];
struct audio_hw_if *hw = sc->hw_if;
int error = EINVAL;
DPRINTF(("mixer_ioctl(%d,'%c',%d)\n",
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff));
switch (cmd) {
case AUDIO_GETDEV:
DPRINTF(("AUDIO_GETDEV\n"));
error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
break;
case AUDIO_MIXER_DEVINFO:
DPRINTF(("AUDIO_MIXER_DEVINFO\n"));
error = hw->query_devinfo(sc->hw_hdl, (mixer_devinfo_t *)addr);
break;
case AUDIO_MIXER_READ:
DPRINTF(("AUDIO_MIXER_READ\n"));
error = hw->get_port(sc->hw_hdl, (mixer_ctrl_t *)addr);
break;
case AUDIO_MIXER_WRITE:
DPRINTF(("AUDIO_MIXER_WRITE\n"));
error = hw->set_port(sc->hw_hdl, (mixer_ctrl_t *)addr);
if (error == 0)
error = hw->commit_settings(sc->hw_hdl);
break;
default:
error = EINVAL;
break;
}
DPRINTF(("mixer_ioctl(%d,'%c',%d) result %d\n",
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff, error));
return (error);
}
#endif