NetBSD/sys/uvm/uvm_bio.c

1145 lines
29 KiB
C

/* $NetBSD: uvm_bio.c,v 1.128 2023/04/09 09:00:56 riastradh Exp $ */
/*
* Copyright (c) 1998 Chuck Silvers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* uvm_bio.c: buffered i/o object mapping cache
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_bio.c,v 1.128 2023/04/09 09:00:56 riastradh Exp $");
#include "opt_uvmhist.h"
#include "opt_ubc.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/vnode.h>
#include <sys/bitops.h> /* for ilog2() */
#include <uvm/uvm.h>
#include <uvm/uvm_pdpolicy.h>
#ifdef PMAP_DIRECT
# define UBC_USE_PMAP_DIRECT
#endif
/*
* local functions
*/
static int ubc_fault(struct uvm_faultinfo *, vaddr_t, struct vm_page **,
int, int, vm_prot_t, int);
static struct ubc_map *ubc_find_mapping(struct uvm_object *, voff_t);
static int ubchash_stats(struct hashstat_sysctl *hs, bool fill);
#ifdef UBC_USE_PMAP_DIRECT
static int __noinline ubc_uiomove_direct(struct uvm_object *, struct uio *, vsize_t,
int, int);
static void __noinline ubc_zerorange_direct(struct uvm_object *, off_t, size_t, int);
/* XXX disabled by default until the kinks are worked out. */
bool ubc_direct = false;
#endif
/*
* local data structures
*/
#define UBC_HASH(uobj, offset) \
(((((u_long)(uobj)) >> 8) + (((u_long)(offset)) >> PAGE_SHIFT)) & \
ubc_object.hashmask)
#define UBC_QUEUE(offset) \
(&ubc_object.inactive[(((u_long)(offset)) >> ubc_winshift) & \
(UBC_NQUEUES - 1)])
#define UBC_UMAP_ADDR(u) \
(vaddr_t)(ubc_object.kva + (((u) - ubc_object.umap) << ubc_winshift))
#define UMAP_PAGES_LOCKED 0x0001
#define UMAP_MAPPING_CACHED 0x0002
struct ubc_map {
struct uvm_object * uobj; /* mapped object */
voff_t offset; /* offset into uobj */
voff_t writeoff; /* write offset */
vsize_t writelen; /* write len */
int refcount; /* refcount on mapping */
int flags; /* extra state */
int advice;
LIST_ENTRY(ubc_map) hash; /* hash table */
TAILQ_ENTRY(ubc_map) inactive; /* inactive queue */
LIST_ENTRY(ubc_map) list; /* per-object list */
};
TAILQ_HEAD(ubc_inactive_head, ubc_map);
static struct ubc_object {
struct uvm_object uobj; /* glue for uvm_map() */
char *kva; /* where ubc_object is mapped */
struct ubc_map *umap; /* array of ubc_map's */
LIST_HEAD(, ubc_map) *hash; /* hashtable for cached ubc_map's */
u_long hashmask; /* mask for hashtable */
struct ubc_inactive_head *inactive;
/* inactive queues for ubc_map's */
} ubc_object;
const struct uvm_pagerops ubc_pager = {
.pgo_fault = ubc_fault,
/* ... rest are NULL */
};
/* Use value at least as big as maximum page size supported by architecture */
#define UBC_MAX_WINSHIFT \
((1 << UBC_WINSHIFT) > MAX_PAGE_SIZE ? UBC_WINSHIFT : ilog2(MAX_PAGE_SIZE))
int ubc_nwins = UBC_NWINS;
const int ubc_winshift = UBC_MAX_WINSHIFT;
const int ubc_winsize = 1 << UBC_MAX_WINSHIFT;
#if defined(PMAP_PREFER)
int ubc_nqueues;
#define UBC_NQUEUES ubc_nqueues
#else
#define UBC_NQUEUES 1
#endif
#if defined(UBC_STATS)
#define UBC_EVCNT_DEFINE(name) \
struct evcnt ubc_evcnt_##name = \
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "ubc", #name); \
EVCNT_ATTACH_STATIC(ubc_evcnt_##name);
#define UBC_EVCNT_INCR(name) ubc_evcnt_##name.ev_count++
#else /* defined(UBC_STATS) */
#define UBC_EVCNT_DEFINE(name) /* nothing */
#define UBC_EVCNT_INCR(name) /* nothing */
#endif /* defined(UBC_STATS) */
UBC_EVCNT_DEFINE(wincachehit)
UBC_EVCNT_DEFINE(wincachemiss)
UBC_EVCNT_DEFINE(faultbusy)
/*
* ubc_init
*
* init pager private data structures.
*/
void
ubc_init(void)
{
/*
* Make sure ubc_winshift is sane.
*/
KASSERT(ubc_winshift >= PAGE_SHIFT);
/*
* init ubc_object.
* alloc and init ubc_map's.
* init inactive queues.
* alloc and init hashtable.
* map in ubc_object.
*/
uvm_obj_init(&ubc_object.uobj, &ubc_pager, true, UVM_OBJ_KERN);
ubc_object.umap = kmem_zalloc(ubc_nwins * sizeof(struct ubc_map),
KM_SLEEP);
if (ubc_object.umap == NULL)
panic("ubc_init: failed to allocate ubc_map");
vaddr_t va = (vaddr_t)1L;
#ifdef PMAP_PREFER
PMAP_PREFER(0, &va, 0, 0); /* kernel is never topdown */
ubc_nqueues = va >> ubc_winshift;
if (ubc_nqueues == 0) {
ubc_nqueues = 1;
}
#endif
ubc_object.inactive = kmem_alloc(UBC_NQUEUES *
sizeof(struct ubc_inactive_head), KM_SLEEP);
for (int i = 0; i < UBC_NQUEUES; i++) {
TAILQ_INIT(&ubc_object.inactive[i]);
}
for (int i = 0; i < ubc_nwins; i++) {
struct ubc_map *umap;
umap = &ubc_object.umap[i];
TAILQ_INSERT_TAIL(&ubc_object.inactive[i & (UBC_NQUEUES - 1)],
umap, inactive);
}
ubc_object.hash = hashinit(ubc_nwins, HASH_LIST, true,
&ubc_object.hashmask);
for (int i = 0; i <= ubc_object.hashmask; i++) {
LIST_INIT(&ubc_object.hash[i]);
}
if (uvm_map(kernel_map, (vaddr_t *)&ubc_object.kva,
ubc_nwins << ubc_winshift, &ubc_object.uobj, 0, (vsize_t)va,
UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
UVM_ADV_RANDOM, UVM_FLAG_NOMERGE)) != 0) {
panic("ubc_init: failed to map ubc_object");
}
hashstat_register("ubchash", ubchash_stats);
}
void
ubchist_init(void)
{
UVMHIST_INIT(ubchist, 300);
}
/*
* ubc_fault_page: helper of ubc_fault to handle a single page.
*
* => Caller has UVM object locked.
* => Caller will perform pmap_update().
*/
static inline int
ubc_fault_page(const struct uvm_faultinfo *ufi, const struct ubc_map *umap,
struct vm_page *pg, vm_prot_t prot, vm_prot_t access_type, vaddr_t va)
{
vm_prot_t mask;
int error;
bool rdonly;
KASSERT(rw_write_held(pg->uobject->vmobjlock));
KASSERT((pg->flags & PG_FAKE) == 0);
if (pg->flags & PG_RELEASED) {
uvm_pagefree(pg);
return 0;
}
if (pg->loan_count != 0) {
/*
* Avoid unneeded loan break, if possible.
*/
if ((access_type & VM_PROT_WRITE) == 0) {
prot &= ~VM_PROT_WRITE;
}
if (prot & VM_PROT_WRITE) {
struct vm_page *newpg;
newpg = uvm_loanbreak(pg);
if (newpg == NULL) {
uvm_page_unbusy(&pg, 1);
return ENOMEM;
}
pg = newpg;
}
}
/*
* Note that a page whose backing store is partially allocated
* is marked as PG_RDONLY.
*
* it's a responsibility of ubc_alloc's caller to allocate backing
* blocks before writing to the window.
*/
KASSERT((pg->flags & PG_RDONLY) == 0 ||
(access_type & VM_PROT_WRITE) == 0 ||
pg->offset < umap->writeoff ||
pg->offset + PAGE_SIZE > umap->writeoff + umap->writelen);
rdonly = uvm_pagereadonly_p(pg);
mask = rdonly ? ~VM_PROT_WRITE : VM_PROT_ALL;
error = pmap_enter(ufi->orig_map->pmap, va, VM_PAGE_TO_PHYS(pg),
prot & mask, PMAP_CANFAIL | (access_type & mask));
uvm_pagelock(pg);
uvm_pageactivate(pg);
uvm_pagewakeup(pg);
uvm_pageunlock(pg);
pg->flags &= ~PG_BUSY;
UVM_PAGE_OWN(pg, NULL);
return error;
}
/*
* ubc_fault: fault routine for ubc mapping
*/
static int
ubc_fault(struct uvm_faultinfo *ufi, vaddr_t ign1, struct vm_page **ign2,
int ign3, int ign4, vm_prot_t access_type, int flags)
{
struct uvm_object *uobj;
struct ubc_map *umap;
vaddr_t va, eva, ubc_offset, slot_offset;
struct vm_page *pgs[howmany(ubc_winsize, MIN_PAGE_SIZE)];
int i, error, npages;
vm_prot_t prot;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
/*
* no need to try with PGO_LOCKED...
* we don't need to have the map locked since we know that
* no one will mess with it until our reference is released.
*/
if (flags & PGO_LOCKED) {
uvmfault_unlockall(ufi, NULL, &ubc_object.uobj);
flags &= ~PGO_LOCKED;
}
va = ufi->orig_rvaddr;
ubc_offset = va - (vaddr_t)ubc_object.kva;
umap = &ubc_object.umap[ubc_offset >> ubc_winshift];
KASSERT(umap->refcount != 0);
KASSERT((umap->flags & UMAP_PAGES_LOCKED) == 0);
slot_offset = ubc_offset & (ubc_winsize - 1);
/*
* some platforms cannot write to individual bytes atomically, so
* software has to do read/modify/write of larger quantities instead.
* this means that the access_type for "write" operations
* can be VM_PROT_READ, which confuses us mightily.
*
* deal with this by resetting access_type based on the info
* that ubc_alloc() stores for us.
*/
access_type = umap->writelen ? VM_PROT_WRITE : VM_PROT_READ;
UVMHIST_LOG(ubchist, "va %#jx ubc_offset %#jx access_type %jd",
va, ubc_offset, access_type, 0);
if ((access_type & VM_PROT_WRITE) != 0) {
#ifndef PRIxOFF /* XXX */
#define PRIxOFF "jx" /* XXX */
#endif /* XXX */
KASSERTMSG((trunc_page(umap->writeoff) <= slot_offset),
"out of range write: slot=%#"PRIxVSIZE" off=%#"PRIxOFF,
slot_offset, (intmax_t)umap->writeoff);
KASSERTMSG((slot_offset < umap->writeoff + umap->writelen),
"out of range write: slot=%#"PRIxVADDR
" off=%#"PRIxOFF" len=%#"PRIxVSIZE,
slot_offset, (intmax_t)umap->writeoff, umap->writelen);
}
/* no umap locking needed since we have a ref on the umap */
uobj = umap->uobj;
if ((access_type & VM_PROT_WRITE) == 0) {
npages = (ubc_winsize - slot_offset) >> PAGE_SHIFT;
} else {
npages = (round_page(umap->offset + umap->writeoff +
umap->writelen) - (umap->offset + slot_offset))
>> PAGE_SHIFT;
flags |= PGO_PASTEOF;
}
again:
memset(pgs, 0, sizeof (pgs));
rw_enter(uobj->vmobjlock, RW_WRITER);
UVMHIST_LOG(ubchist, "slot_offset %#jx writeoff %#jx writelen %#jx ",
slot_offset, umap->writeoff, umap->writelen, 0);
UVMHIST_LOG(ubchist, "getpages uobj %#jx offset %#jx npages %jd",
(uintptr_t)uobj, umap->offset + slot_offset, npages, 0);
error = (*uobj->pgops->pgo_get)(uobj, umap->offset + slot_offset, pgs,
&npages, 0, access_type, umap->advice, flags | PGO_NOBLOCKALLOC |
PGO_NOTIMESTAMP);
UVMHIST_LOG(ubchist, "getpages error %jd npages %jd", error, npages, 0,
0);
if (error == EAGAIN) {
kpause("ubc_fault", false, hz >> 2, NULL);
goto again;
}
if (error) {
return error;
}
/*
* For virtually-indexed, virtually-tagged caches we should avoid
* creating writable mappings when we do not absolutely need them,
* since the "compatible alias" trick does not work on such caches.
* Otherwise, we can always map the pages writable.
*/
#ifdef PMAP_CACHE_VIVT
prot = VM_PROT_READ | access_type;
#else
prot = VM_PROT_READ | VM_PROT_WRITE;
#endif
va = ufi->orig_rvaddr;
eva = ufi->orig_rvaddr + (npages << PAGE_SHIFT);
UVMHIST_LOG(ubchist, "va %#jx eva %#jx", va, eva, 0, 0);
/*
* Note: normally all returned pages would have the same UVM object.
* However, layered file-systems and e.g. tmpfs, may return pages
* which belong to underlying UVM object. In such case, lock is
* shared amongst the objects.
*/
rw_enter(uobj->vmobjlock, RW_WRITER);
for (i = 0; va < eva; i++, va += PAGE_SIZE) {
struct vm_page *pg;
UVMHIST_LOG(ubchist, "pgs[%jd] = %#jx", i, (uintptr_t)pgs[i],
0, 0);
pg = pgs[i];
if (pg == NULL || pg == PGO_DONTCARE) {
continue;
}
KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
error = ubc_fault_page(ufi, umap, pg, prot, access_type, va);
if (error) {
/*
* Flush (there might be pages entered), drop the lock,
* and perform uvm_wait(). Note: page will re-fault.
*/
pmap_update(ufi->orig_map->pmap);
rw_exit(uobj->vmobjlock);
uvm_wait("ubc_fault");
rw_enter(uobj->vmobjlock, RW_WRITER);
}
}
/* Must make VA visible before the unlock. */
pmap_update(ufi->orig_map->pmap);
rw_exit(uobj->vmobjlock);
return 0;
}
/*
* local functions
*/
static struct ubc_map *
ubc_find_mapping(struct uvm_object *uobj, voff_t offset)
{
struct ubc_map *umap;
LIST_FOREACH(umap, &ubc_object.hash[UBC_HASH(uobj, offset)], hash) {
if (umap->uobj == uobj && umap->offset == offset) {
return umap;
}
}
return NULL;
}
/*
* ubc interface functions
*/
/*
* ubc_alloc: allocate a file mapping window
*/
static void * __noinline
ubc_alloc(struct uvm_object *uobj, voff_t offset, vsize_t *lenp, int advice,
int flags, struct vm_page **pgs, int *npagesp)
{
vaddr_t slot_offset, va;
struct ubc_map *umap;
voff_t umap_offset;
int error;
UVMHIST_FUNC(__func__);
UVMHIST_CALLARGS(ubchist, "uobj %#jx offset %#jx len %#jx",
(uintptr_t)uobj, offset, *lenp, 0);
KASSERT(*lenp > 0);
umap_offset = (offset & ~((voff_t)ubc_winsize - 1));
slot_offset = (vaddr_t)(offset & ((voff_t)ubc_winsize - 1));
*lenp = MIN(*lenp, ubc_winsize - slot_offset);
KASSERT(*lenp > 0);
rw_enter(ubc_object.uobj.vmobjlock, RW_WRITER);
again:
/*
* The UVM object is already referenced.
* Lock order: UBC object -> ubc_map::uobj.
*/
umap = ubc_find_mapping(uobj, umap_offset);
if (umap == NULL) {
struct uvm_object *oobj;
UBC_EVCNT_INCR(wincachemiss);
umap = TAILQ_FIRST(UBC_QUEUE(offset));
if (umap == NULL) {
rw_exit(ubc_object.uobj.vmobjlock);
kpause("ubc_alloc", false, hz >> 2, NULL);
rw_enter(ubc_object.uobj.vmobjlock, RW_WRITER);
goto again;
}
va = UBC_UMAP_ADDR(umap);
oobj = umap->uobj;
/*
* Remove from old hash (if any), add to new hash.
*/
if (oobj != NULL) {
/*
* Mapping must be removed before the list entry,
* since there is a race with ubc_purge().
*/
if (umap->flags & UMAP_MAPPING_CACHED) {
umap->flags &= ~UMAP_MAPPING_CACHED;
rw_enter(oobj->vmobjlock, RW_WRITER);
pmap_remove(pmap_kernel(), va,
va + ubc_winsize);
pmap_update(pmap_kernel());
rw_exit(oobj->vmobjlock);
}
LIST_REMOVE(umap, hash);
LIST_REMOVE(umap, list);
} else {
KASSERT((umap->flags & UMAP_MAPPING_CACHED) == 0);
}
umap->uobj = uobj;
umap->offset = umap_offset;
LIST_INSERT_HEAD(&ubc_object.hash[UBC_HASH(uobj, umap_offset)],
umap, hash);
LIST_INSERT_HEAD(&uobj->uo_ubc, umap, list);
} else {
UBC_EVCNT_INCR(wincachehit);
va = UBC_UMAP_ADDR(umap);
}
if (umap->refcount == 0) {
TAILQ_REMOVE(UBC_QUEUE(offset), umap, inactive);
}
if (flags & UBC_WRITE) {
KASSERTMSG(umap->writeoff == 0,
"ubc_alloc: concurrent writes to uobj %p", uobj);
KASSERTMSG(umap->writelen == 0,
"ubc_alloc: concurrent writes to uobj %p", uobj);
umap->writeoff = slot_offset;
umap->writelen = *lenp;
}
umap->refcount++;
umap->advice = advice;
rw_exit(ubc_object.uobj.vmobjlock);
UVMHIST_LOG(ubchist, "umap %#jx refs %jd va %#jx flags %#jx",
(uintptr_t)umap, umap->refcount, (uintptr_t)va, flags);
if (flags & UBC_FAULTBUSY) {
int npages = (*lenp + (offset & (PAGE_SIZE - 1)) +
PAGE_SIZE - 1) >> PAGE_SHIFT;
int gpflags =
PGO_SYNCIO|PGO_OVERWRITE|PGO_PASTEOF|PGO_NOBLOCKALLOC|
PGO_NOTIMESTAMP;
int i;
KDASSERT(flags & UBC_WRITE);
KASSERT(npages <= *npagesp);
KASSERT(umap->refcount == 1);
UBC_EVCNT_INCR(faultbusy);
again_faultbusy:
rw_enter(uobj->vmobjlock, RW_WRITER);
if (umap->flags & UMAP_MAPPING_CACHED) {
umap->flags &= ~UMAP_MAPPING_CACHED;
pmap_remove(pmap_kernel(), va, va + ubc_winsize);
}
memset(pgs, 0, *npagesp * sizeof(pgs[0]));
error = (*uobj->pgops->pgo_get)(uobj, trunc_page(offset), pgs,
&npages, 0, VM_PROT_READ | VM_PROT_WRITE, advice, gpflags);
UVMHIST_LOG(ubchist, "faultbusy getpages %jd", error, 0, 0, 0);
if (error) {
/*
* Flush: the mapping above might have been removed.
*/
pmap_update(pmap_kernel());
goto out;
}
for (i = 0; i < npages; i++) {
struct vm_page *pg = pgs[i];
KASSERT(pg->uobject == uobj);
if (pg->loan_count != 0) {
rw_enter(uobj->vmobjlock, RW_WRITER);
if (pg->loan_count != 0) {
pg = uvm_loanbreak(pg);
}
if (pg == NULL) {
pmap_kremove(va, ubc_winsize);
pmap_update(pmap_kernel());
uvm_page_unbusy(pgs, npages);
rw_exit(uobj->vmobjlock);
uvm_wait("ubc_alloc");
goto again_faultbusy;
}
rw_exit(uobj->vmobjlock);
pgs[i] = pg;
}
pmap_kenter_pa(
va + trunc_page(slot_offset) + (i << PAGE_SHIFT),
VM_PAGE_TO_PHYS(pg),
VM_PROT_READ | VM_PROT_WRITE, 0);
}
pmap_update(pmap_kernel());
umap->flags |= UMAP_PAGES_LOCKED;
*npagesp = npages;
} else {
KASSERT((umap->flags & UMAP_PAGES_LOCKED) == 0);
}
out:
return (void *)(va + slot_offset);
}
/*
* ubc_release: free a file mapping window.
*/
static void __noinline
ubc_release(void *va, int flags, struct vm_page **pgs, int npages)
{
struct ubc_map *umap;
struct uvm_object *uobj;
vaddr_t umapva;
bool unmapped;
UVMHIST_FUNC(__func__);
UVMHIST_CALLARGS(ubchist, "va %#jx", (uintptr_t)va, 0, 0, 0);
umap = &ubc_object.umap[((char *)va - ubc_object.kva) >> ubc_winshift];
umapva = UBC_UMAP_ADDR(umap);
uobj = umap->uobj;
KASSERT(uobj != NULL);
if (umap->flags & UMAP_PAGES_LOCKED) {
const voff_t endoff = umap->writeoff + umap->writelen;
const voff_t zerolen = round_page(endoff) - endoff;
KASSERT(npages == (round_page(endoff) -
trunc_page(umap->writeoff)) >> PAGE_SHIFT);
KASSERT((umap->flags & UMAP_MAPPING_CACHED) == 0);
if (zerolen) {
memset((char *)umapva + endoff, 0, zerolen);
}
umap->flags &= ~UMAP_PAGES_LOCKED;
rw_enter(uobj->vmobjlock, RW_WRITER);
for (u_int i = 0; i < npages; i++) {
struct vm_page *pg = pgs[i];
#ifdef DIAGNOSTIC
paddr_t pa;
bool rv;
rv = pmap_extract(pmap_kernel(), umapva +
umap->writeoff + (i << PAGE_SHIFT), &pa);
KASSERT(rv);
KASSERT(PHYS_TO_VM_PAGE(pa) == pg);
#endif
pg->flags &= ~PG_FAKE;
KASSERTMSG(uvm_pagegetdirty(pg) ==
UVM_PAGE_STATUS_DIRTY,
"page %p not dirty", pg);
KASSERT(pg->loan_count == 0);
if (uvmpdpol_pageactivate_p(pg)) {
uvm_pagelock(pg);
uvm_pageactivate(pg);
uvm_pageunlock(pg);
}
}
pmap_kremove(umapva, ubc_winsize);
pmap_update(pmap_kernel());
uvm_page_unbusy(pgs, npages);
rw_exit(uobj->vmobjlock);
unmapped = true;
} else {
unmapped = false;
}
rw_enter(ubc_object.uobj.vmobjlock, RW_WRITER);
umap->writeoff = 0;
umap->writelen = 0;
umap->refcount--;
if (umap->refcount == 0) {
if (flags & UBC_UNMAP) {
/*
* Invalidate any cached mappings if requested.
* This is typically used to avoid leaving
* incompatible cache aliases around indefinitely.
*/
rw_enter(uobj->vmobjlock, RW_WRITER);
pmap_remove(pmap_kernel(), umapva,
umapva + ubc_winsize);
pmap_update(pmap_kernel());
rw_exit(uobj->vmobjlock);
umap->flags &= ~UMAP_MAPPING_CACHED;
LIST_REMOVE(umap, hash);
LIST_REMOVE(umap, list);
umap->uobj = NULL;
TAILQ_INSERT_HEAD(UBC_QUEUE(umap->offset), umap,
inactive);
} else {
if (!unmapped) {
umap->flags |= UMAP_MAPPING_CACHED;
}
TAILQ_INSERT_TAIL(UBC_QUEUE(umap->offset), umap,
inactive);
}
}
UVMHIST_LOG(ubchist, "umap %#jx refs %jd", (uintptr_t)umap,
umap->refcount, 0, 0);
rw_exit(ubc_object.uobj.vmobjlock);
}
/*
* ubc_uiomove: move data to/from an object.
*/
int
ubc_uiomove(struct uvm_object *uobj, struct uio *uio, vsize_t todo, int advice,
int flags)
{
const bool overwrite = (flags & UBC_FAULTBUSY) != 0;
struct vm_page *pgs[howmany(ubc_winsize, MIN_PAGE_SIZE)];
voff_t off;
int error, npages;
KASSERT(todo <= uio->uio_resid);
KASSERT(((flags & UBC_WRITE) != 0 && uio->uio_rw == UIO_WRITE) ||
((flags & UBC_READ) != 0 && uio->uio_rw == UIO_READ));
#ifdef UBC_USE_PMAP_DIRECT
/*
* during direct access pages need to be held busy to prevent them
* changing identity, and therefore if we read or write an object
* into a mapped view of same we could deadlock while faulting.
*
* avoid the problem by disallowing direct access if the object
* might be visible somewhere via mmap().
*
* XXX concurrent reads cause thundering herd issues with PG_BUSY.
* In the future enable by default for writes or if ncpu<=2, and
* make the toggle override that.
*/
if ((ubc_direct && (flags & UBC_ISMAPPED) == 0) ||
(flags & UBC_FAULTBUSY) != 0) {
return ubc_uiomove_direct(uobj, uio, todo, advice, flags);
}
#endif
off = uio->uio_offset;
error = 0;
while (todo > 0) {
vsize_t bytelen = todo;
void *win;
npages = __arraycount(pgs);
win = ubc_alloc(uobj, off, &bytelen, advice, flags, pgs,
&npages);
if (error == 0) {
error = uiomove(win, bytelen, uio);
}
if (error != 0 && overwrite) {
/*
* if we haven't initialized the pages yet,
* do it now. it's safe to use memset here
* because we just mapped the pages above.
*/
memset(win, 0, bytelen);
}
ubc_release(win, flags, pgs, npages);
off += bytelen;
todo -= bytelen;
if (error != 0 && (flags & UBC_PARTIALOK) != 0) {
break;
}
}
return error;
}
/*
* ubc_zerorange: set a range of bytes in an object to zero.
*/
void
ubc_zerorange(struct uvm_object *uobj, off_t off, size_t len, int flags)
{
struct vm_page *pgs[howmany(ubc_winsize, MIN_PAGE_SIZE)];
int npages;
#ifdef UBC_USE_PMAP_DIRECT
if (ubc_direct || (flags & UBC_FAULTBUSY) != 0) {
ubc_zerorange_direct(uobj, off, len, flags);
return;
}
#endif
/*
* XXXUBC invent kzero() and use it
*/
while (len) {
void *win;
vsize_t bytelen = len;
npages = __arraycount(pgs);
win = ubc_alloc(uobj, off, &bytelen, UVM_ADV_NORMAL, UBC_WRITE,
pgs, &npages);
memset(win, 0, bytelen);
ubc_release(win, flags, pgs, npages);
off += bytelen;
len -= bytelen;
}
}
#ifdef UBC_USE_PMAP_DIRECT
/* Copy data using direct map */
/*
* ubc_alloc_direct: allocate a file mapping window using direct map
*/
static int __noinline
ubc_alloc_direct(struct uvm_object *uobj, voff_t offset, vsize_t *lenp,
int advice, int flags, struct vm_page **pgs, int *npages)
{
voff_t pgoff;
int error;
int gpflags = flags | PGO_NOTIMESTAMP | PGO_SYNCIO;
int access_type = VM_PROT_READ;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
if (flags & UBC_WRITE) {
if (flags & UBC_FAULTBUSY)
gpflags |= PGO_OVERWRITE | PGO_NOBLOCKALLOC;
#if 0
KASSERT(!UVM_OBJ_NEEDS_WRITEFAULT(uobj));
#endif
/*
* Tell genfs_getpages() we already have the journal lock,
* allow allocation past current EOF.
*/
gpflags |= PGO_JOURNALLOCKED | PGO_PASTEOF;
access_type |= VM_PROT_WRITE;
} else {
/* Don't need the empty blocks allocated, PG_RDONLY is okay */
gpflags |= PGO_NOBLOCKALLOC;
}
pgoff = (offset & PAGE_MASK);
*lenp = MIN(*lenp, ubc_winsize - pgoff);
again:
*npages = (*lenp + pgoff + PAGE_SIZE - 1) >> PAGE_SHIFT;
KASSERT((*npages * PAGE_SIZE) <= ubc_winsize);
KASSERT(*lenp + pgoff <= ubc_winsize);
memset(pgs, 0, *npages * sizeof(pgs[0]));
rw_enter(uobj->vmobjlock, RW_WRITER);
error = (*uobj->pgops->pgo_get)(uobj, trunc_page(offset), pgs,
npages, 0, access_type, advice, gpflags);
UVMHIST_LOG(ubchist, "alloc_direct getpages %jd", error, 0, 0, 0);
if (error) {
if (error == EAGAIN) {
kpause("ubc_alloc_directg", false, hz >> 2, NULL);
goto again;
}
return error;
}
rw_enter(uobj->vmobjlock, RW_WRITER);
for (int i = 0; i < *npages; i++) {
struct vm_page *pg = pgs[i];
KASSERT(pg != NULL);
KASSERT(pg != PGO_DONTCARE);
KASSERT((pg->flags & PG_FAKE) == 0 || (gpflags & PGO_OVERWRITE));
KASSERT(pg->uobject->vmobjlock == uobj->vmobjlock);
/* Avoid breaking loan if possible, only do it on write */
if ((flags & UBC_WRITE) && pg->loan_count != 0) {
pg = uvm_loanbreak(pg);
if (pg == NULL) {
uvm_page_unbusy(pgs, *npages);
rw_exit(uobj->vmobjlock);
uvm_wait("ubc_alloc_directl");
goto again;
}
pgs[i] = pg;
}
/* Page must be writable by now */
KASSERT((pg->flags & PG_RDONLY) == 0 || (flags & UBC_WRITE) == 0);
/*
* XXX For aobj pages. No managed mapping - mark the page
* dirty.
*/
if ((flags & UBC_WRITE) != 0) {
uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
}
}
rw_exit(uobj->vmobjlock);
return 0;
}
static void __noinline
ubc_direct_release(struct uvm_object *uobj,
int flags, struct vm_page **pgs, int npages)
{
rw_enter(uobj->vmobjlock, RW_WRITER);
for (int i = 0; i < npages; i++) {
struct vm_page *pg = pgs[i];
pg->flags &= ~PG_BUSY;
UVM_PAGE_OWN(pg, NULL);
if (pg->flags & PG_RELEASED) {
pg->flags &= ~PG_RELEASED;
uvm_pagefree(pg);
continue;
}
if (uvm_pagewanted_p(pg) || uvmpdpol_pageactivate_p(pg)) {
uvm_pagelock(pg);
uvm_pageactivate(pg);
uvm_pagewakeup(pg);
uvm_pageunlock(pg);
}
/* Page was changed, no longer fake and neither clean. */
if (flags & UBC_WRITE) {
KASSERTMSG(uvm_pagegetdirty(pg) ==
UVM_PAGE_STATUS_DIRTY,
"page %p not dirty", pg);
pg->flags &= ~PG_FAKE;
}
}
rw_exit(uobj->vmobjlock);
}
static int
ubc_uiomove_process(void *win, size_t len, void *arg)
{
struct uio *uio = (struct uio *)arg;
return uiomove(win, len, uio);
}
static int
ubc_zerorange_process(void *win, size_t len, void *arg)
{
memset(win, 0, len);
return 0;
}
static int __noinline
ubc_uiomove_direct(struct uvm_object *uobj, struct uio *uio, vsize_t todo, int advice,
int flags)
{
const bool overwrite = (flags & UBC_FAULTBUSY) != 0;
voff_t off;
int error, npages;
struct vm_page *pgs[howmany(ubc_winsize, MIN_PAGE_SIZE)];
KASSERT(todo <= uio->uio_resid);
KASSERT(((flags & UBC_WRITE) != 0 && uio->uio_rw == UIO_WRITE) ||
((flags & UBC_READ) != 0 && uio->uio_rw == UIO_READ));
off = uio->uio_offset;
error = 0;
while (todo > 0) {
vsize_t bytelen = todo;
error = ubc_alloc_direct(uobj, off, &bytelen, advice, flags,
pgs, &npages);
if (error != 0) {
/* can't do anything, failed to get the pages */
break;
}
if (error == 0) {
error = uvm_direct_process(pgs, npages, off, bytelen,
ubc_uiomove_process, uio);
}
if (overwrite) {
voff_t endoff;
/*
* if we haven't initialized the pages yet due to an
* error above, do it now.
*/
if (error != 0) {
(void) uvm_direct_process(pgs, npages, off,
bytelen, ubc_zerorange_process, NULL);
}
off += bytelen;
todo -= bytelen;
endoff = off & (PAGE_SIZE - 1);
/*
* zero out the remaining portion of the final page
* (if any).
*/
if (todo == 0 && endoff != 0) {
vsize_t zlen = PAGE_SIZE - endoff;
(void) uvm_direct_process(pgs + npages - 1, 1,
off, zlen, ubc_zerorange_process, NULL);
}
} else {
off += bytelen;
todo -= bytelen;
}
ubc_direct_release(uobj, flags, pgs, npages);
if (error != 0 && ISSET(flags, UBC_PARTIALOK)) {
break;
}
}
return error;
}
static void __noinline
ubc_zerorange_direct(struct uvm_object *uobj, off_t off, size_t todo, int flags)
{
int error, npages;
struct vm_page *pgs[howmany(ubc_winsize, MIN_PAGE_SIZE)];
flags |= UBC_WRITE;
error = 0;
while (todo > 0) {
vsize_t bytelen = todo;
error = ubc_alloc_direct(uobj, off, &bytelen, UVM_ADV_NORMAL,
flags, pgs, &npages);
if (error != 0) {
/* can't do anything, failed to get the pages */
break;
}
error = uvm_direct_process(pgs, npages, off, bytelen,
ubc_zerorange_process, NULL);
ubc_direct_release(uobj, flags, pgs, npages);
off += bytelen;
todo -= bytelen;
}
}
#endif /* UBC_USE_PMAP_DIRECT */
/*
* ubc_purge: disassociate ubc_map structures from an empty uvm_object.
*/
void
ubc_purge(struct uvm_object *uobj)
{
struct ubc_map *umap;
vaddr_t va;
KASSERT(uobj->uo_npages == 0);
/*
* Safe to check without lock held, as ubc_alloc() removes
* the mapping and list entry in the correct order.
*/
if (__predict_true(LIST_EMPTY(&uobj->uo_ubc))) {
return;
}
rw_enter(ubc_object.uobj.vmobjlock, RW_WRITER);
while ((umap = LIST_FIRST(&uobj->uo_ubc)) != NULL) {
KASSERT(umap->refcount == 0);
for (va = 0; va < ubc_winsize; va += PAGE_SIZE) {
KASSERT(!pmap_extract(pmap_kernel(),
va + UBC_UMAP_ADDR(umap), NULL));
}
LIST_REMOVE(umap, list);
LIST_REMOVE(umap, hash);
umap->flags &= ~UMAP_MAPPING_CACHED;
umap->uobj = NULL;
}
rw_exit(ubc_object.uobj.vmobjlock);
}
static int
ubchash_stats(struct hashstat_sysctl *hs, bool fill)
{
struct ubc_map *umap;
uint64_t chain;
strlcpy(hs->hash_name, "ubchash", sizeof(hs->hash_name));
strlcpy(hs->hash_desc, "ubc object hash", sizeof(hs->hash_desc));
if (!fill)
return 0;
hs->hash_size = ubc_object.hashmask + 1;
for (size_t i = 0; i < hs->hash_size; i++) {
chain = 0;
rw_enter(ubc_object.uobj.vmobjlock, RW_READER);
LIST_FOREACH(umap, &ubc_object.hash[i], hash) {
chain++;
}
rw_exit(ubc_object.uobj.vmobjlock);
if (chain > 0) {
hs->hash_used++;
hs->hash_items += chain;
if (chain > hs->hash_maxchain)
hs->hash_maxchain = chain;
}
preempt_point();
}
return 0;
}