NetBSD/sbin/rndctl/rndctl.c
2020-05-12 09:48:44 +00:00

741 lines
17 KiB
C

/* $NetBSD: rndctl.c,v 1.37 2020/05/12 09:48:44 simonb Exp $ */
/*-
* Copyright (c) 1997 Michael Graff.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: rndctl.c,v 1.37 2020/05/12 09:48:44 simonb Exp $");
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/endian.h>
#include <sys/ioctl.h>
#include <sys/rndio.h>
#include <sys/sha3.h>
#include <sys/sysctl.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <paths.h>
#include <sha1.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
typedef struct {
const char *a_name;
u_int32_t a_type;
} arg_t;
static const arg_t source_types[] = {
{ "???", RND_TYPE_UNKNOWN },
{ "disk", RND_TYPE_DISK },
{ "net", RND_TYPE_NET },
{ "tape", RND_TYPE_TAPE },
{ "tty", RND_TYPE_TTY },
{ "rng", RND_TYPE_RNG },
{ "skew", RND_TYPE_SKEW },
{ "env", RND_TYPE_ENV },
{ "vm", RND_TYPE_VM },
{ "power", RND_TYPE_POWER },
{ NULL, 0 }
};
__dead static void usage(void);
static u_int32_t find_type(const char *name);
static const char *find_name(u_int32_t);
static void do_ioctl(rndctl_t *);
static char * strflags(u_int32_t);
static void do_list(int, u_int32_t, char *);
static void do_stats(void);
static int iflag;
static int vflag;
static void
usage(void)
{
fprintf(stderr, "usage: %s [-CEce] [-d devname | -t devtype]\n",
getprogname());
fprintf(stderr, " %s [-lsv] [-d devname | -t devtype]\n",
getprogname());
fprintf(stderr, " %s [-i] -L save-file\n", getprogname());
fprintf(stderr, " %s -S save-file\n", getprogname());
exit(1);
}
static u_int32_t
find_type(const char *name)
{
const arg_t *a;
a = source_types;
while (a->a_name != NULL) {
if (strcmp(a->a_name, name) == 0)
return (a->a_type);
a++;
}
errx(1, "device name %s unknown", name);
return (0);
}
static const char *
find_name(u_int32_t type)
{
const arg_t *a;
a = source_types;
while (a->a_name != NULL) {
if (type == a->a_type)
return (a->a_name);
a++;
}
warnx("device type %u unknown", type);
return ("???");
}
static int
update_seed(const char *filename, int fd_seed, const char *tmp,
const void *extra, size_t nextra, uint32_t extraentropy)
{
uint32_t systementropy;
uint8_t buf[32];
SHAKE128_CTX shake128;
rndsave_t rs;
SHA1_CTX s;
ssize_t nread, nwrit;
int fd_random;
/* Paranoia: Avoid stack memory disclosure. */
memset(&rs, 0, sizeof rs);
/* Open /dev/urandom to read data from the system. */
if ((fd_random = open(_PATH_URANDOM, O_RDONLY)) == -1) {
warn("open /dev/urandom");
return -1;
}
/* Find how much entropy is in the pool. */
if (ioctl(fd_random, RNDGETENTCNT, &systementropy) == -1) {
warn("ioctl(RNDGETENTCNT)");
systementropy = 0;
}
/* Read some data from /dev/urandom. */
if ((size_t)(nread = read(fd_random, buf, sizeof buf)) != sizeof buf) {
if (nread == -1)
warn("read");
else
warnx("truncated read");
return -1;
}
/* Close /dev/urandom; we're done with it. */
if (close(fd_random) == -1)
warn("close");
fd_random = -1; /* paranoia */
/*
* Hash what we read together with the extra input to generate
* the seed data.
*/
SHAKE128_Init(&shake128);
SHAKE128_Update(&shake128, buf, sizeof buf);
SHAKE128_Update(&shake128, extra, nextra);
SHAKE128_Final(rs.data, sizeof(rs.data), &shake128);
explicit_memset(&shake128, 0, sizeof shake128); /* paranoia */
/*
* Report an upper bound on the min-entropy of the seed data.
* We take the larger of the system entropy and the extra
* entropy -- the system state and the extra input may or may
* not be independent, so we can't add them -- and clamp to the
* size of the data.
*/
systementropy = MIN(systementropy,
MIN(sizeof(buf), UINT32_MAX/NBBY)*NBBY);
extraentropy = MIN(extraentropy, MIN(nextra, UINT32_MAX/NBBY)*NBBY);
rs.entropy = MIN(MAX(systementropy, extraentropy),
MIN(sizeof(rs.data), UINT32_MAX/NBBY)*NBBY);
/*
* Compute the checksum on the 32-bit entropy count, followed
* by the seed data.
*/
SHA1Init(&s);
SHA1Update(&s, (const uint8_t *)&rs.entropy, sizeof(rs.entropy));
SHA1Update(&s, rs.data, sizeof(rs.data));
SHA1Final(rs.digest, &s);
explicit_memset(&s, 0, sizeof s); /* paranoia */
/*
* Write it to a temporary file and sync it before we commit.
* This way either the old seed or the new seed is completely
* written in the expected location on disk even if the system
* crashes as long as the file system doesn't get corrupted too
* badly.
*
* If interrupted after this point and the temporary file is
* disclosed, no big deal -- either the pool was predictable to
* begin with in which case we're hosed either way, or we've
* just revealed some output which is not a problem.
*/
if ((size_t)(nwrit = write(fd_seed, &rs, sizeof rs)) != sizeof rs) {
int error = errno;
if (unlink(tmp) == -1)
warn("unlink");
if (nwrit == -1)
warnc(error, "write");
else
warnx("truncated write");
return -1;
}
explicit_memset(&rs, 0, sizeof rs); /* paranoia */
if (fsync_range(fd_seed, FDATASYNC|FDISKSYNC, 0, 0) == -1) {
int error = errno;
if (unlink(tmp) == -1)
warn("unlink");
warnc(error, "fsync_range");
return -1;
}
if (close(fd_seed) == -1)
warn("close");
/* Rename it over the original file to commit. */
if (rename(tmp, filename) == -1) {
warn("rename");
return -1;
}
/* Success! */
return 0;
}
static void
do_save(const char *filename)
{
char tmp[PATH_MAX];
int fd_seed;
/* Consolidate any pending samples. */
if (sysctlbyname("kern.entropy.consolidate", NULL, NULL,
(const int[]){1}, sizeof(int)) == -1)
warn("consolidate entropy");
/* Format the temporary file name. */
if (snprintf(tmp, sizeof tmp, "%s.tmp", filename) >= PATH_MAX)
errx(1, "path too long");
/* Create a temporary seed file. */
if ((fd_seed = open(tmp, O_CREAT|O_TRUNC|O_WRONLY, 0600)) == -1)
err(1, "open seed file to save");
/* Update the seed. Abort on failure. */
if (update_seed(filename, fd_seed, tmp, NULL, 0, 0) == -1)
exit(1);
}
static void
do_load(const char *filename)
{
char tmp[PATH_MAX];
int fd_new, fd_old, fd_random;
rndsave_t rs;
rnddata_t rd;
ssize_t nread, nwrit;
SHA1_CTX s;
uint8_t digest[SHA1_DIGEST_LENGTH];
int ro = 0, fail = 0;
int error;
/*
* 1. Load the old seed.
* 2. Feed the old seed into the kernel.
* 3. Generate and write a new seed.
* 4. Erase the old seed if we can.
*
* We follow the procedure in
*
* Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno,
* _Cryptography Engineering_, Wiley, 2010, Sec. 9.6.2
* `Update Seed File'.
*
* Additionally, we zero the seed's stored entropy estimate if
* it appears to be on a read-only medium.
*/
/* Format the temporary file name. */
if (snprintf(tmp, sizeof tmp, "%s.tmp", filename) >= PATH_MAX)
errx(1, "path too long");
/* Create a new seed file or determine the medium is read-only. */
if ((fd_new = open(tmp, O_CREAT|O_TRUNC|O_WRONLY, 0600)) == -1) {
warn("update seed file");
ro = 1;
}
/*
* 1. Load the old seed.
*/
if ((fd_old = open(filename, O_RDWR)) == -1) {
error = errno;
if ((error != EPERM && error != EROFS) ||
(fd_old = open(filename, O_RDONLY)) == -1)
err(1, "open seed file to load");
if (fd_new != -1)
warnc(error, "can't overwrite old seed file");
ro = 1;
}
if ((size_t)(nread = read(fd_old, &rs, sizeof rs)) != sizeof rs) {
if (nread == -1)
err(1, "read seed");
else
errx(1, "seed too short");
}
/* Verify its checksum. */
SHA1Init(&s);
SHA1Update(&s, (const uint8_t *)&rs.entropy, sizeof(rs.entropy));
SHA1Update(&s, rs.data, sizeof(rs.data));
SHA1Final(digest, &s);
if (!consttime_memequal(digest, rs.digest, sizeof(digest))) {
/*
* If the checksum doesn't match, doesn't hurt to feed
* the seed in anyway, but act as though it has zero
* entropy in case it was corrupted with predictable
* garbage.
*/
warnx("bad checksum");
rs.entropy = 0;
}
/*
* If the entropy is insensibly large, try byte-swapping.
* Otherwise assume the file is corrupted and act as though it
* has zero entropy.
*/
if (howmany(rs.entropy, NBBY) > sizeof(rs.data)) {
rs.entropy = bswap32(rs.entropy);
if (howmany(rs.entropy, NBBY) > sizeof(rs.data)) {
warnx("bad entropy estimate");
rs.entropy = 0;
}
}
/* If the medium can't be updated, zero the entropy estimate. */
if (ro)
rs.entropy = 0;
/* Fail later on if there's no entropy in the seed. */
if (rs.entropy == 0) {
warnx("no entropy in seed");
fail = 1;
}
/* If the user asked, zero the entropy estimate, but succeed. */
if (iflag)
rs.entropy = 0;
/*
* 2. Feed the old seed into the kernel.
*
* This also has the effect of consolidating pending samples,
* whether or not there are enough samples from sources deemed
* to have full entropy, so that the updated seed will
* incorporate them.
*/
rd.len = MIN(sizeof(rd.data), sizeof(rs.data));
rd.entropy = rs.entropy;
memcpy(rd.data, rs.data, rd.len);
explicit_memset(&rs, 0, sizeof rs); /* paranoia */
if ((fd_random = open(_PATH_URANDOM, O_WRONLY)) == -1)
err(1, "open /dev/urandom");
if (ioctl(fd_random, RNDADDDATA, &rd) == -1)
err(1, "RNDADDDATA");
explicit_memset(&rd, 0, sizeof rd); /* paranoia */
if (close(fd_random) == -1)
warn("close /dev/urandom");
fd_random = -1; /* paranoia */
/*
* 3. Generate and write a new seed.
*/
if (fd_new == -1 ||
update_seed(filename, fd_new, tmp, rs.data, sizeof(rs.data),
rs.entropy) == -1)
fail = 1;
/*
* 4. Erase the old seed.
*
* Only effective if we're on a fixed-address file system like
* ffs -- doesn't help to erase the data on lfs, but doesn't
* hurt either. No need to unlink because update_seed will
* have already renamed over it.
*/
if (!ro) {
memset(&rs, 0, sizeof rs);
if ((size_t)(nwrit = pwrite(fd_old, &rs, sizeof rs, 0)) !=
sizeof rs) {
if (nwrit == -1)
err(1, "overwrite old seed");
else
errx(1, "truncated overwrite");
}
if (fsync_range(fd_old, FDATASYNC|FDISKSYNC, 0, 0) == -1)
err(1, "fsync_range");
}
/* Fail noisily if anything went wrong. */
if (fail)
exit(1);
}
static void
do_ioctl(rndctl_t *rctl)
{
int fd;
int res;
fd = open(_PATH_URANDOM, O_RDONLY, 0644);
if (fd < 0)
err(1, "open");
res = ioctl(fd, RNDCTL, rctl);
if (res < 0)
err(1, "ioctl(RNDCTL)");
close(fd);
}
static char *
strflags(u_int32_t fl)
{
static char str[512];
str[0] = '\0';
if (fl & RND_FLAG_NO_ESTIMATE)
;
else
strlcat(str, "estimate, ", sizeof(str));
if (fl & RND_FLAG_NO_COLLECT)
;
else
strlcat(str, "collect, ", sizeof(str));
if (fl & RND_FLAG_COLLECT_VALUE)
strlcat(str, "v, ", sizeof(str));
if (fl & RND_FLAG_COLLECT_TIME)
strlcat(str, "t, ", sizeof(str));
if (fl & RND_FLAG_ESTIMATE_VALUE)
strlcat(str, "dv, ", sizeof(str));
if (fl & RND_FLAG_ESTIMATE_TIME)
strlcat(str, "dt, ", sizeof(str));
if (str[strlen(str) - 2] == ',')
str[strlen(str) - 2] = '\0';
return (str);
}
#define HEADER "Source Bits Type Flags\n"
static void
do_list(int all, u_int32_t type, char *name)
{
rndstat_est_t rstat;
rndstat_est_name_t rstat_name;
int fd;
int res;
uint32_t i;
u_int32_t start;
fd = open(_PATH_URANDOM, O_RDONLY, 0644);
if (fd < 0)
err(1, "open");
if (all == 0 && type == 0xff) {
strncpy(rstat_name.name, name, sizeof(rstat_name.name));
res = ioctl(fd, RNDGETESTNAME, &rstat_name);
if (res < 0)
err(1, "ioctl(RNDGETESTNAME)");
printf(HEADER);
printf("%-16s %10u %-4s %s\n",
rstat_name.source.rt.name,
rstat_name.source.rt.total,
find_name(rstat_name.source.rt.type),
strflags(rstat_name.source.rt.flags));
if (vflag) {
printf("\tDt samples = %d\n",
rstat_name.source.dt_samples);
printf("\tDt bits = %d\n",
rstat_name.source.dt_total);
printf("\tDv samples = %d\n",
rstat_name.source.dv_samples);
printf("\tDv bits = %d\n",
rstat_name.source.dv_total);
}
close(fd);
return;
}
/*
* Run through all the devices present in the system, and either
* print out ones that match, or print out all of them.
*/
printf(HEADER);
start = 0;
for (;;) {
rstat.count = RND_MAXSTATCOUNT;
rstat.start = start;
res = ioctl(fd, RNDGETESTNUM, &rstat);
if (res < 0)
err(1, "ioctl(RNDGETESTNUM)");
if (rstat.count == 0)
break;
for (i = 0; i < rstat.count; i++) {
if (all != 0 ||
type == rstat.source[i].rt.type)
printf("%-16s %10u %-4s %s\n",
rstat.source[i].rt.name,
rstat.source[i].rt.total,
find_name(rstat.source[i].rt.type),
strflags(rstat.source[i].rt.flags));
if (vflag) {
printf("\tDt samples = %d\n",
rstat.source[i].dt_samples);
printf("\tDt bits = %d\n",
rstat.source[i].dt_total);
printf("\tDv samples = %d\n",
rstat.source[i].dv_samples);
printf("\tDv bits = %d\n",
rstat.source[i].dv_total);
}
}
start += rstat.count;
}
close(fd);
}
static void
do_stats(void)
{
rndpoolstat_t rs;
int fd;
fd = open(_PATH_URANDOM, O_RDONLY, 0644);
if (fd < 0)
err(1, "open");
if (ioctl(fd, RNDGETPOOLSTAT, &rs) < 0)
err(1, "ioctl(RNDGETPOOLSTAT)");
printf("\t%9u bits mixed into pool\n", rs.added);
printf("\t%9u bits currently stored in pool (max %u)\n",
rs.curentropy, rs.maxentropy);
printf("\t%9u bits of entropy discarded due to full pool\n",
rs.discarded);
printf("\t%9u hard-random bits generated\n", rs.removed);
printf("\t%9u pseudo-random bits generated\n", rs.generated);
close(fd);
}
int
main(int argc, char **argv)
{
rndctl_t rctl;
int ch, cmd, lflag, mflag, sflag;
u_int32_t type;
char name[16];
const char *filename = NULL;
if (SHA3_Selftest() != 0)
errx(1, "SHA-3 self-test failed");
rctl.mask = 0;
rctl.flags = 0;
cmd = 0;
lflag = 0;
mflag = 0;
sflag = 0;
type = 0xff;
while ((ch = getopt(argc, argv, "CES:L:celit:d:sv")) != -1) {
switch (ch) {
case 'C':
rctl.flags |= RND_FLAG_NO_COLLECT;
rctl.mask |= RND_FLAG_NO_COLLECT;
mflag++;
break;
case 'E':
rctl.flags |= RND_FLAG_NO_ESTIMATE;
rctl.mask |= RND_FLAG_NO_ESTIMATE;
mflag++;
break;
case 'L':
if (cmd != 0)
usage();
cmd = 'L';
filename = optarg;
break;
case 'S':
if (cmd != 0)
usage();
cmd = 'S';
filename = optarg;
break;
case 'c':
rctl.flags &= ~RND_FLAG_NO_COLLECT;
rctl.mask |= RND_FLAG_NO_COLLECT;
mflag++;
break;
case 'e':
rctl.flags &= ~RND_FLAG_NO_ESTIMATE;
rctl.mask |= RND_FLAG_NO_ESTIMATE;
mflag++;
break;
case 'i':
iflag = 1;
break;
case 'l':
lflag++;
break;
case 't':
if (cmd != 0)
usage();
cmd = 't';
type = find_type(optarg);
break;
case 'd':
if (cmd != 0)
usage();
cmd = 'd';
type = 0xff;
strlcpy(name, optarg, sizeof(name));
break;
case 's':
sflag++;
break;
case 'v':
vflag++;
break;
case '?':
default:
usage();
}
}
argc -= optind;
argv += optind;
/*
* No leftover non-option arguments.
*/
if (argc > 0)
usage();
/*
* -i makes sense only with -L.
*/
if (iflag && cmd != 'L')
usage();
/*
* Save.
*/
if (cmd == 'S') {
do_save(filename);
exit(0);
}
/*
* Load.
*/
if (cmd == 'L') {
do_load(filename);
exit(0);
}
/*
* Cannot list and modify at the same time.
*/
if ((lflag != 0 || sflag != 0) && mflag != 0)
usage();
/*
* Bomb out on no-ops.
*/
if (lflag == 0 && mflag == 0 && sflag == 0)
usage();
/*
* If not listing, we need a device name or a type.
*/
if (lflag == 0 && cmd == 0 && sflag == 0)
usage();
/*
* Modify request.
*/
if (mflag != 0) {
rctl.type = type;
strncpy(rctl.name, name, sizeof(rctl.name));
do_ioctl(&rctl);
exit(0);
}
/*
* List sources.
*/
if (lflag != 0)
do_list(cmd == 0, type, name);
if (sflag != 0)
do_stats();
exit(0);
}