NetBSD/sys/dev/pci/if_lii.c
2009-04-26 06:56:46 +00:00

1225 lines
30 KiB
C

/* $NetBSD: if_lii.c,v 1.6 2009/04/26 06:56:46 cegger Exp $ */
/*
* Copyright (c) 2008 The NetBSD Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for Attansic/Atheros's L2 Fast Ethernet controller
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_lii.c,v 1.6 2009/04/26 06:56:46 cegger Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_liireg.h>
/* #define LII_DEBUG */
#ifdef LII_DEBUG
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
struct lii_softc {
device_t sc_dev;
pci_chipset_tag_t sc_pc;
pcitag_t sc_tag;
bus_space_tag_t sc_mmiot;
bus_space_handle_t sc_mmioh;
/*
* We allocate a big chunk of DMA-safe memory for all data exchanges.
* It is unfortunate that this chip doesn't seem to do scatter-gather.
*/
bus_dma_tag_t sc_dmat;
bus_dmamap_t sc_ringmap;
bus_dma_segment_t sc_ringseg;
uint8_t *sc_ring; /* the whole area */
size_t sc_ringsize;
struct rx_pkt *sc_rxp; /* the part used for RX */
struct tx_pkt_status *sc_txs; /* the parts used for TX */
bus_addr_t sc_txsp;
char *sc_txdbase;
bus_addr_t sc_txdp;
unsigned int sc_rxcur;
/* the active area is [ack; cur[ */
int sc_txs_cur;
int sc_txs_ack;
int sc_txd_cur;
int sc_txd_ack;
bool sc_free_tx_slots;
void *sc_ih;
struct ethercom sc_ec;
struct mii_data sc_mii;
callout_t sc_tick_ch;
uint8_t sc_eaddr[ETHER_ADDR_LEN];
int (*sc_memread)(struct lii_softc *, uint32_t,
uint32_t *);
};
static int lii_match(device_t, cfdata_t, void *);
static void lii_attach(device_t, device_t, void *);
static int lii_reset(struct lii_softc *);
static bool lii_eeprom_present(struct lii_softc *);
static int lii_read_macaddr(struct lii_softc *, uint8_t *);
static int lii_eeprom_read(struct lii_softc *, uint32_t, uint32_t *);
static void lii_spi_configure(struct lii_softc *);
static int lii_spi_read(struct lii_softc *, uint32_t, uint32_t *);
static void lii_setmulti(struct lii_softc *);
static void lii_tick(void *);
static int lii_alloc_rings(struct lii_softc *);
static int lii_free_tx_space(struct lii_softc *);
static int lii_mii_readreg(device_t, int, int);
static void lii_mii_writereg(device_t, int, int, int);
static void lii_mii_statchg(device_t);
static int lii_media_change(struct ifnet *);
static void lii_media_status(struct ifnet *, struct ifmediareq *);
static int lii_init(struct ifnet *);
static void lii_start(struct ifnet *);
static void lii_stop(struct ifnet *, int);
static void lii_watchdog(struct ifnet *);
static int lii_ioctl(struct ifnet *, u_long, void *);
static int lii_intr(void *);
static void lii_rxintr(struct lii_softc *);
static void lii_txintr(struct lii_softc *);
CFATTACH_DECL_NEW(lii, sizeof(struct lii_softc),
lii_match, lii_attach, NULL, NULL);
/* #define LII_DEBUG_REGS */
#ifndef LII_DEBUG_REGS
#define AT_READ_4(sc,reg) \
bus_space_read_4((sc)->sc_mmiot, (sc)->sc_mmioh, (reg))
#define AT_READ_2(sc,reg) \
bus_space_read_2((sc)->sc_mmiot, (sc)->sc_mmioh, (reg))
#define AT_READ_1(sc,reg) \
bus_space_read_1((sc)->sc_mmiot, (sc)->sc_mmioh, (reg))
#define AT_WRITE_4(sc,reg,val) \
bus_space_write_4((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val))
#define AT_WRITE_2(sc,reg,val) \
bus_space_write_2((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val))
#define AT_WRITE_1(sc,reg,val) \
bus_space_write_1((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val))
#else
static inline uint32_t
AT_READ_4(struct lii_softc *sc, bus_size_t reg)
{
uint32_t r = bus_space_read_4(sc->sc_mmiot, sc->sc_mmioh, reg);
printf("AT_READ_4(%x) = %x\n", (unsigned int)reg, r);
return r;
}
static inline uint16_t
AT_READ_2(struct lii_softc *sc, bus_size_t reg)
{
uint16_t r = bus_space_read_2(sc->sc_mmiot, sc->sc_mmioh, reg);
printf("AT_READ_2(%x) = %x\n", (unsigned int)reg, r);
return r;
}
static inline uint8_t
AT_READ_1(struct lii_softc *sc, bus_size_t reg)
{
uint8_t r = bus_space_read_1(sc->sc_mmiot, sc->sc_mmioh, reg);
printf("AT_READ_1(%x) = %x\n", (unsigned int)reg, r);
return r;
}
static inline void
AT_WRITE_4(struct lii_softc *sc, bus_size_t reg, uint32_t val)
{
printf("AT_WRITE_4(%x, %x)\n", (unsigned int)reg, val);
bus_space_write_4(sc->sc_mmiot, sc->sc_mmioh, reg, val);
}
static inline void
AT_WRITE_2(struct lii_softc *sc, bus_size_t reg, uint16_t val)
{
printf("AT_WRITE_2(%x, %x)\n", (unsigned int)reg, val);
bus_space_write_2(sc->sc_mmiot, sc->sc_mmioh, reg, val);
}
static inline void
AT_WRITE_1(struct lii_softc *sc, bus_size_t reg, uint8_t val)
{
printf("AT_WRITE_1(%x, %x)\n", (unsigned int)reg, val);
bus_space_write_1(sc->sc_mmiot, sc->sc_mmioh, reg, val);
}
#endif
/*
* Those are the default Linux parameters.
*/
#define AT_TXD_NUM 64
#define AT_TXD_BUFFER_SIZE 8192
#define AT_RXD_NUM 64
/*
* Assuming (you know what that word makes of you) the chunk of memory
* bus_dmamem_alloc returns us is 128-byte aligned, we won't use the
* first 120 bytes of it, so that the space for the packets, and not the
* whole descriptors themselves, are on a 128-byte boundary.
*/
#define AT_RXD_PADDING 120
static int
lii_match(device_t parent, cfdata_t cfmatch, void *aux)
{
struct pci_attach_args *pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_100);
}
static void
lii_attach(device_t parent, device_t self, void *aux)
{
struct lii_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
uint8_t eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp = &sc->sc_ec.ec_if;
pci_intr_handle_t ih;
const char *intrstr;
pcireg_t cmd;
bus_size_t memsize = 0;
aprint_naive("\n");
aprint_normal(": Attansic/Atheros L2 Fast Ethernet\n");
sc->sc_dev = self;
sc->sc_pc = pa->pa_pc;
sc->sc_tag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
cmd = pci_conf_read(sc->sc_pc, sc->sc_tag, PCI_COMMAND_STATUS_REG);
cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
cmd &= ~PCI_COMMAND_IO_ENABLE;
pci_conf_write(sc->sc_pc, sc->sc_tag, PCI_COMMAND_STATUS_REG, cmd);
switch (cmd = pci_mapreg_type(sc->sc_pc, sc->sc_tag, PCI_MAPREG_START)) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
break;
default:
aprint_error_dev(self, "invalid base address register\n");
break;
}
if (pci_mapreg_map(pa, PCI_MAPREG_START, cmd, 0,
&sc->sc_mmiot, &sc->sc_mmioh, NULL, &memsize) != 0) {
aprint_error_dev(self, "failed to map registers\n");
return;
}
if (lii_reset(sc))
return;
lii_spi_configure(sc);
if (lii_eeprom_present(sc))
sc->sc_memread = lii_eeprom_read;
else
sc->sc_memread = lii_spi_read;
if (lii_read_macaddr(sc, eaddr))
return;
memcpy(sc->sc_eaddr, eaddr, ETHER_ADDR_LEN);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(eaddr));
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "failed to map interrupt\n");
goto fail;
}
intrstr = pci_intr_string(sc->sc_pc, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pc, ih, IPL_NET, lii_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "failed to establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
if (lii_alloc_rings(sc))
goto fail;
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, lii_tick, sc);
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = lii_mii_readreg;
sc->sc_mii.mii_writereg = lii_mii_writereg;
sc->sc_mii.mii_statchg = lii_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, lii_media_change,
lii_media_status);
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
MII_OFFSET_ANY, 0);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = lii_ioctl;
ifp->if_start = lii_start;
ifp->if_watchdog = lii_watchdog;
ifp->if_init = lii_init;
ifp->if_stop = lii_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* While the device does support HW VLAN tagging, there is no
* real point using that feature.
*/
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
if_attach(ifp);
ether_ifattach(ifp, eaddr);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
else
pmf_class_network_register(self, ifp);
return;
fail:
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
sc->sc_ih = NULL;
}
if (memsize)
bus_space_unmap(sc->sc_mmiot, sc->sc_mmioh, memsize);
}
static int
lii_reset(struct lii_softc *sc)
{
int i;
DPRINTF(("lii_reset\n"));
AT_WRITE_4(sc, ATL2_SMC, SMC_SOFT_RST);
DELAY(1000);
for (i = 0; i < 10; ++i) {
if (AT_READ_4(sc, ATL2_BIS) == 0)
break;
DELAY(1000);
}
if (i == 10) {
aprint_error_dev(sc->sc_dev, "reset failed\n");
return 1;
}
AT_WRITE_4(sc, ATL2_PHYC, PHYC_ENABLE);
DELAY(10);
/* Init PCI-Express module */
/* Magic Numbers Warning */
AT_WRITE_4(sc, ATL2_PCELTM, PCELTM_DEF);
AT_WRITE_4(sc, ATL2_PCEDTXC, PCEDTX_DEF);
return 0;
}
static bool
lii_eeprom_present(struct lii_softc *sc)
{
/*
* The Linux driver does this, but then it has a very weird way of
* checking whether the PCI configuration space exposes the Vital
* Product Data capability, so maybe it's not really needed.
*/
#ifdef weirdloonix
uint32_t val;
val = AT_READ_4(sc, ATL2_SFC);
if (val & SFC_EN_VPD)
AT_WRITE_4(sc, ATL2_SFC, val & ~(SFC_EN_VPD));
#endif
return pci_get_capability(sc->sc_pc, sc->sc_tag, PCI_CAP_VPD,
NULL, NULL) == 1;
}
static int
lii_eeprom_read(struct lii_softc *sc, uint32_t reg, uint32_t *val)
{
int r = pci_vpd_read(sc->sc_pc, sc->sc_tag, reg, 1, (pcireg_t *)val);
DPRINTF(("lii_eeprom_read(%x) = %x\n", reg, *val));
return r;
}
static void
lii_spi_configure(struct lii_softc *sc)
{
/*
* We don't offer a way to configure the SPI Flash vendor parameter, so
* the table is given for reference
*/
static const struct lii_spi_flash_vendor {
const char *sfv_name;
const uint8_t sfv_opcodes[9];
} lii_sfv[] = {
{ "Atmel", { 0x00, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 } },
{ "SST", { 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 } },
{ "ST", { 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xab, 0xd8, 0xc7 } },
};
#define SF_OPCODE_WRSR 0
#define SF_OPCODE_READ 1
#define SF_OPCODE_PRGM 2
#define SF_OPCODE_WREN 3
#define SF_OPCODE_WRDI 4
#define SF_OPCODE_RDSR 5
#define SF_OPCODE_RDID 6
#define SF_OPCODE_SECT_ER 7
#define SF_OPCODE_CHIP_ER 8
#define SF_DEFAULT_VENDOR 0
static const uint8_t vendor = SF_DEFAULT_VENDOR;
/*
* Why isn't WRDI used? Heck if I know.
*/
AT_WRITE_1(sc, ATL2_SFOP_WRSR,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_WRSR]);
AT_WRITE_1(sc, ATL2_SFOP_READ,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_READ]);
AT_WRITE_1(sc, ATL2_SFOP_PROGRAM,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_PRGM]);
AT_WRITE_1(sc, ATL2_SFOP_WREN,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_WREN]);
AT_WRITE_1(sc, ATL2_SFOP_RDSR,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_RDSR]);
AT_WRITE_1(sc, ATL2_SFOP_RDID,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_RDID]);
AT_WRITE_1(sc, ATL2_SFOP_SC_ERASE,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_SECT_ER]);
AT_WRITE_1(sc, ATL2_SFOP_CHIP_ERASE,
lii_sfv[vendor].sfv_opcodes[SF_OPCODE_CHIP_ER]);
}
#define MAKE_SFC(cssetup, clkhi, clklo, cshold, cshi, ins) \
( (((cssetup) & SFC_CS_SETUP_MASK) \
<< SFC_CS_SETUP_SHIFT) \
| (((clkhi) & SFC_CLK_HI_MASK) \
<< SFC_CLK_HI_SHIFT) \
| (((clklo) & SFC_CLK_LO_MASK) \
<< SFC_CLK_LO_SHIFT) \
| (((cshold) & SFC_CS_HOLD_MASK) \
<< SFC_CS_HOLD_SHIFT) \
| (((cshi) & SFC_CS_HI_MASK) \
<< SFC_CS_HI_SHIFT) \
| (((ins) & SFC_INS_MASK) \
<< SFC_INS_SHIFT))
/* Magic settings from the Linux driver */
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static int
lii_spi_read(struct lii_softc *sc, uint32_t reg, uint32_t *val)
{
uint32_t v;
int i;
AT_WRITE_4(sc, ATL2_SF_DATA, 0);
AT_WRITE_4(sc, ATL2_SF_ADDR, reg);
v = SFC_WAIT_READY |
MAKE_SFC(CUSTOM_SPI_CS_SETUP, CUSTOM_SPI_CLK_HI,
CUSTOM_SPI_CLK_LO, CUSTOM_SPI_CS_HOLD, CUSTOM_SPI_CS_HI, 1);
AT_WRITE_4(sc, ATL2_SFC, v);
v |= SFC_START;
AT_WRITE_4(sc, ATL2_SFC, v);
for (i = 0; i < 10; ++i) {
DELAY(1000);
if (!(AT_READ_4(sc, ATL2_SFC) & SFC_START))
break;
}
if (i == 10)
return EBUSY;
*val = AT_READ_4(sc, ATL2_SF_DATA);
return 0;
}
static int
lii_read_macaddr(struct lii_softc *sc, uint8_t *ea)
{
uint32_t offset = 0x100;
uint32_t val, val1, addr0 = 0, addr1 = 0;
uint8_t found = 0;
while ((*sc->sc_memread)(sc, offset, &val) == 0) {
offset += 4;
/* Each chunk of data starts with a signature */
if ((val & 0xff) != 0x5a)
break;
if ((*sc->sc_memread)(sc, offset, &val1))
break;
offset += 4;
val >>= 16;
switch (val) {
case ATL2_MAC_ADDR_0:
addr0 = val1;
++found;
break;
case ATL2_MAC_ADDR_1:
addr1 = val1;
++found;
break;
default:
continue;
}
}
if (found < 2) {
aprint_error_dev(sc->sc_dev, "error reading MAC address\n");
return 1;
}
addr0 = htole32(addr0);
addr1 = htole32(addr1);
if ((addr0 == 0xffffff && (addr1 & 0xffff) == 0xffff) ||
(addr0 == 0 && (addr1 & 0xffff) == 0)) {
addr0 = htole32(AT_READ_4(sc, ATL2_MAC_ADDR_0));
addr1 = htole32(AT_READ_4(sc, ATL2_MAC_ADDR_1));
}
ea[0] = (addr1 & 0x0000ff00) >> 8;
ea[1] = (addr1 & 0x000000ff);
ea[2] = (addr0 & 0xff000000) >> 24;
ea[3] = (addr0 & 0x00ff0000) >> 16;
ea[4] = (addr0 & 0x0000ff00) >> 8;
ea[5] = (addr0 & 0x000000ff);
return 0;
}
static int
lii_mii_readreg(device_t dev, int phy, int reg)
{
struct lii_softc *sc = device_private(dev);
uint32_t val;
int i;
val = (reg & MDIOC_REG_MASK) << MDIOC_REG_SHIFT;
val |= MDIOC_START | MDIOC_SUP_PREAMBLE;
val |= MDIOC_CLK_25_4 << MDIOC_CLK_SEL_SHIFT;
val |= MDIOC_READ;
AT_WRITE_4(sc, ATL2_MDIOC, val);
for (i = 0; i < MDIO_WAIT_TIMES; ++i) {
DELAY(2);
val = AT_READ_4(sc, ATL2_MDIOC);
if ((val & (MDIOC_START | MDIOC_BUSY)) == 0)
break;
}
if (i == MDIO_WAIT_TIMES)
aprint_error_dev(dev, "timeout reading PHY %d reg %d\n", phy,
reg);
return (val & 0x0000ffff);
}
static void
lii_mii_writereg(device_t dev, int phy, int reg, int data)
{
struct lii_softc *sc = device_private(dev);
uint32_t val;
int i;
val = (reg & MDIOC_REG_MASK) << MDIOC_REG_SHIFT;
val |= (data & MDIOC_DATA_MASK) << MDIOC_DATA_SHIFT;
val |= MDIOC_START | MDIOC_SUP_PREAMBLE;
val |= MDIOC_CLK_25_4 << MDIOC_CLK_SEL_SHIFT;
/* val |= MDIOC_WRITE; */
AT_WRITE_4(sc, ATL2_MDIOC, val);
for (i = 0; i < MDIO_WAIT_TIMES; ++i) {
DELAY(2);
val = AT_READ_4(sc, ATL2_MDIOC);
if ((val & (MDIOC_START | MDIOC_BUSY)) == 0)
break;
}
if (i == MDIO_WAIT_TIMES)
aprint_error_dev(dev, "timeout writing PHY %d reg %d\n", phy,
reg);
}
static void
lii_mii_statchg(device_t dev)
{
struct lii_softc *sc = device_private(dev);
uint32_t val;
DPRINTF(("lii_mii_statchg\n"));
val = AT_READ_4(sc, ATL2_MACC);
if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX)
val |= MACC_FDX;
else
val &= ~MACC_FDX;
AT_WRITE_4(sc, ATL2_MACC, val);
}
static int
lii_media_change(struct ifnet *ifp)
{
struct lii_softc *sc = ifp->if_softc;
DPRINTF(("lii_media_change\n"));
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return 0;
}
static void
lii_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct lii_softc *sc = ifp->if_softc;
DPRINTF(("lii_media_status\n"));
mii_pollstat(&sc->sc_mii);
imr->ifm_status = sc->sc_mii.mii_media_status;
imr->ifm_active = sc->sc_mii.mii_media_active;
}
static int
lii_init(struct ifnet *ifp)
{
struct lii_softc *sc = ifp->if_softc;
uint32_t val;
int error;
DPRINTF(("lii_init\n"));
lii_stop(ifp, 0);
memset(sc->sc_ring, 0, sc->sc_ringsize);
/* Disable all interrupts */
AT_WRITE_4(sc, ATL2_ISR, 0xffffffff);
/* XXX endianness */
AT_WRITE_4(sc, ATL2_MAC_ADDR_0,
sc->sc_eaddr[2] << 24 |
sc->sc_eaddr[3] << 16 |
sc->sc_eaddr[4] << 8 |
sc->sc_eaddr[5]);
AT_WRITE_4(sc, ATL2_MAC_ADDR_1,
sc->sc_eaddr[0] << 8 |
sc->sc_eaddr[1]);
AT_WRITE_4(sc, ATL2_DESC_BASE_ADDR_HI, 0);
/* XXX
sc->sc_ringmap->dm_segs[0].ds_addr >> 32);
*/
AT_WRITE_4(sc, ATL2_RXD_BASE_ADDR_LO,
(sc->sc_ringmap->dm_segs[0].ds_addr & 0xffffffff)
+ AT_RXD_PADDING);
AT_WRITE_4(sc, ATL2_TXS_BASE_ADDR_LO,
sc->sc_txsp & 0xffffffff);
AT_WRITE_4(sc, ATL2_TXD_BASE_ADDR_LO,
sc->sc_txdp & 0xffffffff);
AT_WRITE_2(sc, ATL2_TXD_BUFFER_SIZE, AT_TXD_BUFFER_SIZE / 4);
AT_WRITE_2(sc, ATL2_TXS_NUM_ENTRIES, AT_TXD_NUM);
AT_WRITE_2(sc, ATL2_RXD_NUM_ENTRIES, AT_RXD_NUM);
/*
* Inter Paket Gap Time = 0x60 (IPGT)
* Minimum inter-frame gap for RX = 0x50 (MIFG)
* 64-bit Carrier-Sense window = 0x40 (IPGR1)
* 96-bit IPG window = 0x60 (IPGR2)
*/
AT_WRITE_4(sc, ATL2_MIPFG, 0x60405060);
/*
* Collision window = 0x37 (LCOL)
* Maximum # of retrans = 0xf (RETRY)
* Maximum binary expansion # = 0xa (ABEBT)
* IPG to start jam = 0x7 (JAMIPG)
*/
AT_WRITE_4(sc, ATL2_MHDC, 0x07a0f037 |
MHDC_EXC_DEF_EN);
/* 100 means 200us */
AT_WRITE_2(sc, ATL2_IMTIV, 100);
AT_WRITE_2(sc, ATL2_SMC, SMC_ITIMER_EN);
/* 500000 means 100ms */
AT_WRITE_2(sc, ATL2_IALTIV, 50000);
AT_WRITE_4(sc, ATL2_MTU, ifp->if_mtu + ETHER_HDR_LEN
+ ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
/* unit unknown for TX cur-through threshold */
AT_WRITE_4(sc, ATL2_TX_CUT_THRESH, 0x177);
AT_WRITE_2(sc, ATL2_PAUSE_ON_TH, AT_RXD_NUM * 7 / 8);
AT_WRITE_2(sc, ATL2_PAUSE_OFF_TH, AT_RXD_NUM / 12);
sc->sc_rxcur = 0;
sc->sc_txs_cur = sc->sc_txs_ack = 0;
sc->sc_txd_cur = sc->sc_txd_ack = 0;
sc->sc_free_tx_slots = true;
AT_WRITE_2(sc, ATL2_MB_TXD_WR_IDX, sc->sc_txd_cur);
AT_WRITE_2(sc, ATL2_MB_RXD_RD_IDX, sc->sc_rxcur);
AT_WRITE_1(sc, ATL2_DMAR, DMAR_EN);
AT_WRITE_1(sc, ATL2_DMAW, DMAW_EN);
AT_WRITE_4(sc, ATL2_SMC, AT_READ_4(sc, ATL2_SMC) | SMC_MANUAL_INT);
error = ((AT_READ_4(sc, ATL2_ISR) & ISR_PHY_LINKDOWN) != 0);
AT_WRITE_4(sc, ATL2_ISR, 0x3fffffff);
AT_WRITE_4(sc, ATL2_ISR, 0);
if (error) {
aprint_error_dev(sc->sc_dev, "init failed\n");
goto out;
}
lii_setmulti(sc);
val = AT_READ_4(sc, ATL2_MACC) & MACC_FDX;
val |= MACC_RX_EN | MACC_TX_EN | MACC_MACLP_CLK_PHY |
MACC_TX_FLOW_EN | MACC_RX_FLOW_EN |
MACC_ADD_CRC | MACC_PAD | MACC_BCAST_EN;
if (ifp->if_flags & IFF_PROMISC)
val |= MACC_PROMISC_EN;
else if (ifp->if_flags & IFF_ALLMULTI)
val |= MACC_ALLMULTI_EN;
val |= 7 << MACC_PREAMBLE_LEN_SHIFT;
val |= 2 << MACC_HDX_LEFT_BUF_SHIFT;
AT_WRITE_4(sc, ATL2_MACC, val);
mii_mediachg(&sc->sc_mii);
AT_WRITE_4(sc, ATL2_IMR, IMR_NORMAL_MASK);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
return error;
}
static void
lii_tx_put(struct lii_softc *sc, struct mbuf *m)
{
int left;
struct tx_pkt_header *tph =
(struct tx_pkt_header *)(sc->sc_txdbase + sc->sc_txd_cur);
memset(tph, 0, sizeof *tph);
tph->txph_size = m->m_pkthdr.len;
sc->sc_txd_cur = (sc->sc_txd_cur + 4) % AT_TXD_BUFFER_SIZE;
/*
* We already know we have enough space, so if there is a part of the
* space ahead of txd_cur that is active, it doesn't matter because
* left will be large enough even without it.
*/
left = AT_TXD_BUFFER_SIZE - sc->sc_txd_cur;
if (left > m->m_pkthdr.len) {
m_copydata(m, 0, m->m_pkthdr.len,
sc->sc_txdbase + sc->sc_txd_cur);
sc->sc_txd_cur += m->m_pkthdr.len;
} else {
m_copydata(m, 0, left, sc->sc_txdbase + sc->sc_txd_cur);
m_copydata(m, left, m->m_pkthdr.len - left, sc->sc_txdbase);
sc->sc_txd_cur = m->m_pkthdr.len - left;
}
/* Round to a 32-bit boundary */
sc->sc_txd_cur = ((sc->sc_txd_cur + 3) & ~3) % AT_TXD_BUFFER_SIZE;
if (sc->sc_txd_cur == sc->sc_txd_ack)
sc->sc_free_tx_slots = false;
}
static int
lii_free_tx_space(struct lii_softc *sc)
{
int space;
if (sc->sc_txd_cur >= sc->sc_txd_ack)
space = (AT_TXD_BUFFER_SIZE - sc->sc_txd_cur) +
sc->sc_txd_ack;
else
space = sc->sc_txd_ack - sc->sc_txd_cur;
/* Account for the tx_pkt_header */
return (space - 4);
}
static void
lii_start(struct ifnet *ifp)
{
struct lii_softc *sc = ifp->if_softc;
struct mbuf *m0;
DPRINTF(("lii_start\n"));
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (!sc->sc_free_tx_slots ||
lii_free_tx_space(sc) < m0->m_pkthdr.len) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
lii_tx_put(sc, m0);
DPRINTF(("lii_start: put %d\n", sc->sc_txs_cur));
sc->sc_txs[sc->sc_txs_cur].txps_update = 0;
sc->sc_txs_cur = (sc->sc_txs_cur + 1) % AT_TXD_NUM;
if (sc->sc_txs_cur == sc->sc_txs_ack)
sc->sc_free_tx_slots = false;
AT_WRITE_2(sc, ATL2_MB_TXD_WR_IDX, sc->sc_txd_cur/4);
IFQ_DEQUEUE(&ifp->if_snd, m0);
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
m_freem(m0);
}
}
static void
lii_stop(struct ifnet *ifp, int disable)
{
struct lii_softc *sc = ifp->if_softc;
callout_stop(&sc->sc_tick_ch);
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
mii_down(&sc->sc_mii);
lii_reset(sc);
AT_WRITE_4(sc, ATL2_IMR, 0);
}
static int
lii_intr(void *v)
{
struct lii_softc *sc = v;
uint32_t status;
status = AT_READ_4(sc, ATL2_ISR);
if (status == 0)
return 0;
DPRINTF(("lii_intr (%x)\n", status));
/* Clear the interrupt and disable them */
AT_WRITE_4(sc, ATL2_ISR, status | ISR_DIS_INT);
if (status & (ISR_PHY | ISR_MANUAL)) {
/* Ack PHY interrupt. Magic register */
if (status & ISR_PHY)
(void)lii_mii_readreg(sc->sc_dev, 1, 19);
mii_mediachg(&sc->sc_mii);
}
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST | ISR_PHY_LINKDOWN)) {
lii_init(&sc->sc_ec.ec_if);
return 1;
}
if (status & ISR_RX_EVENT) {
#ifdef LII_DEBUG
if (!(status & ISR_RS_UPDATE))
printf("rxintr %08x\n", status);
#endif
lii_rxintr(sc);
}
if (status & ISR_TX_EVENT)
lii_txintr(sc);
/* Re-enable interrupts */
AT_WRITE_4(sc, ATL2_ISR, 0);
return 1;
}
static void
lii_rxintr(struct lii_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct rx_pkt *rxp;
struct mbuf *m;
uint16_t size;
DPRINTF(("lii_rxintr\n"));
for (;;) {
rxp = &sc->sc_rxp[sc->sc_rxcur];
if (rxp->rxp_update == 0)
break;
DPRINTF(("lii_rxintr: getting %u (%u) [%x]\n", sc->sc_rxcur,
rxp->rxp_size, rxp->rxp_flags));
sc->sc_rxcur = (sc->sc_rxcur + 1) % AT_RXD_NUM;
rxp->rxp_update = 0;
if (!(rxp->rxp_flags & ATL2_RXF_SUCCESS)) {
++ifp->if_ierrors;
continue;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
++ifp->if_ierrors;
continue;
}
size = rxp->rxp_size - ETHER_CRC_LEN;
if (size > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
++ifp->if_ierrors;
continue;
}
}
m->m_pkthdr.rcvif = ifp;
/* Copy the packet withhout the FCS */
m->m_pkthdr.len = m->m_len = size;
memcpy(mtod(m, void *), &rxp->rxp_data[0], size);
++ifp->if_ipackets;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
(*ifp->if_input)(ifp, m);
}
AT_WRITE_4(sc, ATL2_MB_RXD_RD_IDX, sc->sc_rxcur);
}
static void
lii_txintr(struct lii_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct tx_pkt_status *txs;
struct tx_pkt_header *txph;
DPRINTF(("lii_txintr\n"));
for (;;) {
txs = &sc->sc_txs[sc->sc_txs_ack];
if (txs->txps_update == 0)
break;
DPRINTF(("lii_txintr: ack'd %d\n", sc->sc_txs_ack));
sc->sc_txs_ack = (sc->sc_txs_ack + 1) % AT_TXD_NUM;
sc->sc_free_tx_slots = true;
txs->txps_update = 0;
txph = (struct tx_pkt_header *)
(sc->sc_txdbase + sc->sc_txd_ack);
if (txph->txph_size != txs->txps_size)
aprint_error_dev(sc->sc_dev,
"mismatched status and packet\n");
/*
* Move ack by the packet size, taking the packet header in
* account and round to the next 32-bit boundary
* (7 = sizeof(header) + 3)
*/
sc->sc_txd_ack = (sc->sc_txd_ack + txph->txph_size + 7 ) & ~3;
sc->sc_txd_ack %= AT_TXD_BUFFER_SIZE;
if (txs->txps_flags & ATL2_TXF_SUCCESS)
++ifp->if_opackets;
else
++ifp->if_oerrors;
ifp->if_flags &= ~IFF_OACTIVE;
}
if (sc->sc_free_tx_slots)
lii_start(ifp);
}
static int
lii_alloc_rings(struct lii_softc *sc)
{
int nsegs;
bus_size_t bs;
/*
* We need a big chunk of DMA-friendly memory because descriptors
* are not separate from data on that crappy hardware, which means
* we'll have to copy data from and to that memory zone to and from
* the mbufs.
*
* How lame is that? Using the default values from the Linux driver,
* we allocate space for receiving up to 64 full-size Ethernet frames,
* and only 8kb for transmitting up to 64 Ethernet frames.
*/
sc->sc_ringsize = bs = AT_RXD_PADDING
+ AT_RXD_NUM * sizeof(struct rx_pkt)
+ AT_TXD_NUM * sizeof(struct tx_pkt_status)
+ AT_TXD_BUFFER_SIZE;
if (bus_dmamap_create(sc->sc_dmat, bs, 1, bs, (1<<30),
BUS_DMA_NOWAIT, &sc->sc_ringmap) != 0) {
aprint_error_dev(sc->sc_dev, "bus_dmamap_create failed\n");
return 1;
}
if (bus_dmamem_alloc(sc->sc_dmat, bs, PAGE_SIZE, (1<<30),
&sc->sc_ringseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) {
aprint_error_dev(sc->sc_dev, "bus_dmamem_alloc failed\n");
goto fail;
}
if (bus_dmamem_map(sc->sc_dmat, &sc->sc_ringseg, nsegs, bs,
(void **)&sc->sc_ring, BUS_DMA_NOWAIT) != 0) {
aprint_error_dev(sc->sc_dev, "bus_dmamem_map failed\n");
goto fail1;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_ringmap, sc->sc_ring,
bs, NULL, BUS_DMA_NOWAIT) != 0) {
aprint_error_dev(sc->sc_dev, "bus_dmamap_load failed\n");
goto fail2;
}
sc->sc_rxp = (void *)(sc->sc_ring + AT_RXD_PADDING);
sc->sc_txs = (void *)(sc->sc_ring + AT_RXD_PADDING
+ AT_RXD_NUM * sizeof(struct rx_pkt));
sc->sc_txdbase = ((char *)sc->sc_txs)
+ AT_TXD_NUM * sizeof(struct tx_pkt_status);
sc->sc_txsp = sc->sc_ringmap->dm_segs[0].ds_addr
+ ((char *)sc->sc_txs - (char *)sc->sc_ring);
sc->sc_txdp = sc->sc_ringmap->dm_segs[0].ds_addr
+ ((char *)sc->sc_txdbase - (char *)sc->sc_ring);
return 0;
fail2:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_ring, bs);
fail1:
bus_dmamem_free(sc->sc_dmat, &sc->sc_ringseg, nsegs);
fail:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ringmap);
return 1;
}
static void
lii_watchdog(struct ifnet *ifp)
{
struct lii_softc *sc = ifp->if_softc;
aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
++ifp->if_oerrors;
lii_init(ifp);
}
static int
lii_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct lii_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
switch(cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
lii_setmulti(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, (struct ifreq *)data,
&sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
lii_setmulti(sc);
error = 0;
}
break;
}
splx(s);
return error;
}
static void
lii_setmulti(struct lii_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &ec->ec_if;
uint32_t mht0 = 0, mht1 = 0, crc;
struct ether_multi *enm;
struct ether_multistep step;
/* Clear multicast hash table */
AT_WRITE_4(sc, ATL2_MHT, 0);
AT_WRITE_4(sc, ATL2_MHT + 4, 0);
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
mht0 = mht1 = 0;
goto alldone;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
if (crc & (1 << 31))
mht1 |= (1 << ((crc >> 26) & 0x0000001f));
else
mht0 |= (1 << ((crc >> 26) & 0x0000001f));
ETHER_NEXT_MULTI(step, enm);
}
alldone:
AT_WRITE_4(sc, ATL2_MHT, mht0);
AT_WRITE_4(sc, ATL2_MHT+4, mht1);
}
static void
lii_tick(void *v)
{
struct lii_softc *sc = v;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}