NetBSD/sys/net/if_vlan.c
2008-04-28 20:22:51 +00:00

922 lines
23 KiB
C

/* $NetBSD: if_vlan.c,v 1.58 2008/04/28 20:24:09 martin Exp $ */
/*-
* Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
* via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
*/
/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
* extended some day to also handle IEEE 802.1P priority tagging. This is
* sort of sneaky in the implementation, since we need to pretend to be
* enough of an Ethernet implementation to make ARP work. The way we do
* this is by telling everyone that we are an Ethernet interface, and then
* catch the packets that ether_output() left on our output queue when it
* calls if_start(), rewrite them for use by the real outgoing interface,
* and ask it to send them.
*
* TODO:
*
* - Need some way to notify vlan interfaces when the parent
* interface changes MTU.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.58 2008/04/28 20:24:09 martin Exp $");
#include "opt_inet.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/if_vlanvar.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
struct vlan_mc_entry {
LIST_ENTRY(vlan_mc_entry) mc_entries;
/*
* A key to identify this entry. The mc_addr below can't be
* used since multiple sockaddr may mapped into the same
* ether_multi (e.g., AF_UNSPEC).
*/
union {
struct ether_multi *mcu_enm;
} mc_u;
struct sockaddr_storage mc_addr;
};
#define mc_enm mc_u.mcu_enm
struct ifvlan {
union {
struct ethercom ifvu_ec;
} ifv_u;
struct ifnet *ifv_p; /* parent interface of this vlan */
struct ifv_linkmib {
const struct vlan_multisw *ifvm_msw;
int ifvm_encaplen; /* encapsulation length */
int ifvm_mtufudge; /* MTU fudged by this much */
int ifvm_mintu; /* min transmission unit */
uint16_t ifvm_proto; /* encapsulation ethertype */
uint16_t ifvm_tag; /* tag to apply on packets */
} ifv_mib;
LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
LIST_ENTRY(ifvlan) ifv_list;
int ifv_flags;
};
#define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
#define ifv_ec ifv_u.ifvu_ec
#define ifv_if ifv_ec.ec_if
#define ifv_msw ifv_mib.ifvm_msw
#define ifv_encaplen ifv_mib.ifvm_encaplen
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
#define ifv_mintu ifv_mib.ifvm_mintu
#define ifv_tag ifv_mib.ifvm_tag
struct vlan_multisw {
int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
void (*vmsw_purgemulti)(struct ifvlan *);
};
static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
static void vlan_ether_purgemulti(struct ifvlan *);
const struct vlan_multisw vlan_ether_multisw = {
vlan_ether_addmulti,
vlan_ether_delmulti,
vlan_ether_purgemulti,
};
static int vlan_clone_create(struct if_clone *, int);
static int vlan_clone_destroy(struct ifnet *);
static int vlan_config(struct ifvlan *, struct ifnet *);
static int vlan_ioctl(struct ifnet *, u_long, void *);
static void vlan_start(struct ifnet *);
static void vlan_unconfig(struct ifnet *);
void vlanattach(int);
/* XXX This should be a hash table with the tag as the basis of the key. */
static LIST_HEAD(, ifvlan) ifv_list;
struct if_clone vlan_cloner =
IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
static char vlan_zero_pad_buff[ETHER_MIN_LEN];
void
vlanattach(int n)
{
LIST_INIT(&ifv_list);
if_clone_attach(&vlan_cloner);
}
static void
vlan_reset_linkname(struct ifnet *ifp)
{
/*
* We start out with a "802.1Q VLAN" type and zero-length
* addresses. When we attach to a parent interface, we
* inherit its type, address length, address, and data link
* type.
*/
ifp->if_type = IFT_L2VLAN;
ifp->if_addrlen = 0;
ifp->if_dlt = DLT_NULL;
if_alloc_sadl(ifp);
}
static int
vlan_clone_create(struct if_clone *ifc, int unit)
{
struct ifvlan *ifv;
struct ifnet *ifp;
int s;
ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
memset(ifv, 0, sizeof(struct ifvlan));
ifp = &ifv->ifv_if;
LIST_INIT(&ifv->ifv_mc_listhead);
s = splnet();
LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
splx(s);
snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
unit);
ifp->if_softc = ifv;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = vlan_start;
ifp->if_ioctl = vlan_ioctl;
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
vlan_reset_linkname(ifp);
return (0);
}
static int
vlan_clone_destroy(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
int s;
s = splnet();
LIST_REMOVE(ifv, ifv_list);
vlan_unconfig(ifp);
splx(s);
if_detach(ifp);
free(ifv, M_DEVBUF);
return (0);
}
/*
* Configure a VLAN interface. Must be called at splnet().
*/
static int
vlan_config(struct ifvlan *ifv, struct ifnet *p)
{
struct ifnet *ifp = &ifv->ifv_if;
int error;
if (ifv->ifv_p != NULL)
return (EBUSY);
switch (p->if_type) {
case IFT_ETHER:
{
struct ethercom *ec = (void *) p;
ifv->ifv_msw = &vlan_ether_multisw;
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
ifv->ifv_mintu = ETHERMIN;
/*
* If the parent supports the VLAN_MTU capability,
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
* enable it.
*/
if (ec->ec_nvlans++ == 0 &&
(ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
/*
* Enable Tx/Rx of VLAN-sized frames.
*/
ec->ec_capenable |= ETHERCAP_VLAN_MTU;
if (p->if_flags & IFF_UP) {
struct ifreq ifr;
ifr.ifr_flags = p->if_flags;
error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
(void *) &ifr);
if (error) {
if (ec->ec_nvlans-- == 1)
ec->ec_capenable &=
~ETHERCAP_VLAN_MTU;
return (error);
}
}
ifv->ifv_mtufudge = 0;
} else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
/*
* Fudge the MTU by the encapsulation size. This
* makes us incompatible with strictly compliant
* 802.1Q implementations, but allows us to use
* the feature with other NetBSD implementations,
* which might still be useful.
*/
ifv->ifv_mtufudge = ifv->ifv_encaplen;
}
/*
* If the parent interface can do hardware-assisted
* VLAN encapsulation, then propagate its hardware-
* assisted checksumming flags.
*/
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
ifp->if_capabilities = p->if_capabilities &
(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
/*
* We inherit the parent's Ethernet address.
*/
ether_ifattach(ifp, CLLADDR(p->if_sadl));
ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
break;
}
default:
return (EPROTONOSUPPORT);
}
ifv->ifv_p = p;
ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
ifv->ifv_if.if_flags = p->if_flags &
(IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
/*
* Inherit the if_type from the parent. This allows us
* to participate in bridges of that type.
*/
ifv->ifv_if.if_type = p->if_type;
return (0);
}
/*
* Unconfigure a VLAN interface. Must be called at splnet().
*/
static void
vlan_unconfig(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
if (ifv->ifv_p == NULL)
return;
/*
* Since the interface is being unconfigured, we need to empty the
* list of multicast groups that we may have joined while we were
* alive and remove them from the parent's list also.
*/
(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
/* Disconnect from parent. */
switch (ifv->ifv_p->if_type) {
case IFT_ETHER:
{
struct ethercom *ec = (void *) ifv->ifv_p;
if (ec->ec_nvlans-- == 1) {
/*
* Disable Tx/Rx of VLAN-sized frames.
*/
ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
if (ifv->ifv_p->if_flags & IFF_UP) {
struct ifreq ifr;
ifr.ifr_flags = ifv->ifv_p->if_flags;
(void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
SIOCSIFFLAGS, (void *) &ifr);
}
}
ether_ifdetach(ifp);
vlan_reset_linkname(ifp);
break;
}
#ifdef DIAGNOSTIC
default:
panic("vlan_unconfig: impossible");
#endif
}
ifv->ifv_p = NULL;
ifv->ifv_if.if_mtu = 0;
ifv->ifv_flags = 0;
if_down(ifp);
ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
ifp->if_capabilities = 0;
}
/*
* Called when a parent interface is detaching; destroy any VLAN
* configuration for the parent interface.
*/
void
vlan_ifdetach(struct ifnet *p)
{
struct ifvlan *ifv;
int s;
s = splnet();
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
ifv = LIST_NEXT(ifv, ifv_list)) {
if (ifv->ifv_p == p)
vlan_unconfig(&ifv->ifv_if);
}
splx(s);
}
static int
vlan_set_promisc(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
int error = 0;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
error = ifpromisc(ifv->ifv_p, 1);
if (error == 0)
ifv->ifv_flags |= IFVF_PROMISC;
}
} else {
if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
error = ifpromisc(ifv->ifv_p, 0);
if (error == 0)
ifv->ifv_flags &= ~IFVF_PROMISC;
}
}
return (error);
}
static int
vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct lwp *l = curlwp; /* XXX */
struct ifvlan *ifv = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
struct ifnet *pr;
struct vlanreq vlr;
struct sockaddr *sa;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
if (ifv->ifv_p != NULL) {
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif
default:
break;
}
} else {
error = EINVAL;
}
break;
case SIOCGIFADDR:
sa = (struct sockaddr *)&ifr->ifr_data;
memcpy(sa->sa_data, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
break;
case SIOCSIFMTU:
if (ifv->ifv_p == NULL)
error = EINVAL;
else if (
ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
error = EINVAL;
else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
error = 0;
break;
case SIOCSETVLAN:
if ((error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
NULL)) != 0)
break;
if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
break;
if (vlr.vlr_parent[0] == '\0') {
vlan_unconfig(ifp);
break;
}
if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
error = EINVAL; /* check for valid tag */
break;
}
if ((pr = ifunit(vlr.vlr_parent)) == 0) {
error = ENOENT;
break;
}
if ((error = vlan_config(ifv, pr)) != 0)
break;
ifv->ifv_tag = vlr.vlr_tag;
ifp->if_flags |= IFF_RUNNING;
/* Update promiscuous mode, if necessary. */
vlan_set_promisc(ifp);
break;
case SIOCGETVLAN:
memset(&vlr, 0, sizeof(vlr));
if (ifv->ifv_p != NULL) {
snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
ifv->ifv_p->if_xname);
vlr.vlr_tag = ifv->ifv_tag;
}
error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
break;
case SIOCSIFFLAGS:
/*
* For promiscuous mode, we enable promiscuous mode on
* the parent if we need promiscuous on the VLAN interface.
*/
if (ifv->ifv_p != NULL)
error = vlan_set_promisc(ifp);
break;
case SIOCADDMULTI:
error = (ifv->ifv_p != NULL) ?
(*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
break;
case SIOCDELMULTI:
error = (ifv->ifv_p != NULL) ?
(*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
static int
vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
{
const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
struct vlan_mc_entry *mc;
uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
int error;
if (sa->sa_len > sizeof(struct sockaddr_storage))
return (EINVAL);
error = ether_addmulti(sa, &ifv->ifv_ec);
if (error != ENETRESET)
return (error);
/*
* This is new multicast address. We have to tell parent
* about it. Also, remember this multicast address so that
* we can delete them on unconfigure.
*/
MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
M_DEVBUF, M_NOWAIT);
if (mc == NULL) {
error = ENOMEM;
goto alloc_failed;
}
/*
* As ether_addmulti() returns ENETRESET, following two
* statement shouldn't fail.
*/
(void)ether_multiaddr(sa, addrlo, addrhi);
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
memcpy(&mc->mc_addr, sa, sa->sa_len);
LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
(void *)ifr);
if (error != 0)
goto ioctl_failed;
return (error);
ioctl_failed:
LIST_REMOVE(mc, mc_entries);
FREE(mc, M_DEVBUF);
alloc_failed:
(void)ether_delmulti(sa, &ifv->ifv_ec);
return (error);
}
static int
vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
{
const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
struct ether_multi *enm;
struct vlan_mc_entry *mc;
uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
int error;
/*
* Find a key to lookup vlan_mc_entry. We have to do this
* before calling ether_delmulti for obvious reason.
*/
if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
return (error);
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
error = ether_delmulti(sa, &ifv->ifv_ec);
if (error != ENETRESET)
return (error);
/* We no longer use this multicast address. Tell parent so. */
error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
(void *)ifr);
if (error == 0) {
/* And forget about this address. */
for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
mc = LIST_NEXT(mc, mc_entries)) {
if (mc->mc_enm == enm) {
LIST_REMOVE(mc, mc_entries);
FREE(mc, M_DEVBUF);
break;
}
}
KASSERT(mc != NULL);
} else
(void)ether_addmulti(sa, &ifv->ifv_ec);
return (error);
}
/*
* Delete any multicast address we have asked to add from parent
* interface. Called when the vlan is being unconfigured.
*/
static void
vlan_ether_purgemulti(struct ifvlan *ifv)
{
struct ifnet *ifp = ifv->ifv_p; /* Parent. */
struct vlan_mc_entry *mc;
union {
struct ifreq ifreq;
struct {
char ifr_name[IFNAMSIZ];
struct sockaddr_storage ifr_ss;
} ifreq_storage;
} ifreq;
struct ifreq *ifr = &ifreq.ifreq;
memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
ifreq_setaddr(SIOCDELMULTI, ifr,
(const struct sockaddr *)&mc->mc_addr);
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
LIST_REMOVE(mc, mc_entries);
FREE(mc, M_DEVBUF);
}
}
static void
vlan_start(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
struct ifnet *p = ifv->ifv_p;
struct ethercom *ec = (void *) ifv->ifv_p;
struct mbuf *m;
int error;
ALTQ_DECL(struct altq_pktattr pktattr;)
ifp->if_flags |= IFF_OACTIVE;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
#ifdef ALTQ
/*
* If ALTQ is enabled on the parent interface, do
* classification; the queueing discipline might
* not require classification, but might require
* the address family/header pointer in the pktattr.
*/
if (ALTQ_IS_ENABLED(&p->if_snd)) {
switch (p->if_type) {
case IFT_ETHER:
altq_etherclassify(&p->if_snd, m, &pktattr);
break;
#ifdef DIAGNOSTIC
default:
panic("vlan_start: impossible (altq)");
#endif
}
}
#endif /* ALTQ */
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/*
* If the parent can insert the tag itself, just mark
* the tag in the mbuf header.
*/
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
struct m_tag *mtag;
mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
M_NOWAIT);
if (mtag == NULL) {
ifp->if_oerrors++;
m_freem(m);
continue;
}
*(u_int *)(mtag + 1) = ifv->ifv_tag;
m_tag_prepend(m, mtag);
} else {
/*
* insert the tag ourselves
*/
M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
if (m == NULL) {
printf("%s: unable to prepend encap header",
ifv->ifv_p->if_xname);
ifp->if_oerrors++;
continue;
}
switch (p->if_type) {
case IFT_ETHER:
{
struct ether_vlan_header *evl;
if (m->m_len < sizeof(struct ether_vlan_header))
m = m_pullup(m,
sizeof(struct ether_vlan_header));
if (m == NULL) {
printf("%s: unable to pullup encap "
"header", ifv->ifv_p->if_xname);
ifp->if_oerrors++;
continue;
}
/*
* Transform the Ethernet header into an
* Ethernet header with 802.1Q encapsulation.
*/
memmove(mtod(m, void *),
mtod(m, char *) + ifv->ifv_encaplen,
sizeof(struct ether_header));
evl = mtod(m, struct ether_vlan_header *);
evl->evl_proto = evl->evl_encap_proto;
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
evl->evl_tag = htons(ifv->ifv_tag);
/*
* To cater for VLAN-aware layer 2 ethernet
* switches which may need to strip the tag
* before forwarding the packet, make sure
* the packet+tag is at least 68 bytes long.
* This is necessary because our parent will
* only pad to 64 bytes (ETHER_MIN_LEN) and
* some switches will not pad by themselves
* after deleting a tag.
*/
if (m->m_pkthdr.len <
(ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
m_copyback(m, m->m_pkthdr.len,
(ETHER_MIN_LEN +
ETHER_VLAN_ENCAP_LEN) -
m->m_pkthdr.len,
vlan_zero_pad_buff);
}
break;
}
#ifdef DIAGNOSTIC
default:
panic("vlan_start: impossible");
#endif
}
}
/*
* Send it, precisely as the parent's output routine
* would have. We are already running at splnet.
*/
IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
if (error) {
/* mbuf is already freed */
ifp->if_oerrors++;
continue;
}
ifp->if_opackets++;
if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
(*p->if_start)(p);
}
ifp->if_flags &= ~IFF_OACTIVE;
}
/*
* Given an Ethernet frame, find a valid vlan interface corresponding to the
* given source interface and tag, then run the real packet through the
* parent's input routine.
*/
void
vlan_input(struct ifnet *ifp, struct mbuf *m)
{
struct ifvlan *ifv;
u_int tag;
struct m_tag *mtag;
mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
if (mtag != NULL) {
/* m contains a normal ethernet frame, the tag is in mtag */
tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
m_tag_delete(m, mtag);
} else {
switch (ifp->if_type) {
case IFT_ETHER:
{
struct ether_vlan_header *evl;
if (m->m_len < sizeof(struct ether_vlan_header) &&
(m = m_pullup(m,
sizeof(struct ether_vlan_header))) == NULL) {
printf("%s: no memory for VLAN header, "
"dropping packet.\n", ifp->if_xname);
return;
}
evl = mtod(m, struct ether_vlan_header *);
KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
/*
* Restore the original ethertype. We'll remove
* the encapsulation after we've found the vlan
* interface corresponding to the tag.
*/
evl->evl_encap_proto = evl->evl_proto;
break;
}
default:
tag = (u_int) -1; /* XXX GCC */
#ifdef DIAGNOSTIC
panic("vlan_input: impossible");
#endif
}
}
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
ifv = LIST_NEXT(ifv, ifv_list))
if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
break;
if (ifv == NULL ||
(ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
(IFF_UP|IFF_RUNNING)) {
m_freem(m);
ifp->if_noproto++;
return;
}
/*
* Now, remove the encapsulation header. The original
* header has already been fixed up above.
*/
if (mtag == NULL) {
memmove(mtod(m, char *) + ifv->ifv_encaplen,
mtod(m, void *), sizeof(struct ether_header));
m_adj(m, ifv->ifv_encaplen);
}
m->m_pkthdr.rcvif = &ifv->ifv_if;
ifv->ifv_if.if_ipackets++;
#if NBPFILTER > 0
if (ifv->ifv_if.if_bpf)
bpf_mtap(ifv->ifv_if.if_bpf, m);
#endif
/* Pass it back through the parent's input routine. */
(*ifp->if_input)(&ifv->ifv_if, m);
}