NetBSD/sys/arch/i386/isa/if_ep.c
christos 303841c92e 3c509 fixes to avoid adapter getting stuck in high traffic conditions.
I don't particularly like the fixes, but at least now the 3c509 never
gets stuck. On the other hand, performance still sucks in some cases.
1994-12-10 14:52:02 +00:00

1172 lines
28 KiB
C

/* $NetBSD: if_ep.c,v 1.63 1994/12/10 14:52:02 christos Exp $ */
/*
* Copyright (c) 1994 Herb Peyerl <hpeyerl@novatel.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Herb Peyerl.
* 4. The name of Herb Peyerl may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/pio.h>
#include <i386/isa/isavar.h>
#include <i386/isa/if_epreg.h>
#include <i386/isa/elink.h>
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
/*
* Ethernet software status per interface.
*/
struct ep_softc {
struct device sc_dev;
struct intrhand sc_ih;
struct arpcom sc_arpcom; /* Ethernet common part */
int ep_iobase; /* i/o bus address */
char ep_connectors; /* Connectors on this card. */
#define MAX_MBS 8 /* # of mbufs we keep around */
struct mbuf *mb[MAX_MBS]; /* spare mbuf storage. */
int next_mb; /* Which mbuf to use next. */
int last_mb; /* Last mbuf. */
int tx_start_thresh; /* Current TX_start_thresh. */
int tx_succ_ok; /* # packets sent in sequence */
/* w/o underrun */
char bus32bit; /* 32bit access possible */
};
static int epprobe __P((struct device *, void *, void *));
static void epattach __P((struct device *, struct device *, void *));
struct cfdriver epcd = {
NULL, "ep", epprobe, epattach, DV_IFNET, sizeof(struct ep_softc)
};
int epintr __P((struct ep_softc *));
static void epxstat __P((struct ep_softc *));
static int epstatus __P((struct ep_softc *));
static void epinit __P((struct ep_softc *));
static int epioctl __P((struct ifnet *, u_long, caddr_t));
static int epstart __P((struct ifnet *));
static int epwatchdog __P((int));
static void epreset __P((struct ep_softc *));
static void epread __P((struct ep_softc *));
static void epmbuffill __P((struct ep_softc *));
static void epmbufempty __P((struct ep_softc *));
static void epstop __P((struct ep_softc *));
static void epsetfilter __P((struct ep_softc *sc));
static void epsetlink __P((struct ep_softc *sc));
static u_short epreadeeprom __P((int id_port, int offset));
static int epbusyeeprom __P((struct ep_softc *));
#define MAXEPCARDS 20 /* if you have 21 cards in your machine... you lose */
static struct epcard {
int iobase;
int irq;
char available;
char bus32bit;
} epcards[MAXEPCARDS];
static int nepcards;
static void
epaddcard(iobase, irq, bus32bit)
int iobase;
int irq;
char bus32bit;
{
if (nepcards >= MAXEPCARDS)
return;
epcards[nepcards].iobase = iobase;
epcards[nepcards].irq = (irq == 2) ? 9 : irq;
epcards[nepcards].available = 1;
epcards[nepcards].bus32bit = bus32bit;
nepcards++;
}
/*
* 3c579 cards on the EISA bus are probed by their slot number. 3c509
* cards on the ISA bus are probed in ethernet address order. The probe
* sequence requires careful orchestration, and we'd like like to allow
* the irq and base address to be wildcarded. So, we probe all the cards
* the first time epprobe() is called. On subsequent calls we look for
* matching cards.
*/
int
epprobe(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct ep_softc *sc = match;
struct isa_attach_args *ia = aux;
static int probed;
int slot, iobase, i;
u_short vendor, model;
int k, k2;
if (!probed) {
probed = 1;
/* find all EISA cards */
for (slot = 1; slot < 16; slot++) {
iobase = 0x1000 * slot;
vendor = htons(inw(iobase + EISA_VENDOR));
if (vendor != MFG_ID)
continue;
model = htons(inw(iobase + EISA_MODEL));
if ((model & 0xfff0) != PROD_ID) {
#ifndef trusted
printf("epprobe: ignoring model %04x\n", model);
#endif
continue;
}
outb(iobase + EISA_CONTROL, EISA_ENABLE | EISA_RESET);
delay(10);
outb(iobase + EISA_CONTROL, EISA_ENABLE);
/* Wait for reset? */
delay(1000);
k = inw(iobase + EP_W0_ADDRESS_CFG);
k = (k & 0x1f) * 0x10 + 0x200;
k2 = inw(iobase + EP_W0_RESOURCE_CFG);
k2 >>= 12;
epaddcard(iobase, k2, 1);
}
/* find all isa cards */
delay(1000);
elink_reset(); /* global reset to ELINK_ID_PORT */
delay(1000);
for (slot = 0; slot < 10; slot++) {
outb(ELINK_ID_PORT, 0x00);
elink_idseq(ELINK_509_POLY);
delay(1000);
vendor =
htons(epreadeeprom(ELINK_ID_PORT, EEPROM_MFG_ID));
if (vendor != MFG_ID)
continue;
model =
htons(epreadeeprom(ELINK_ID_PORT, EEPROM_PROD_ID));
if ((model & 0xfff0) != PROD_ID) {
#ifndef trusted
printf("epprobe: ignoring model %04x\n", model);
#endif
continue;
}
k = epreadeeprom(ELINK_ID_PORT, EEPROM_ADDR_CFG);
k = (k & 0x1f) * 0x10 + 0x200;
k2 = epreadeeprom(ELINK_ID_PORT, EEPROM_RESOURCE_CFG);
k2 >>= 12;
epaddcard(k, k2, 0);
/* so card will not respond to contention again */
outb(ELINK_ID_PORT, TAG_ADAPTER_0 + 1);
/*
* XXX: this should probably not be done here
* because it enables the drq/irq lines from
* the board. Perhaps it should be done after
* we have checked for irq/drq collisions?
*/
outb(ELINK_ID_PORT, ACTIVATE_ADAPTER_TO_CONFIG);
}
/* XXX should we sort by ethernet address? */
}
for (i = 0; i < nepcards; i++) {
if (epcards[i].available == 0)
continue;
if (ia->ia_iobase != IOBASEUNK &&
ia->ia_iobase != epcards[i].iobase)
continue;
if (ia->ia_irq != IRQUNK &&
ia->ia_irq != epcards[i].irq)
continue;
goto good;
}
return 0;
good:
epcards[i].available = 0;
sc->bus32bit = epcards[i].bus32bit;
ia->ia_iobase = epcards[i].iobase;
ia->ia_irq = epcards[i].irq;
ia->ia_iosize = 0x10;
ia->ia_msize = 0;
return 1;
}
static void
epattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ep_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_short i;
printf(": ");
sc->ep_iobase = ia->ia_iobase;
sc->ep_connectors = 0;
i = inw(ia->ia_iobase + EP_W0_CONFIG_CTRL);
if (i & IS_AUI) {
printf("aui");
sc->ep_connectors |= AUI;
}
if (i & IS_BNC) {
if (sc->ep_connectors)
printf("/");
printf("bnc");
sc->ep_connectors |= BNC;
}
if (i & IS_UTP) {
if (sc->ep_connectors)
printf("/");
printf("utp");
sc->ep_connectors |= UTP;
}
if (!sc->ep_connectors)
printf("no connectors!");
/*
* Read the station address from the eeprom
*/
for (i = 0; i < 3; i++) {
u_short *p;
GO_WINDOW(0);
if (epbusyeeprom(sc))
return;
outw(BASE + EP_W0_EEPROM_COMMAND, READ_EEPROM | i);
if (epbusyeeprom(sc))
return;
p = (u_short *)&sc->sc_arpcom.ac_enaddr[i * 2];
*p = htons(inw(BASE + EP_W0_EEPROM_DATA));
GO_WINDOW(2);
outw(BASE + EP_W2_ADDR_0 + (i * 2), ntohs(*p));
}
printf(" address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
ifp->if_unit = sc->sc_dev.dv_unit;
ifp->if_name = epcd.cd_name;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
ifp->if_output = ether_output;
ifp->if_start = epstart;
ifp->if_ioctl = epioctl;
ifp->if_watchdog = epwatchdog;
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(&sc->sc_arpcom.ac_if.if_bpf, ifp, DLT_EN10MB,
sizeof(struct ether_header));
#endif
sc->tx_start_thresh = 20; /* probably a good starting point. */
sc->sc_ih.ih_fun = epintr;
sc->sc_ih.ih_arg = sc;
sc->sc_ih.ih_level = IPL_NET;
intr_establish(ia->ia_irq, &sc->sc_ih);
}
/*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
static void
epinit(sc)
register struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int s, i;
/* Address not known. */
if (ifp->if_addrlist == 0)
return;
s = splimp();
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
GO_WINDOW(0);
outw(BASE + EP_W0_CONFIG_CTRL, 0); /* Disable the card */
outw(BASE + EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ); /* Enable the card */
GO_WINDOW(2);
for (i = 0; i < 6; i++) /* Reload the ether_addr. */
outb(BASE + EP_W2_ADDR_0 + i, sc->sc_arpcom.ac_enaddr[i]);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
GO_WINDOW(1); /* Window 1 is operating window */
for (i = 0; i < 31; i++)
inb(BASE + EP_W1_TX_STATUS);
outw(BASE + EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
outw(BASE + EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
/*
* Attempt to get rid of any stray interrupts that occured during
* configuration. On the i386 this isn't possible because one may
* already be queued. However, a single stray interrupt is
* unimportant.
*/
outw(BASE + EP_COMMAND, ACK_INTR | 0xff);
epsetfilter(sc);
epsetlink(sc);
outw(BASE + EP_COMMAND, RX_ENABLE);
outw(BASE + EP_COMMAND, TX_ENABLE);
epmbuffill(sc);
/* Interface is now `running', with no output active. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
epstart(ifp);
splx(s);
}
static void
epsetfilter(sc)
register struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
GO_WINDOW(1); /* Window 1 is operating window */
outw(BASE + EP_COMMAND, SET_RX_FILTER |
FIL_INDIVIDUAL | FIL_BRDCST |
((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
}
static void
epsetlink(sc)
register struct ep_softc *sc;
{
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
/*
* you can `ifconfig (link0|-link0) ep0' to get the following
* behaviour:
* -link0 disable AUI/UTP. enable BNC.
* link0 disable BNC. enable AUI.
* link1 if the card has a UTP connector, and link0 is
* set too, then you get the UTP port.
*/
GO_WINDOW(4);
outw(BASE + EP_W4_MEDIA_TYPE, DISABLE_UTP);
GO_WINDOW(1);
if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
outw(BASE + EP_COMMAND, START_TRANSCEIVER);
delay(1000);
}
if (ifp->if_flags & IFF_LINK0) {
outw(BASE + EP_COMMAND, STOP_TRANSCEIVER);
delay(1000);
if((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
GO_WINDOW(4);
outw(BASE + EP_W4_MEDIA_TYPE, ENABLE_UTP);
GO_WINDOW(1);
}
}
}
/*
* Start outputting on the interface.
* Always called as splimp().
*/
static int
epstart(ifp)
struct ifnet *ifp;
{
register struct ep_softc *sc = epcd.cd_devs[ifp->if_unit];
struct mbuf *m, *m0;
int sh, len, pad;
if (sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE)
return;
startagain:
/* Sneak a peek at the next packet */
m0 = sc->sc_arpcom.ac_if.if_snd.ifq_head;
if (m0 == 0)
return;
#if 0
len = m0->m_pkthdr.len;
#else
for (len = 0, m = m0; m; m = m->m_next)
len += m->m_len;
#endif
pad = (4 - len) & 3;
/*
* The 3c509 automatically pads short packets to minimum ethernet
* length, but we drop packets that are too large. Perhaps we should
* truncate them instead?
*/
if (len + pad > ETHER_MAX_LEN) {
/* packet is obviously too large: toss it */
++sc->sc_arpcom.ac_if.if_oerrors;
IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m0);
m_freem(m0);
goto readcheck;
}
if (inw(BASE + EP_W1_FREE_TX) < len + pad + 4) {
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | (len + pad + 4));
/* not enough room in FIFO */
sc->sc_arpcom.ac_if.if_flags |= IFF_OACTIVE;
return;
} else {
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | 2044);
}
IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m0);
if (m0 == 0) /* not really needed */
return;
outw(BASE + EP_COMMAND, SET_TX_START_THRESH |
(len / 4 + sc->tx_start_thresh));
#if NBPFILTER > 0
if (sc->sc_arpcom.ac_if.if_bpf)
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
#endif
/*
* Do the output at splhigh() so that an interrupt from another device
* won't cause a FIFO underrun.
*/
sh = splhigh();
outw(BASE + EP_W1_TX_PIO_WR_1, len);
outw(BASE + EP_W1_TX_PIO_WR_1, 0xffff); /* Second dword meaningless */
if (sc->bus32bit) {
for (m = m0; m; ) {
if (m->m_len > 3)
outsl(BASE + EP_W1_TX_PIO_WR_1,
mtod(m, caddr_t), m->m_len / 4);
if (m->m_len & 3)
outsb(BASE + EP_W1_TX_PIO_WR_1,
mtod(m, caddr_t) + (m->m_len & ~3),
m->m_len & 3);
MFREE(m, m0);
m = m0;
}
} else {
for (m = m0; m; ) {
if (m->m_len > 1)
outsw(BASE + EP_W1_TX_PIO_WR_1,
mtod(m, caddr_t), m->m_len / 2);
if (m->m_len & 1)
outb(BASE + EP_W1_TX_PIO_WR_1,
*(mtod(m, caddr_t) + m->m_len - 1));
MFREE(m, m0);
m = m0;
}
}
while (pad--)
outb(BASE + EP_W1_TX_PIO_WR_1, 0);
splx(sh);
++sc->sc_arpcom.ac_if.if_opackets;
readcheck:
if ((inw(BASE + EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
/* We received a complete packet. */
u_short status = inw(BASE + EP_STATUS);
if ((status & S_INTR_LATCH) == 0) {
/*
* No interrupt, read the packet and continue
* Is this supposed to happen? Is my motherboard
* completely busted?
*/
epread(sc);
}
else
/* Got an interrupt, return so that it gets serviced. */
return;
}
else {
/* Check if we are stuck and reset [see XXX comment] */
if (epstatus(sc)) {
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: adapter reset\n",
sc->sc_dev.dv_xname);
epreset(sc);
}
}
goto startagain;
}
/*
* XXX: The 3c509 card can get in a mode where both the fifo status bit
* FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
* We detect this situation and we reset the adapter.
* It happens at times when there is a lot of broadcast traffic
* on the cable (once in a blue moon).
*/
static int
epstatus(sc)
register struct ep_softc *sc;
{
u_short fifost;
/*
* Check the FIFO status and act accordingly
*/
GO_WINDOW(4);
fifost = inw(BASE + EP_W4_FIFO_DIAG);
GO_WINDOW(1);
if (fifost & FIFOS_RX_UNDERRUN) {
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
epreset(sc);
return 0;
}
if (fifost & FIFOS_RX_STATUS_OVERRUN) {
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
return 1;
}
if (fifost & FIFOS_RX_OVERRUN) {
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
return 1;
}
if (fifost & FIFOS_TX_OVERRUN) {
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
epreset(sc);
return 0;
}
return 0;
}
static void
eptxstat(sc)
register struct ep_softc *sc;
{
int i;
/*
* We need to read+write TX_STATUS until we get a 0 status
* in order to turn off the interrupt flag.
*/
while ((i = inb(BASE + EP_W1_TX_STATUS)) & TXS_COMPLETE) {
outb(BASE + EP_W1_TX_STATUS, 0x0);
if (i & TXS_JABBER) {
++sc->sc_arpcom.ac_if.if_oerrors;
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: jabber (%x)\n",
sc->sc_dev.dv_xname, i);
epreset(sc);
} else if (i & TXS_UNDERRUN) {
++sc->sc_arpcom.ac_if.if_oerrors;
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: fifo underrun (%x) @%d\n",
sc->sc_dev.dv_xname, i,
sc->tx_start_thresh);
if (sc->tx_succ_ok < 100)
sc->tx_start_thresh = min(ETHER_MAX_LEN,
sc->tx_start_thresh + 20);
sc->tx_succ_ok = 0;
epreset(sc);
} else if (i & TXS_MAX_COLLISION) {
++sc->sc_arpcom.ac_if.if_collisions;
outw(BASE + EP_COMMAND, TX_ENABLE);
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
} else
sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
}
}
int
epintr(sc)
register struct ep_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_short status;
int ret = 0;
for (;;) {
status = inw(BASE + EP_STATUS);
if ((status & S_INTR_LATCH) == 0)
/* Not from this card; maybe a chained interrupt? */
return;
if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
break;
ret = 1;
/*
* Acknowledge any interrupts. It's important that we do this
* first, since there would otherwise be a race condition.
* Due to the i386 interrupt queueing, we may get spurious
* interrupts occasionally.
*/
outw(BASE + EP_COMMAND, ACK_INTR | status);
if (status & S_RX_COMPLETE)
epread(sc);
if (status & S_TX_AVAIL) {
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
epstart(&sc->sc_arpcom.ac_if);
}
if (status & S_CARD_FAILURE) {
printf("%s: adapter failure (%x)\n",
sc->sc_dev.dv_xname, status);
outw(BASE + EP_COMMAND, C_INTR_LATCH);
epreset(sc);
return (1);
}
if (status & S_TX_COMPLETE) {
eptxstat(sc);
epstart(ifp);
}
}
/* no more interrupts */
outw(BASE + EP_COMMAND, C_INTR_LATCH);
return (ret);
}
static void
epread(sc)
register struct ep_softc *sc;
{
struct ether_header *eh;
struct mbuf *mcur, *m, *m0;
u_short totlen, mlen, save_totlen;
int sh;
totlen = inw(BASE + EP_W1_RX_STATUS);
again:
m0 = 0;
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG) {
int err = totlen & ERR_MASK;
char *s = NULL;
if (totlen & ERR_INCOMPLETE)
s = "incomplete packet";
else if (err == ERR_OVERRUN)
s = "packet overrun";
else if (err == ERR_RUNT)
s = "runt packet";
else if (err == ERR_ALIGNMENT)
s = "bad alignment";
else if (err == ERR_CRC)
s = "bad crc";
else if (err == ERR_OVERSIZE)
s = "oversized packet";
else if (err == ERR_DRIBBLE)
s = "dribble bits";
if (s)
printf("%s: %s\n", sc->sc_dev.dv_xname, s);
}
if (totlen & ERR_INCOMPLETE)
return;
if (totlen & ERR_RX) {
++sc->sc_arpcom.ac_if.if_ierrors;
goto abort;
}
save_totlen = totlen &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = NULL;
if (m == 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
goto abort;
} else {
/* Convert one of our saved mbuf's. */
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
m->m_data = m->m_pktdat;
m->m_flags = M_PKTHDR;
}
m0 = m;
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
m0->m_data += EOFF;
/*
* We read the packet at splhigh() so that an interrupt from another
* device doesn't cause the card's buffer to overflow while we're
* reading it. We may still lose packets at other times.
*/
sh = splhigh();
/* Read what should be the header. */
insw(BASE + EP_W1_RX_PIO_RD_1,
mtod(m0, caddr_t), sizeof(struct ether_header) / 2);
m0->m_len = sizeof(struct ether_header);
totlen -= sizeof(struct ether_header);
eh = mtod(m0, struct ether_header *);
/* Read packet data. */
while (totlen > 0) {
mlen = min(totlen, M_TRAILINGSPACE(m));
if (mlen < 4) {
/* not enough room in this mbuf */
mcur = m;
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = 0;
if (m == 0) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
splx(sh);
goto abort;
}
} else {
timeout(epmbuffill, sc, 1);
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
}
if (totlen >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
mcur->m_next = m;
mlen = min(totlen, M_TRAILINGSPACE(m));
}
if (sc->bus32bit) {
if (mlen > 3) {
mlen &= ~3;
insl(BASE + EP_W1_RX_PIO_RD_1,
mtod(m, caddr_t) + m->m_len, mlen / 4);
} else
insb(BASE + EP_W1_RX_PIO_RD_1,
mtod(m, caddr_t) + m->m_len, mlen);
} else {
if (mlen > 1) {
mlen &= ~1;
insw(BASE + EP_W1_RX_PIO_RD_1,
mtod(m, caddr_t) + m->m_len, mlen / 2);
} else
*(mtod(m, caddr_t) + m->m_len) =
inb(BASE + EP_W1_RX_PIO_RD_1);
}
m->m_len += mlen;
totlen -= mlen;
}
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
splx(sh);
m0->m_pkthdr.len = save_totlen;
m0->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
++sc->sc_arpcom.ac_if.if_ipackets;
#if NBPFILTER > 0
if (sc->sc_arpcom.ac_if.if_bpf) {
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 &&
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m0);
return;
}
}
#endif
m_adj(m0, sizeof(struct ether_header));
ether_input(&sc->sc_arpcom.ac_if, eh, m0);
/*
* In periods of high traffic we can actually receive enough
* packets so that the fifo overrun bit will be set at this point,
* even though we just read a packet. In this case we
* are not going to receive any more interrupts. We check for
* this condition and read again until the fifo is not full.
* We could simplify this test by not using epstatus(), but
* rechecking the RX_STATUS register directly. This test could
* result in unnecessary looping in cases where there is a new
* packet but the fifo is not full, but it will not fix the
* stuck behavior.
*
* Even with this improvement, we still get packet overrun errors
* which are hurting performance. Maybe when I get some more time
* I'll modify epread() so that it can handle RX_EARLY interrupts.
*/
if (epstatus(sc)) {
totlen = inw(BASE + EP_W1_RX_STATUS);
/* Check if we are stuck and reset [see XXX comment] */
if (totlen & ERR_INCOMPLETE) {
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: adapter reset\n",
sc->sc_dev.dv_xname);
epreset(sc);
return;
}
goto again;
}
return;
abort:
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
if (m0)
m_freem(m0);
}
static int
epioctl(ifp, command, data)
register struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ep_softc *sc = epcd.cd_devs[ifp->if_unit];
register struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
epinit(sc); /* before arpwhohas */
/*
* See if another station has *our* IP address.
* i.e.: There is an address conflict! If a
* conflict exists, a message is sent to the
* console.
*/
sc->sc_arpcom.ac_ipaddr = IA_SIN(ifa)->sin_addr;
arpwhohas(&sc->sc_arpcom, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
else
bcopy(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
/* Set new address. */
epinit(sc);
break;
}
#endif
default:
epinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
epstop(sc);
epmbufempty(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
epinit(sc);
} else {
/*
* deal with flags changes:
* IFF_MULTICAST, IFF_PROMISC,
* IFF_LINK0, IFF_LINK1,
*/
epsetfilter(sc);
epsetlink(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
epreset(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
static void
epreset(sc)
struct ep_softc *sc;
{
int s;
s = splimp();
untimeout(epmbuffill, sc);
epstop(sc);
epinit(sc);
splx(s);
}
static int
epwatchdog(unit)
int unit;
{
register struct ep_softc *sc = epcd.cd_devs[unit];
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
epreset(sc);
return 0;
}
static void
epstop(sc)
register struct ep_softc *sc;
{
outw(BASE + EP_COMMAND, RX_DISABLE);
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
outw(BASE + EP_COMMAND, TX_DISABLE);
outw(BASE + EP_COMMAND, STOP_TRANSCEIVER);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
outw(BASE + EP_COMMAND, C_INTR_LATCH);
outw(BASE + EP_COMMAND, SET_RD_0_MASK);
outw(BASE + EP_COMMAND, SET_INTR_MASK);
outw(BASE + EP_COMMAND, SET_RX_FILTER);
}
/*
* We get eeprom data from the id_port given an offset into the
* eeprom. Basically; after the ID_sequence is sent to all of
* the cards; they enter the ID_CMD state where they will accept
* command requests. 0x80-0xbf loads the eeprom data. We then
* read the port 16 times and with every read; the cards check
* for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle;
* each card compares the data on the bus; if there is a difference
* then that card goes into ID_WAIT state again). In the meantime;
* one bit of data is returned in the AX register which is conveniently
* returned to us by inb(). Hence; we read 16 times getting one
* bit of data with each read.
*/
static u_short
epreadeeprom(id_port, offset)
int id_port;
int offset;
{
int i, data = 0;
outb(id_port, 0x80 + offset);
delay(1000);
for (i = 0; i < 16; i++)
data = (data << 1) | (inw(id_port) & 1);
return (data);
}
static int
epbusyeeprom(sc)
struct ep_softc *sc;
{
int i = 100, j;
while (i--) {
j = inw(BASE + EP_W0_EEPROM_COMMAND);
if (j & EEPROM_BUSY)
delay(100);
else
break;
}
if (!i) {
printf("\n%s: eeprom failed to come ready\n",
sc->sc_dev.dv_xname);
return (1);
}
if (j & EEPROM_TST_MODE) {
printf("\n%s: 3c509 is in test mode -- erase pencil mark!\n",
sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
static void
epmbuffill(sc)
struct ep_softc *sc;
{
int s, i;
s = splimp();
i = sc->last_mb;
do {
if (sc->mb[i] == NULL)
MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
if (sc->mb[i] == NULL)
break;
i = (i + 1) % MAX_MBS;
} while (i != sc->next_mb);
sc->last_mb = i;
splx(s);
}
static void
epmbufempty(sc)
struct ep_softc *sc;
{
int s, i;
s = splimp();
for (i = 0; i<MAX_MBS; i++) {
if (sc->mb[i]) {
m_freem(sc->mb[i]);
sc->mb[i] = NULL;
}
}
sc->last_mb = sc->next_mb = 0;
untimeout(epmbuffill, sc);
splx(s);
}