d1579b2d70
These functions are defined on unsigned int. The generic name min/max should not silently truncate to 32 bits on 64-bit systems. This is purely a name change -- no functional change intended. HOWEVER! Some subsystems have #define min(a, b) ((a) < (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b)) even though our standard name for that is MIN/MAX. Although these may invite multiple evaluation bugs, these do _not_ cause integer truncation. To avoid `fixing' these cases, I first changed the name in libkern, and then compile-tested every file where min/max occurred in order to confirm that it failed -- and thus confirm that nothing shadowed min/max -- before changing it. I have left a handful of bootloaders that are too annoying to compile-test, and some dead code: cobalt ews4800mips hp300 hppa ia64 luna68k vax acorn32/if_ie.c (not included in any kernels) macppc/if_gm.c (superseded by gem(4)) It should be easy to fix the fallout once identified -- this way of doing things fails safe, and the goal here, after all, is to _avoid_ silent integer truncations, not introduce them. Maybe one day we can reintroduce min/max as type-generic things that never silently truncate. But we should avoid doing that for a while, so that existing code has a chance to be detected by the compiler for conversion to uimin/uimax without changing the semantics until we can properly audit it all. (Who knows, maybe in some cases integer truncation is actually intended!)
1145 lines
28 KiB
C
1145 lines
28 KiB
C
/* $NetBSD: radix.c,v 1.48 2018/09/03 16:29:35 riastradh Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)radix.c 8.6 (Berkeley) 10/17/95
|
|
*/
|
|
|
|
/*
|
|
* Routines to build and maintain radix trees for routing lookups.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.48 2018/09/03 16:29:35 riastradh Exp $");
|
|
|
|
#ifndef _NET_RADIX_H_
|
|
#include <sys/param.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/kmem.h>
|
|
#ifdef _KERNEL
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_inet.h"
|
|
#endif
|
|
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#define M_DONTWAIT M_NOWAIT
|
|
#include <sys/domain.h>
|
|
#else
|
|
#include <stdlib.h>
|
|
#endif
|
|
#include <sys/syslog.h>
|
|
#include <net/radix.h>
|
|
#endif
|
|
|
|
typedef void (*rn_printer_t)(void *, const char *fmt, ...);
|
|
|
|
int max_keylen;
|
|
struct radix_mask *rn_mkfreelist;
|
|
struct radix_node_head *mask_rnhead;
|
|
static char *addmask_key;
|
|
static const char normal_chars[] =
|
|
{0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
|
|
static char *rn_zeros, *rn_ones;
|
|
|
|
#define rn_masktop (mask_rnhead->rnh_treetop)
|
|
|
|
static int rn_satisfies_leaf(const char *, struct radix_node *, int);
|
|
static int rn_lexobetter(const void *, const void *);
|
|
static struct radix_mask *rn_new_radix_mask(struct radix_node *,
|
|
struct radix_mask *);
|
|
static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
|
|
void *);
|
|
static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
|
|
void *);
|
|
static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
|
|
const char *);
|
|
|
|
#define SUBTREE_OPEN "[ "
|
|
#define SUBTREE_CLOSE " ]"
|
|
|
|
#ifdef RN_DEBUG
|
|
static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
|
|
#endif /* RN_DEBUG */
|
|
|
|
/*
|
|
* The data structure for the keys is a radix tree with one way
|
|
* branching removed. The index rn_b at an internal node n represents a bit
|
|
* position to be tested. The tree is arranged so that all descendants
|
|
* of a node n have keys whose bits all agree up to position rn_b - 1.
|
|
* (We say the index of n is rn_b.)
|
|
*
|
|
* There is at least one descendant which has a one bit at position rn_b,
|
|
* and at least one with a zero there.
|
|
*
|
|
* A route is determined by a pair of key and mask. We require that the
|
|
* bit-wise logical and of the key and mask to be the key.
|
|
* We define the index of a route to associated with the mask to be
|
|
* the first bit number in the mask where 0 occurs (with bit number 0
|
|
* representing the highest order bit).
|
|
*
|
|
* We say a mask is normal if every bit is 0, past the index of the mask.
|
|
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
|
|
* and m is a normal mask, then the route applies to every descendant of n.
|
|
* If the index(m) < rn_b, this implies the trailing last few bits of k
|
|
* before bit b are all 0, (and hence consequently true of every descendant
|
|
* of n), so the route applies to all descendants of the node as well.
|
|
*
|
|
* Similar logic shows that a non-normal mask m such that
|
|
* index(m) <= index(n) could potentially apply to many children of n.
|
|
* Thus, for each non-host route, we attach its mask to a list at an internal
|
|
* node as high in the tree as we can go.
|
|
*
|
|
* The present version of the code makes use of normal routes in short-
|
|
* circuiting an explicit mask and compare operation when testing whether
|
|
* a key satisfies a normal route, and also in remembering the unique leaf
|
|
* that governs a subtree.
|
|
*/
|
|
|
|
struct radix_node *
|
|
rn_search(
|
|
const void *v_arg,
|
|
struct radix_node *head)
|
|
{
|
|
const u_char * const v = v_arg;
|
|
struct radix_node *x;
|
|
|
|
for (x = head; x->rn_b >= 0;) {
|
|
if (x->rn_bmask & v[x->rn_off])
|
|
x = x->rn_r;
|
|
else
|
|
x = x->rn_l;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_search_m(
|
|
const void *v_arg,
|
|
struct radix_node *head,
|
|
const void *m_arg)
|
|
{
|
|
struct radix_node *x;
|
|
const u_char * const v = v_arg;
|
|
const u_char * const m = m_arg;
|
|
|
|
for (x = head; x->rn_b >= 0;) {
|
|
if ((x->rn_bmask & m[x->rn_off]) &&
|
|
(x->rn_bmask & v[x->rn_off]))
|
|
x = x->rn_r;
|
|
else
|
|
x = x->rn_l;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
int
|
|
rn_refines(
|
|
const void *m_arg,
|
|
const void *n_arg)
|
|
{
|
|
const char *m = m_arg;
|
|
const char *n = n_arg;
|
|
const char *lim = n + *(const u_char *)n;
|
|
const char *lim2 = lim;
|
|
int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
|
|
int masks_are_equal = 1;
|
|
|
|
if (longer > 0)
|
|
lim -= longer;
|
|
while (n < lim) {
|
|
if (*n & ~(*m))
|
|
return 0;
|
|
if (*n++ != *m++)
|
|
masks_are_equal = 0;
|
|
}
|
|
while (n < lim2)
|
|
if (*n++)
|
|
return 0;
|
|
if (masks_are_equal && (longer < 0))
|
|
for (lim2 = m - longer; m < lim2; )
|
|
if (*m++)
|
|
return 1;
|
|
return !masks_are_equal;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_lookup(
|
|
const void *v_arg,
|
|
const void *m_arg,
|
|
struct radix_node_head *head)
|
|
{
|
|
struct radix_node *x;
|
|
const char *netmask = NULL;
|
|
|
|
if (m_arg) {
|
|
if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
|
|
return NULL;
|
|
netmask = x->rn_key;
|
|
}
|
|
x = rn_match(v_arg, head);
|
|
if (x != NULL && netmask != NULL) {
|
|
while (x != NULL && x->rn_mask != netmask)
|
|
x = x->rn_dupedkey;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static int
|
|
rn_satisfies_leaf(
|
|
const char *trial,
|
|
struct radix_node *leaf,
|
|
int skip)
|
|
{
|
|
const char *cp = trial;
|
|
const char *cp2 = leaf->rn_key;
|
|
const char *cp3 = leaf->rn_mask;
|
|
const char *cplim;
|
|
int length = uimin(*(const u_char *)cp, *(const u_char *)cp2);
|
|
|
|
if (cp3 == 0)
|
|
cp3 = rn_ones;
|
|
else
|
|
length = uimin(length, *(const u_char *)cp3);
|
|
cplim = cp + length; cp3 += skip; cp2 += skip;
|
|
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
|
|
if ((*cp ^ *cp2) & *cp3)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_match(
|
|
const void *v_arg,
|
|
struct radix_node_head *head)
|
|
{
|
|
const char * const v = v_arg;
|
|
struct radix_node *t = head->rnh_treetop;
|
|
struct radix_node *top = t;
|
|
struct radix_node *x;
|
|
struct radix_node *saved_t;
|
|
const char *cp = v;
|
|
const char *cp2;
|
|
const char *cplim;
|
|
int off = t->rn_off;
|
|
int vlen = *(const u_char *)cp;
|
|
int matched_off;
|
|
int test, b, rn_b;
|
|
|
|
/*
|
|
* Open code rn_search(v, top) to avoid overhead of extra
|
|
* subroutine call.
|
|
*/
|
|
for (; t->rn_b >= 0; ) {
|
|
if (t->rn_bmask & cp[t->rn_off])
|
|
t = t->rn_r;
|
|
else
|
|
t = t->rn_l;
|
|
}
|
|
/*
|
|
* See if we match exactly as a host destination
|
|
* or at least learn how many bits match, for normal mask finesse.
|
|
*
|
|
* It doesn't hurt us to limit how many bytes to check
|
|
* to the length of the mask, since if it matches we had a genuine
|
|
* match and the leaf we have is the most specific one anyway;
|
|
* if it didn't match with a shorter length it would fail
|
|
* with a long one. This wins big for class B&C netmasks which
|
|
* are probably the most common case...
|
|
*/
|
|
if (t->rn_mask)
|
|
vlen = *(const u_char *)t->rn_mask;
|
|
cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
|
|
for (; cp < cplim; cp++, cp2++)
|
|
if (*cp != *cp2)
|
|
goto on1;
|
|
/*
|
|
* This extra grot is in case we are explicitly asked
|
|
* to look up the default. Ugh!
|
|
*/
|
|
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
|
|
t = t->rn_dupedkey;
|
|
return t;
|
|
on1:
|
|
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
|
|
for (b = 7; (test >>= 1) > 0;)
|
|
b--;
|
|
matched_off = cp - v;
|
|
b += matched_off << 3;
|
|
rn_b = -1 - b;
|
|
/*
|
|
* If there is a host route in a duped-key chain, it will be first.
|
|
*/
|
|
if ((saved_t = t)->rn_mask == 0)
|
|
t = t->rn_dupedkey;
|
|
for (; t; t = t->rn_dupedkey)
|
|
/*
|
|
* Even if we don't match exactly as a host,
|
|
* we may match if the leaf we wound up at is
|
|
* a route to a net.
|
|
*/
|
|
if (t->rn_flags & RNF_NORMAL) {
|
|
if (rn_b <= t->rn_b)
|
|
return t;
|
|
} else if (rn_satisfies_leaf(v, t, matched_off))
|
|
return t;
|
|
t = saved_t;
|
|
/* start searching up the tree */
|
|
do {
|
|
struct radix_mask *m;
|
|
t = t->rn_p;
|
|
m = t->rn_mklist;
|
|
if (m) {
|
|
/*
|
|
* If non-contiguous masks ever become important
|
|
* we can restore the masking and open coding of
|
|
* the search and satisfaction test and put the
|
|
* calculation of "off" back before the "do".
|
|
*/
|
|
do {
|
|
if (m->rm_flags & RNF_NORMAL) {
|
|
if (rn_b <= m->rm_b)
|
|
return m->rm_leaf;
|
|
} else {
|
|
off = uimin(t->rn_off, matched_off);
|
|
x = rn_search_m(v, t, m->rm_mask);
|
|
while (x && x->rn_mask != m->rm_mask)
|
|
x = x->rn_dupedkey;
|
|
if (x && rn_satisfies_leaf(v, x, off))
|
|
return x;
|
|
}
|
|
m = m->rm_mklist;
|
|
} while (m);
|
|
}
|
|
} while (t != top);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
|
|
const char *delim)
|
|
{
|
|
(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
|
|
delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
|
|
rn->rn_l, rn->rn_r);
|
|
}
|
|
|
|
#ifdef RN_DEBUG
|
|
int rn_debug = 1;
|
|
|
|
static void
|
|
rn_dbg_print(void *arg, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vlog(LOG_DEBUG, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
static void
|
|
rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
|
|
{
|
|
struct radix_node *dup, *rn;
|
|
const char *delim;
|
|
|
|
if (printer == NULL)
|
|
return;
|
|
|
|
rn = rn_walkfirst(h->rnh_treetop, printer, arg);
|
|
for (;;) {
|
|
/* Process leaves */
|
|
delim = "";
|
|
for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
|
|
if ((dup->rn_flags & RNF_ROOT) != 0)
|
|
continue;
|
|
rn_nodeprint(dup, printer, arg, delim);
|
|
delim = ", ";
|
|
}
|
|
rn = rn_walknext(rn, printer, arg);
|
|
if (rn->rn_flags & RNF_ROOT)
|
|
return;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
|
|
#endif /* RN_DEBUG */
|
|
|
|
struct radix_node *
|
|
rn_newpair(
|
|
const void *v,
|
|
int b,
|
|
struct radix_node nodes[2])
|
|
{
|
|
struct radix_node *tt = nodes;
|
|
struct radix_node *t = tt + 1;
|
|
t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
|
|
t->rn_l = tt; t->rn_off = b >> 3;
|
|
tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
|
|
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
|
|
return t;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_insert(
|
|
const void *v_arg,
|
|
struct radix_node_head *head,
|
|
int *dupentry,
|
|
struct radix_node nodes[2])
|
|
{
|
|
struct radix_node *top = head->rnh_treetop;
|
|
struct radix_node *t = rn_search(v_arg, top);
|
|
struct radix_node *tt;
|
|
const char *v = v_arg;
|
|
int head_off = top->rn_off;
|
|
int vlen = *((const u_char *)v);
|
|
const char *cp = v + head_off;
|
|
int b;
|
|
/*
|
|
* Find first bit at which v and t->rn_key differ
|
|
*/
|
|
{
|
|
const char *cp2 = t->rn_key + head_off;
|
|
const char *cplim = v + vlen;
|
|
int cmp_res;
|
|
|
|
while (cp < cplim)
|
|
if (*cp2++ != *cp++)
|
|
goto on1;
|
|
*dupentry = 1;
|
|
return t;
|
|
on1:
|
|
*dupentry = 0;
|
|
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
|
|
for (b = (cp - v) << 3; cmp_res; b--)
|
|
cmp_res >>= 1;
|
|
}
|
|
{
|
|
struct radix_node *p, *x = top;
|
|
cp = v;
|
|
do {
|
|
p = x;
|
|
if (cp[x->rn_off] & x->rn_bmask)
|
|
x = x->rn_r;
|
|
else x = x->rn_l;
|
|
} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
|
|
#ifdef RN_DEBUG
|
|
if (rn_debug)
|
|
log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
|
|
#endif
|
|
t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
|
|
if ((cp[p->rn_off] & p->rn_bmask) == 0)
|
|
p->rn_l = t;
|
|
else
|
|
p->rn_r = t;
|
|
x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
|
|
if ((cp[t->rn_off] & t->rn_bmask) == 0) {
|
|
t->rn_r = x;
|
|
} else {
|
|
t->rn_r = tt; t->rn_l = x;
|
|
}
|
|
#ifdef RN_DEBUG
|
|
if (rn_debug) {
|
|
log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
|
|
traverse(head, p);
|
|
}
|
|
#endif /* RN_DEBUG */
|
|
}
|
|
return tt;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_addmask(
|
|
const void *n_arg,
|
|
int search,
|
|
int skip)
|
|
{
|
|
const char *netmask = n_arg;
|
|
const char *cp;
|
|
const char *cplim;
|
|
struct radix_node *x;
|
|
struct radix_node *saved_x;
|
|
int b = 0, mlen, j;
|
|
int maskduplicated, m0, isnormal;
|
|
static int last_zeroed = 0;
|
|
|
|
if ((mlen = *(const u_char *)netmask) > max_keylen)
|
|
mlen = max_keylen;
|
|
if (skip == 0)
|
|
skip = 1;
|
|
if (mlen <= skip)
|
|
return mask_rnhead->rnh_nodes;
|
|
if (skip > 1)
|
|
memmove(addmask_key + 1, rn_ones + 1, skip - 1);
|
|
if ((m0 = mlen) > skip)
|
|
memmove(addmask_key + skip, netmask + skip, mlen - skip);
|
|
/*
|
|
* Trim trailing zeroes.
|
|
*/
|
|
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
|
|
cp--;
|
|
mlen = cp - addmask_key;
|
|
if (mlen <= skip) {
|
|
if (m0 >= last_zeroed)
|
|
last_zeroed = mlen;
|
|
return mask_rnhead->rnh_nodes;
|
|
}
|
|
if (m0 < last_zeroed)
|
|
memset(addmask_key + m0, 0, last_zeroed - m0);
|
|
*addmask_key = last_zeroed = mlen;
|
|
x = rn_search(addmask_key, rn_masktop);
|
|
if (memcmp(addmask_key, x->rn_key, mlen) != 0)
|
|
x = 0;
|
|
if (x || search)
|
|
return x;
|
|
R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
|
|
if ((saved_x = x) == NULL)
|
|
return NULL;
|
|
memset(x, 0, max_keylen + 2 * sizeof (*x));
|
|
cp = netmask = (void *)(x + 2);
|
|
memmove(x + 2, addmask_key, mlen);
|
|
x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
|
|
if (maskduplicated) {
|
|
log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
|
|
Free(saved_x);
|
|
return x;
|
|
}
|
|
/*
|
|
* Calculate index of mask, and check for normalcy.
|
|
*/
|
|
cplim = netmask + mlen; isnormal = 1;
|
|
for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
|
|
cp++;
|
|
if (cp != cplim) {
|
|
for (j = 0x80; (j & *cp) != 0; j >>= 1)
|
|
b++;
|
|
if (*cp != normal_chars[b] || cp != (cplim - 1))
|
|
isnormal = 0;
|
|
}
|
|
b += (cp - netmask) << 3;
|
|
x->rn_b = -1 - b;
|
|
if (isnormal)
|
|
x->rn_flags |= RNF_NORMAL;
|
|
return x;
|
|
}
|
|
|
|
static int /* XXX: arbitrary ordering for non-contiguous masks */
|
|
rn_lexobetter(
|
|
const void *m_arg,
|
|
const void *n_arg)
|
|
{
|
|
const u_char *mp = m_arg;
|
|
const u_char *np = n_arg;
|
|
const u_char *lim;
|
|
|
|
if (*mp > *np)
|
|
return 1; /* not really, but need to check longer one first */
|
|
if (*mp == *np)
|
|
for (lim = mp + *mp; mp < lim;)
|
|
if (*mp++ > *np++)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static struct radix_mask *
|
|
rn_new_radix_mask(
|
|
struct radix_node *tt,
|
|
struct radix_mask *next)
|
|
{
|
|
struct radix_mask *m;
|
|
|
|
MKGet(m);
|
|
if (m == NULL) {
|
|
log(LOG_ERR, "Mask for route not entered\n");
|
|
return NULL;
|
|
}
|
|
memset(m, 0, sizeof(*m));
|
|
m->rm_b = tt->rn_b;
|
|
m->rm_flags = tt->rn_flags;
|
|
if (tt->rn_flags & RNF_NORMAL)
|
|
m->rm_leaf = tt;
|
|
else
|
|
m->rm_mask = tt->rn_mask;
|
|
m->rm_mklist = next;
|
|
tt->rn_mklist = m;
|
|
return m;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_addroute(
|
|
const void *v_arg,
|
|
const void *n_arg,
|
|
struct radix_node_head *head,
|
|
struct radix_node treenodes[2])
|
|
{
|
|
const char *v = v_arg, *netmask = n_arg;
|
|
struct radix_node *t, *x = NULL, *tt;
|
|
struct radix_node *saved_tt, *top = head->rnh_treetop;
|
|
short b = 0, b_leaf = 0;
|
|
int keyduplicated;
|
|
const char *mmask;
|
|
struct radix_mask *m, **mp;
|
|
|
|
/*
|
|
* In dealing with non-contiguous masks, there may be
|
|
* many different routes which have the same mask.
|
|
* We will find it useful to have a unique pointer to
|
|
* the mask to speed avoiding duplicate references at
|
|
* nodes and possibly save time in calculating indices.
|
|
*/
|
|
if (netmask != NULL) {
|
|
if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
|
|
return NULL;
|
|
b_leaf = x->rn_b;
|
|
b = -1 - x->rn_b;
|
|
netmask = x->rn_key;
|
|
}
|
|
/*
|
|
* Deal with duplicated keys: attach node to previous instance
|
|
*/
|
|
saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
|
|
if (keyduplicated) {
|
|
for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
|
|
if (tt->rn_mask == netmask)
|
|
return NULL;
|
|
if (netmask == NULL ||
|
|
(tt->rn_mask != NULL &&
|
|
(b_leaf < tt->rn_b || /* index(netmask) > node */
|
|
rn_refines(netmask, tt->rn_mask) ||
|
|
rn_lexobetter(netmask, tt->rn_mask))))
|
|
break;
|
|
}
|
|
/*
|
|
* If the mask is not duplicated, we wouldn't
|
|
* find it among possible duplicate key entries
|
|
* anyway, so the above test doesn't hurt.
|
|
*
|
|
* We sort the masks for a duplicated key the same way as
|
|
* in a masklist -- most specific to least specific.
|
|
* This may require the unfortunate nuisance of relocating
|
|
* the head of the list.
|
|
*
|
|
* We also reverse, or doubly link the list through the
|
|
* parent pointer.
|
|
*/
|
|
if (tt == saved_tt) {
|
|
struct radix_node *xx = x;
|
|
/* link in at head of list */
|
|
(tt = treenodes)->rn_dupedkey = t;
|
|
tt->rn_flags = t->rn_flags;
|
|
tt->rn_p = x = t->rn_p;
|
|
t->rn_p = tt;
|
|
if (x->rn_l == t)
|
|
x->rn_l = tt;
|
|
else
|
|
x->rn_r = tt;
|
|
saved_tt = tt;
|
|
x = xx;
|
|
} else {
|
|
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
|
|
t->rn_dupedkey = tt;
|
|
tt->rn_p = t;
|
|
if (tt->rn_dupedkey)
|
|
tt->rn_dupedkey->rn_p = tt;
|
|
}
|
|
tt->rn_key = v;
|
|
tt->rn_b = -1;
|
|
tt->rn_flags = RNF_ACTIVE;
|
|
}
|
|
/*
|
|
* Put mask in tree.
|
|
*/
|
|
if (netmask != NULL) {
|
|
tt->rn_mask = netmask;
|
|
tt->rn_b = x->rn_b;
|
|
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
|
|
}
|
|
t = saved_tt->rn_p;
|
|
if (keyduplicated)
|
|
goto on2;
|
|
b_leaf = -1 - t->rn_b;
|
|
if (t->rn_r == saved_tt)
|
|
x = t->rn_l;
|
|
else
|
|
x = t->rn_r;
|
|
/* Promote general routes from below */
|
|
if (x->rn_b < 0) {
|
|
for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
|
|
if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
|
|
x->rn_mklist == NULL) {
|
|
*mp = m = rn_new_radix_mask(x, NULL);
|
|
if (m != NULL)
|
|
mp = &m->rm_mklist;
|
|
}
|
|
}
|
|
} else if (x->rn_mklist != NULL) {
|
|
/*
|
|
* Skip over masks whose index is > that of new node
|
|
*/
|
|
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
|
|
if (m->rm_b >= b_leaf)
|
|
break;
|
|
t->rn_mklist = m;
|
|
*mp = NULL;
|
|
}
|
|
on2:
|
|
/* Add new route to highest possible ancestor's list */
|
|
if (netmask == NULL || b > t->rn_b)
|
|
return tt; /* can't lift at all */
|
|
b_leaf = tt->rn_b;
|
|
do {
|
|
x = t;
|
|
t = t->rn_p;
|
|
} while (b <= t->rn_b && x != top);
|
|
/*
|
|
* Search through routes associated with node to
|
|
* insert new route according to index.
|
|
* Need same criteria as when sorting dupedkeys to avoid
|
|
* double loop on deletion.
|
|
*/
|
|
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
|
|
if (m->rm_b < b_leaf)
|
|
continue;
|
|
if (m->rm_b > b_leaf)
|
|
break;
|
|
if (m->rm_flags & RNF_NORMAL) {
|
|
mmask = m->rm_leaf->rn_mask;
|
|
if (tt->rn_flags & RNF_NORMAL) {
|
|
log(LOG_ERR, "Non-unique normal route,"
|
|
" mask not entered\n");
|
|
return tt;
|
|
}
|
|
} else
|
|
mmask = m->rm_mask;
|
|
if (mmask == netmask) {
|
|
m->rm_refs++;
|
|
tt->rn_mklist = m;
|
|
return tt;
|
|
}
|
|
if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
|
|
break;
|
|
}
|
|
*mp = rn_new_radix_mask(tt, *mp);
|
|
return tt;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_delete1(
|
|
const void *v_arg,
|
|
const void *netmask_arg,
|
|
struct radix_node_head *head,
|
|
struct radix_node *rn)
|
|
{
|
|
struct radix_node *t, *p, *x, *tt;
|
|
struct radix_mask *m, *saved_m, **mp;
|
|
struct radix_node *dupedkey, *saved_tt, *top;
|
|
const char *v, *netmask;
|
|
int b, head_off, vlen;
|
|
|
|
v = v_arg;
|
|
netmask = netmask_arg;
|
|
x = head->rnh_treetop;
|
|
tt = rn_search(v, x);
|
|
head_off = x->rn_off;
|
|
vlen = *(const u_char *)v;
|
|
saved_tt = tt;
|
|
top = x;
|
|
if (tt == NULL ||
|
|
memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
|
|
return NULL;
|
|
/*
|
|
* Delete our route from mask lists.
|
|
*/
|
|
if (netmask != NULL) {
|
|
if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
|
|
return NULL;
|
|
netmask = x->rn_key;
|
|
while (tt->rn_mask != netmask)
|
|
if ((tt = tt->rn_dupedkey) == NULL)
|
|
return NULL;
|
|
}
|
|
if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
|
|
goto on1;
|
|
if (tt->rn_flags & RNF_NORMAL) {
|
|
if (m->rm_leaf != tt || m->rm_refs > 0) {
|
|
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
|
|
return NULL; /* dangling ref could cause disaster */
|
|
}
|
|
} else {
|
|
if (m->rm_mask != tt->rn_mask) {
|
|
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
|
|
goto on1;
|
|
}
|
|
if (--m->rm_refs >= 0)
|
|
goto on1;
|
|
}
|
|
b = -1 - tt->rn_b;
|
|
t = saved_tt->rn_p;
|
|
if (b > t->rn_b)
|
|
goto on1; /* Wasn't lifted at all */
|
|
do {
|
|
x = t;
|
|
t = t->rn_p;
|
|
} while (b <= t->rn_b && x != top);
|
|
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
|
|
if (m == saved_m) {
|
|
*mp = m->rm_mklist;
|
|
MKFree(m);
|
|
break;
|
|
}
|
|
}
|
|
if (m == NULL) {
|
|
log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
|
|
if (tt->rn_flags & RNF_NORMAL)
|
|
return NULL; /* Dangling ref to us */
|
|
}
|
|
on1:
|
|
/*
|
|
* Eliminate us from tree
|
|
*/
|
|
if (tt->rn_flags & RNF_ROOT)
|
|
return NULL;
|
|
#ifdef RN_DEBUG
|
|
if (rn_debug)
|
|
log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
|
|
#endif
|
|
t = tt->rn_p;
|
|
dupedkey = saved_tt->rn_dupedkey;
|
|
if (dupedkey != NULL) {
|
|
/*
|
|
* Here, tt is the deletion target, and
|
|
* saved_tt is the head of the dupedkey chain.
|
|
*/
|
|
if (tt == saved_tt) {
|
|
x = dupedkey;
|
|
x->rn_p = t;
|
|
if (t->rn_l == tt)
|
|
t->rn_l = x;
|
|
else
|
|
t->rn_r = x;
|
|
} else {
|
|
/* find node in front of tt on the chain */
|
|
for (x = p = saved_tt;
|
|
p != NULL && p->rn_dupedkey != tt;)
|
|
p = p->rn_dupedkey;
|
|
if (p != NULL) {
|
|
p->rn_dupedkey = tt->rn_dupedkey;
|
|
if (tt->rn_dupedkey != NULL)
|
|
tt->rn_dupedkey->rn_p = p;
|
|
} else
|
|
log(LOG_ERR, "rn_delete: couldn't find us\n");
|
|
}
|
|
t = tt + 1;
|
|
if (t->rn_flags & RNF_ACTIVE) {
|
|
*++x = *t;
|
|
p = t->rn_p;
|
|
if (p->rn_l == t)
|
|
p->rn_l = x;
|
|
else
|
|
p->rn_r = x;
|
|
x->rn_l->rn_p = x;
|
|
x->rn_r->rn_p = x;
|
|
}
|
|
goto out;
|
|
}
|
|
if (t->rn_l == tt)
|
|
x = t->rn_r;
|
|
else
|
|
x = t->rn_l;
|
|
p = t->rn_p;
|
|
if (p->rn_r == t)
|
|
p->rn_r = x;
|
|
else
|
|
p->rn_l = x;
|
|
x->rn_p = p;
|
|
/*
|
|
* Demote routes attached to us.
|
|
*/
|
|
if (t->rn_mklist == NULL)
|
|
;
|
|
else if (x->rn_b >= 0) {
|
|
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
|
|
;
|
|
*mp = t->rn_mklist;
|
|
} else {
|
|
/* If there are any key,mask pairs in a sibling
|
|
duped-key chain, some subset will appear sorted
|
|
in the same order attached to our mklist */
|
|
for (m = t->rn_mklist;
|
|
m != NULL && x != NULL;
|
|
x = x->rn_dupedkey) {
|
|
if (m == x->rn_mklist) {
|
|
struct radix_mask *mm = m->rm_mklist;
|
|
x->rn_mklist = NULL;
|
|
if (--(m->rm_refs) < 0)
|
|
MKFree(m);
|
|
m = mm;
|
|
}
|
|
}
|
|
if (m != NULL) {
|
|
log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
|
|
m, x);
|
|
}
|
|
}
|
|
/*
|
|
* We may be holding an active internal node in the tree.
|
|
*/
|
|
x = tt + 1;
|
|
if (t != x) {
|
|
*t = *x;
|
|
t->rn_l->rn_p = t;
|
|
t->rn_r->rn_p = t;
|
|
p = x->rn_p;
|
|
if (p->rn_l == x)
|
|
p->rn_l = t;
|
|
else
|
|
p->rn_r = t;
|
|
}
|
|
out:
|
|
#ifdef RN_DEBUG
|
|
if (rn_debug) {
|
|
log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
|
|
traverse(head, tt);
|
|
}
|
|
#endif /* RN_DEBUG */
|
|
tt->rn_flags &= ~RNF_ACTIVE;
|
|
tt[1].rn_flags &= ~RNF_ACTIVE;
|
|
return tt;
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_delete(
|
|
const void *v_arg,
|
|
const void *netmask_arg,
|
|
struct radix_node_head *head)
|
|
{
|
|
return rn_delete1(v_arg, netmask_arg, head, NULL);
|
|
}
|
|
|
|
static struct radix_node *
|
|
rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
|
|
{
|
|
/* If at right child go back up, otherwise, go right */
|
|
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
|
|
if (printer != NULL)
|
|
(*printer)(arg, SUBTREE_CLOSE);
|
|
rn = rn->rn_p;
|
|
}
|
|
if (printer)
|
|
rn_nodeprint(rn->rn_p, printer, arg, "");
|
|
/* Find the next *leaf* since next node might vanish, too */
|
|
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
|
|
if (printer != NULL)
|
|
(*printer)(arg, SUBTREE_OPEN);
|
|
rn = rn->rn_l;
|
|
}
|
|
return rn;
|
|
}
|
|
|
|
static struct radix_node *
|
|
rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
|
|
{
|
|
/* First time through node, go left */
|
|
while (rn->rn_b >= 0) {
|
|
if (printer != NULL)
|
|
(*printer)(arg, SUBTREE_OPEN);
|
|
rn = rn->rn_l;
|
|
}
|
|
return rn;
|
|
}
|
|
|
|
int
|
|
rn_walktree(
|
|
struct radix_node_head *h,
|
|
int (*f)(struct radix_node *, void *),
|
|
void *w)
|
|
{
|
|
int error;
|
|
struct radix_node *base, *next, *rn;
|
|
/*
|
|
* This gets complicated because we may delete the node
|
|
* while applying the function f to it, so we need to calculate
|
|
* the successor node in advance.
|
|
*/
|
|
rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
|
|
for (;;) {
|
|
base = rn;
|
|
next = rn_walknext(rn, NULL, NULL);
|
|
/* Process leaves */
|
|
while ((rn = base) != NULL) {
|
|
base = rn->rn_dupedkey;
|
|
if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
|
|
return error;
|
|
}
|
|
rn = next;
|
|
if (rn->rn_flags & RNF_ROOT)
|
|
return 0;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
struct radix_node *
|
|
rn_search_matched(struct radix_node_head *h,
|
|
int (*matcher)(struct radix_node *, void *), void *w)
|
|
{
|
|
bool matched;
|
|
struct radix_node *base, *next, *rn;
|
|
/*
|
|
* This gets complicated because we may delete the node
|
|
* while applying the function f to it, so we need to calculate
|
|
* the successor node in advance.
|
|
*/
|
|
rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
|
|
for (;;) {
|
|
base = rn;
|
|
next = rn_walknext(rn, NULL, NULL);
|
|
/* Process leaves */
|
|
while ((rn = base) != NULL) {
|
|
base = rn->rn_dupedkey;
|
|
if (!(rn->rn_flags & RNF_ROOT)) {
|
|
matched = (*matcher)(rn, w);
|
|
if (matched)
|
|
return rn;
|
|
}
|
|
}
|
|
rn = next;
|
|
if (rn->rn_flags & RNF_ROOT)
|
|
return NULL;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
struct delayinit {
|
|
void **head;
|
|
int off;
|
|
SLIST_ENTRY(delayinit) entries;
|
|
};
|
|
static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads);
|
|
static int radix_initialized;
|
|
|
|
/*
|
|
* Initialize a radix tree once radix is initialized. Only for bootstrap.
|
|
* Assume that no concurrency protection is necessary at this stage.
|
|
*/
|
|
void
|
|
rn_delayedinit(void **head, int off)
|
|
{
|
|
struct delayinit *di;
|
|
|
|
if (radix_initialized)
|
|
return;
|
|
|
|
di = kmem_alloc(sizeof(*di), KM_SLEEP);
|
|
di->head = head;
|
|
di->off = off;
|
|
SLIST_INSERT_HEAD(&delayinits, di, entries);
|
|
}
|
|
|
|
int
|
|
rn_inithead(void **head, int off)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
|
|
if (*head != NULL)
|
|
return 1;
|
|
R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
|
|
if (rnh == NULL)
|
|
return 0;
|
|
*head = rnh;
|
|
return rn_inithead0(rnh, off);
|
|
}
|
|
|
|
int
|
|
rn_inithead0(struct radix_node_head *rnh, int off)
|
|
{
|
|
struct radix_node *t;
|
|
struct radix_node *tt;
|
|
struct radix_node *ttt;
|
|
|
|
memset(rnh, 0, sizeof(*rnh));
|
|
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
|
|
ttt = rnh->rnh_nodes + 2;
|
|
t->rn_r = ttt;
|
|
t->rn_p = t;
|
|
tt = t->rn_l;
|
|
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
|
|
tt->rn_b = -1 - off;
|
|
*ttt = *tt;
|
|
ttt->rn_key = rn_ones;
|
|
rnh->rnh_addaddr = rn_addroute;
|
|
rnh->rnh_deladdr = rn_delete;
|
|
rnh->rnh_matchaddr = rn_match;
|
|
rnh->rnh_lookup = rn_lookup;
|
|
rnh->rnh_treetop = t;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
rn_init(void)
|
|
{
|
|
char *cp, *cplim;
|
|
struct delayinit *di;
|
|
#ifdef _KERNEL
|
|
struct domain *dp;
|
|
|
|
if (radix_initialized)
|
|
panic("radix already initialized");
|
|
radix_initialized = 1;
|
|
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_maxrtkey > max_keylen)
|
|
max_keylen = dp->dom_maxrtkey;
|
|
}
|
|
#endif
|
|
if (max_keylen == 0) {
|
|
log(LOG_ERR,
|
|
"rn_init: radix functions require max_keylen be set\n");
|
|
return;
|
|
}
|
|
|
|
R_Malloc(rn_zeros, char *, 3 * max_keylen);
|
|
if (rn_zeros == NULL)
|
|
panic("rn_init");
|
|
memset(rn_zeros, 0, 3 * max_keylen);
|
|
rn_ones = cp = rn_zeros + max_keylen;
|
|
addmask_key = cplim = rn_ones + max_keylen;
|
|
while (cp < cplim)
|
|
*cp++ = -1;
|
|
if (rn_inithead((void *)&mask_rnhead, 0) == 0)
|
|
panic("rn_init 2");
|
|
|
|
while ((di = SLIST_FIRST(&delayinits)) != NULL) {
|
|
if (!rn_inithead(di->head, di->off))
|
|
panic("delayed rn_inithead failed");
|
|
SLIST_REMOVE_HEAD(&delayinits, entries);
|
|
kmem_free(di, sizeof(*di));
|
|
}
|
|
}
|