NetBSD/sys/arch/evbppc/mpc85xx/machdep.c

1562 lines
42 KiB
C

/* $NetBSD: machdep.c,v 1.41 2015/01/30 15:04:35 nonaka Exp $ */
/*-
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
*
* This material is based upon work supported by the Defense Advanced Research
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
* Contract No. N66001-09-C-2073.
* Approved for Public Release, Distribution Unlimited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetSBD$");
#include "opt_altivec.h"
#include "opt_ddb.h"
#include "opt_mpc85xx.h"
#include "opt_multiprocessor.h"
#include "opt_pci.h"
#include "gpio.h"
#include "pci.h"
#define DDRC_PRIVATE
#define GLOBAL_PRIVATE
#define L2CACHE_PRIVATE
#define _POWERPC_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/msgbuf.h>
#include <sys/tty.h>
#include <sys/kcore.h>
#include <sys/bitops.h>
#include <sys/bus.h>
#include <sys/extent.h>
#include <sys/reboot.h>
#include <sys/module.h>
#include <uvm/uvm_extern.h>
#include <prop/proplib.h>
#include <dev/cons.h>
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#include <net/if.h>
#include <net/if_media.h>
#include <dev/mii/miivar.h>
#include <powerpc/pcb.h>
#include <powerpc/spr.h>
#include <powerpc/booke/spr.h>
#include <powerpc/booke/cpuvar.h>
#include <powerpc/booke/e500reg.h>
#include <powerpc/booke/e500var.h>
#include <powerpc/booke/etsecreg.h>
#include <powerpc/booke/openpicreg.h>
#ifdef CADMUS
#include <evbppc/mpc85xx/cadmusreg.h>
#endif
#ifdef PIXIS
#include <evbppc/mpc85xx/pixisreg.h>
#endif
struct uboot_bdinfo {
uint32_t bd_memstart;
uint32_t bd_memsize;
uint32_t bd_flashstart;
uint32_t bd_flashsize;
/*10*/ uint32_t bd_flashoffset;
uint32_t bd_sramstart;
uint32_t bd_sramsize;
uint32_t bd_immrbase;
/*20*/ uint32_t bd_bootflags;
uint32_t bd_ipaddr;
uint8_t bd_etheraddr[6];
uint16_t bd_ethspeed;
/*30*/ uint32_t bd_intfreq;
uint32_t bd_cpufreq;
uint32_t bd_baudrate;
/*3c*/ uint8_t bd_etheraddr1[6];
/*42*/ uint8_t bd_etheraddr2[6];
/*48*/ uint8_t bd_etheraddr3[6];
/*4e*/ uint16_t bd_pad;
};
char root_string[16];
/*
* booke kernels need to set module_machine to this for modules to work.
*/
char module_machine_booke[] = "powerpc-booke";
void initppc(vaddr_t, vaddr_t, void *, void *, char *, char *);
#define MEMREGIONS 4
phys_ram_seg_t physmemr[MEMREGIONS]; /* All memory */
phys_ram_seg_t availmemr[2*MEMREGIONS]; /* Available memory */
static u_int nmemr;
#ifndef CONSFREQ
# define CONSFREQ -1 /* inherit from firmware */
#endif
#ifndef CONSPEED
# define CONSPEED 115200
#endif
#ifndef CONMODE
# define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8)
#endif
#ifndef CONSADDR
# define CONSADDR DUART2_BASE
#endif
int comcnfreq = CONSFREQ;
int comcnspeed = CONSPEED;
tcflag_t comcnmode = CONMODE;
bus_addr_t comcnaddr = (bus_addr_t)CONSADDR;
#if NPCI > 0
struct extent *pcimem_ex;
struct extent *pciio_ex;
#endif
struct powerpc_bus_space gur_bst = {
.pbs_flags = _BUS_SPACE_BIG_ENDIAN|_BUS_SPACE_MEM_TYPE,
.pbs_offset = GUR_BASE,
.pbs_limit = GUR_SIZE,
};
struct powerpc_bus_space gur_le_bst = {
.pbs_flags = _BUS_SPACE_LITTLE_ENDIAN|_BUS_SPACE_MEM_TYPE,
.pbs_offset = GUR_BASE,
.pbs_limit = GUR_SIZE,
};
const bus_space_handle_t gur_bsh = (bus_space_handle_t)(uintptr_t)(GUR_BASE);
#if defined(SYS_CLK)
static uint64_t e500_sys_clk = SYS_CLK;
#endif
#ifdef CADMUS
static uint8_t cadmus_pci;
static uint8_t cadmus_csr;
#ifndef SYS_CLK
static uint64_t e500_sys_clk = 33333333; /* 33.333333Mhz */
#endif
#elif defined(PIXIS)
static const uint32_t pixis_spd_map[8] = {
[PX_SPD_33MHZ] = 33333333,
[PX_SPD_40MHZ] = 40000000,
[PX_SPD_50MHZ] = 50000000,
[PX_SPD_66MHZ] = 66666666,
[PX_SPD_83MHZ] = 83333333,
[PX_SPD_100MHZ] = 100000000,
[PX_SPD_133MHZ] = 133333333,
[PX_SPD_166MHZ] = 166666667,
};
static uint8_t pixis_spd;
#ifndef SYS_CLK
static uint64_t e500_sys_clk;
#endif
#elif !defined(SYS_CLK)
static uint64_t e500_sys_clk = 66666667; /* 66.666667Mhz */
#endif
static int e500_cngetc(dev_t);
static void e500_cnputc(dev_t, int);
static struct consdev e500_earlycons = {
.cn_getc = e500_cngetc,
.cn_putc = e500_cnputc,
.cn_pollc = nullcnpollc,
};
/*
* List of port-specific devices to attach to the processor local bus.
*/
static const struct cpunode_locators mpc8548_cpunode_locs[] = {
{ "cpu", 0, 0, 0, 0, { 0 }, 0, /* not a real device */
{ 0xffff, SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
#if defined(MPC8572) || defined(P2020) || defined(P1025) \
|| defined(P1023)
{ "cpu", 0, 0, 1, 0, { 0 }, 0, /* not a real device */
{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
{ "cpu", 0, 0, 2, 0, { 0 }, 0, /* not a real device */
{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
#endif
{ "wdog" }, /* not a real device */
{ "duart", DUART1_BASE, 2*DUART_SIZE, 0,
1, { ISOURCE_DUART },
1 + ilog2(DEVDISR_DUART) },
{ "tsec", ETSEC1_BASE, ETSEC_SIZE, 1,
3, { ISOURCE_ETSEC1_TX, ISOURCE_ETSEC1_RX, ISOURCE_ETSEC1_ERR },
1 + ilog2(DEVDISR_TSEC1),
{ 0xffff, SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
#if defined(P1025)
{ "mdio", ETSEC1_BASE, ETSEC_SIZE, 1,
0, { },
1 + ilog2(DEVDISR_TSEC1),
{ SVR_P1025v1 >> 16 } },
{ "tsec", ETSEC1_G0_BASE, ETSEC_SIZE, 1,
3, { ISOURCE_ETSEC1_TX, ISOURCE_ETSEC1_RX, ISOURCE_ETSEC1_ERR },
1 + ilog2(DEVDISR_TSEC1),
{ SVR_P1025v1 >> 16 } },
#if 0
{ "tsec", ETSEC1_G1_BASE, ETSEC_SIZE, 1,
3, { ISOURCE_ETSEC1_G1_TX, ISOURCE_ETSEC1_G1_RX,
ISOURCE_ETSEC1_G1_ERR },
1 + ilog2(DEVDISR_TSEC1),
{ SVR_P1025v1 >> 16 } },
#endif
#endif
#if defined(MPC8548) || defined(MPC8555) || defined(MPC8572) \
|| defined(P2020)
{ "tsec", ETSEC2_BASE, ETSEC_SIZE, 2,
3, { ISOURCE_ETSEC2_TX, ISOURCE_ETSEC2_RX, ISOURCE_ETSEC2_ERR },
1 + ilog2(DEVDISR_TSEC2),
{ SVR_MPC8548v1 >> 16, SVR_MPC8555v1 >> 16,
SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16 } },
#endif
#if defined(P1025)
{ "mdio", ETSEC2_BASE, ETSEC_SIZE, 2,
0, { },
1 + ilog2(DEVDISR_TSEC2),
{ SVR_P1025v1 >> 16 } },
{ "tsec", ETSEC2_G0_BASE, ETSEC_SIZE, 2,
3, { ISOURCE_ETSEC2_TX, ISOURCE_ETSEC2_RX, ISOURCE_ETSEC2_ERR },
1 + ilog2(DEVDISR_TSEC2),
{ SVR_P1025v1 >> 16 } },
#if 0
{ "tsec", ETSEC2_G1_BASE, ETSEC_SIZE, 5,
3, { ISOURCE_ETSEC2_G1_TX, ISOURCE_ETSEC2_G1_RX,
ISOURCE_ETSEC2_G1_ERR },
1 + ilog2(DEVDISR_TSEC2),
{ SVR_P1025v1 >> 16 } },
#endif
#endif
#if defined(MPC8544) || defined(MPC8536)
{ "tsec", ETSEC3_BASE, ETSEC_SIZE, 2,
3, { ISOURCE_ETSEC3_TX, ISOURCE_ETSEC3_RX, ISOURCE_ETSEC3_ERR },
1 + ilog2(DEVDISR_TSEC3),
{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
#endif
#if defined(MPC8548) || defined(MPC8572) || defined(P2020)
{ "tsec", ETSEC3_BASE, ETSEC_SIZE, 3,
3, { ISOURCE_ETSEC3_TX, ISOURCE_ETSEC3_RX, ISOURCE_ETSEC3_ERR },
1 + ilog2(DEVDISR_TSEC3),
{ SVR_MPC8548v1 >> 16, SVR_MPC8572v1 >> 16,
SVR_P2020v2 >> 16 } },
#endif
#if defined(P1025)
{ "mdio", ETSEC3_BASE, ETSEC_SIZE, 3,
0, { },
1 + ilog2(DEVDISR_TSEC3),
{ SVR_P1025v1 >> 16 } },
{ "tsec", ETSEC3_G0_BASE, ETSEC_SIZE, 3,
3, { ISOURCE_ETSEC3_TX, ISOURCE_ETSEC3_RX, ISOURCE_ETSEC3_ERR },
1 + ilog2(DEVDISR_TSEC3),
{ SVR_P1025v1 >> 16 } },
#if 0
{ "tsec", ETSEC3_G1_BASE, ETSEC_SIZE, 3,
3, { ISOURCE_ETSEC3_G1_TX, ISOURCE_ETSEC3_G1_RX,
ISOURCE_ETSEC3_G1_ERR },
1 + ilog2(DEVDISR_TSEC3),
{ SVR_P1025v1 >> 16 } },
#endif
#endif
#if defined(MPC8548) || defined(MPC8572)
{ "tsec", ETSEC4_BASE, ETSEC_SIZE, 4,
3, { ISOURCE_ETSEC4_TX, ISOURCE_ETSEC4_RX, ISOURCE_ETSEC4_ERR },
1 + ilog2(DEVDISR_TSEC4),
{ SVR_MPC8548v1 >> 16, SVR_MPC8572v1 >> 16 } },
#endif
{ "diic", I2C1_BASE, 2*I2C_SIZE, 0,
1, { ISOURCE_I2C },
1 + ilog2(DEVDISR_I2C) },
/* MPC8572 doesn't have any GPIO */
{ "gpio", GLOBAL_BASE, GLOBAL_SIZE, 0,
1, { ISOURCE_GPIO },
0,
{ 0xffff, SVR_MPC8572v1 >> 16 } },
{ "ddrc", DDRC1_BASE, DDRC_SIZE, 0,
1, { ISOURCE_DDR },
1 + ilog2(DEVDISR_DDR_15),
{ 0xffff, SVR_MPC8572v1 >> 16, SVR_MPC8536v1 >> 16 } },
#if defined(MPC8536)
{ "ddrc", DDRC1_BASE, DDRC_SIZE, 0,
1, { ISOURCE_DDR },
1 + ilog2(DEVDISR_DDR_16),
{ SVR_MPC8536v1 >> 16 } },
#endif
#if defined(MPC8572)
{ "ddrc", DDRC1_BASE, DDRC_SIZE, 1,
1, { ISOURCE_DDR },
1 + ilog2(DEVDISR_DDR_15),
{ SVR_MPC8572v1 >> 16 } },
{ "ddrc", DDRC2_BASE, DDRC_SIZE, 2,
1, { ISOURCE_DDR },
1 + ilog2(DEVDISR_DDR2_14),
{ SVR_MPC8572v1 >> 16 } },
#endif
{ "lbc", LBC_BASE, LBC_SIZE, 0,
1, { ISOURCE_LBC },
1 + ilog2(DEVDISR_LBC) },
#if defined(MPC8544) || defined(MPC8536)
{ "pcie", PCIE1_BASE, PCI_SIZE, 1,
1, { ISOURCE_PCIEX },
1 + ilog2(DEVDISR_PCIE),
{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
{ "pcie", PCIE2_MPC8544_BASE, PCI_SIZE, 2,
1, { ISOURCE_PCIEX2 },
1 + ilog2(DEVDISR_PCIE2),
{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
{ "pcie", PCIE3_MPC8544_BASE, PCI_SIZE, 3,
1, { ISOURCE_PCIEX3 },
1 + ilog2(DEVDISR_PCIE3),
{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
{ "pci", PCIX1_MPC8544_BASE, PCI_SIZE, 0,
1, { ISOURCE_PCI1 },
1 + ilog2(DEVDISR_PCI1),
{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
#endif
#ifdef MPC8548
{ "pcie", PCIE1_BASE, PCI_SIZE, 0,
1, { ISOURCE_PCIEX },
1 + ilog2(DEVDISR_PCIE),
{ SVR_MPC8548v1 >> 16 }, },
{ "pci", PCIX1_MPC8548_BASE, PCI_SIZE, 1,
1, { ISOURCE_PCI1 },
1 + ilog2(DEVDISR_PCI1),
{ SVR_MPC8548v1 >> 16 }, },
{ "pci", PCIX2_MPC8548_BASE, PCI_SIZE, 2,
1, { ISOURCE_PCI2 },
1 + ilog2(DEVDISR_PCI2),
{ SVR_MPC8548v1 >> 16 }, },
#endif
#if defined(MPC8572) || defined(P1025) || defined(P2020) \
|| defined(P1023)
{ "pcie", PCIE1_BASE, PCI_SIZE, 1,
1, { ISOURCE_PCIEX },
1 + ilog2(DEVDISR_PCIE),
{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
{ "pcie", PCIE2_MPC8572_BASE, PCI_SIZE, 2,
1, { ISOURCE_PCIEX2 },
1 + ilog2(DEVDISR_PCIE2),
{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
#endif
#if defined(MPC8572) || defined(P2020) || defined(_P1023)
{ "pcie", PCIE3_MPC8572_BASE, PCI_SIZE, 3,
1, { ISOURCE_PCIEX3_MPC8572 },
1 + ilog2(DEVDISR_PCIE3),
{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1023v1 >> 16 } },
#endif
#if defined(MPC8536) || defined(P1025) || defined(P2020) \
|| defined(P1023)
{ "ehci", USB1_BASE, USB_SIZE, 1,
1, { ISOURCE_USB1 },
1 + ilog2(DEVDISR_USB1),
{ SVR_MPC8536v1 >> 16, SVR_P2020v2 >> 16,
SVR_P1025v1 >> 16, SVR_P1023v1 >> 16 } },
#endif
#ifdef MPC8536
{ "ehci", USB2_BASE, USB_SIZE, 2,
1, { ISOURCE_USB2 },
1 + ilog2(DEVDISR_USB2),
{ SVR_MPC8536v1 >> 16 }, },
{ "ehci", USB3_BASE, USB_SIZE, 3,
1, { ISOURCE_USB3 },
1 + ilog2(DEVDISR_USB3),
{ SVR_MPC8536v1 >> 16 }, },
{ "sata", SATA1_BASE, SATA_SIZE, 1,
1, { ISOURCE_SATA1 },
1 + ilog2(DEVDISR_SATA1),
{ SVR_MPC8536v1 >> 16 }, },
{ "sata", SATA2_BASE, SATA_SIZE, 2,
1, { ISOURCE_SATA2 },
1 + ilog2(DEVDISR_SATA2),
{ SVR_MPC8536v1 >> 16 }, },
{ "spi", SPI_BASE, SPI_SIZE, 0,
1, { ISOURCE_SPI },
1 + ilog2(DEVDISR_SPI_15),
{ SVR_MPC8536v1 >> 16 }, },
{ "sdhc", ESDHC_BASE, ESDHC_SIZE, 0,
1, { ISOURCE_ESDHC },
1 + ilog2(DEVDISR_ESDHC_12),
{ SVR_MPC8536v1 >> 16 }, },
#endif
#if defined(P1025) || defined(P2020) || defined(P1023)
{ "spi", SPI_BASE, SPI_SIZE, 0,
1, { ISOURCE_SPI },
1 + ilog2(DEVDISR_SPI_28),
{ SVR_P2020v2 >> 16, SVR_P1025v1 >> 16,
SVR_P1023v1 >> 16 }, },
#endif
#if defined(P1025) || defined(P2020)
{ "sdhc", ESDHC_BASE, ESDHC_SIZE, 0,
1, { ISOURCE_ESDHC },
1 + ilog2(DEVDISR_ESDHC_10),
{ SVR_P2020v2 >> 16, SVR_P1025v1 >> 16 }, },
#endif
//{ "sec", RNG_BASE, RNG_SIZE, 0, 0, },
{ NULL }
};
static int
e500_cngetc(dev_t dv)
{
volatile uint8_t * const com0addr = (void *)(GUR_BASE+CONSADDR);
if ((com0addr[com_lsr] & LSR_RXRDY) == 0)
return -1;
return com0addr[com_data] & 0xff;
}
static void
e500_cnputc(dev_t dv, int c)
{
volatile uint8_t * const com0addr = (void *)(GUR_BASE+CONSADDR);
int timo = 150000;
while ((com0addr[com_lsr] & LSR_TXRDY) == 0 && --timo > 0)
;
com0addr[com_data] = c;
__asm("mbar");
while ((com0addr[com_lsr] & LSR_TSRE) == 0 && --timo > 0)
;
}
static void *
gur_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
{
if (prefetchable)
return NULL;
if (pa < gur_bst.pbs_offset)
return NULL;
if (pa + len > gur_bst.pbs_offset + gur_bst.pbs_limit)
return NULL;
return (void *)pa;
}
static void *(* const early_tlb_mapiodev)(paddr_t, psize_t, bool) = gur_tlb_mapiodev;
static void
e500_cpu_reset(void)
{
__asm volatile("sync");
cpu_write_4(GLOBAL_BASE + RSTCR, HRESET_REQ);
__asm volatile("msync;isync");
}
static psize_t
memprobe(vaddr_t endkernel)
{
phys_ram_seg_t *mr;
paddr_t boot_page = cpu_read_4(GUR_BPTR);
printf(" bptr=%"PRIxPADDR, boot_page);
if (boot_page & BPTR_EN) {
/*
* shift it to an address
*/
boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
} else {
boot_page = ~(paddr_t)0;
}
/*
* First we need to find out how much physical memory we have.
* We could let our bootloader tell us, but it's almost as easy
* to ask the DDR memory controller.
*/
mr = physmemr;
for (u_int i = 0; i < 4; i++) {
uint32_t v = cpu_read_4(DDRC1_BASE + CS_CONFIG(i));
if (v & CS_CONFIG_EN) {
v = cpu_read_4(DDRC1_BASE + CS_BNDS(i));
if (v == 0)
continue;
mr->start = BNDS_SA_GET(v);
mr->size = BNDS_SIZE_GET(v);
#ifdef MEMSIZE
if (mr->start >= MEMSIZE)
continue;
if (mr->start + mr->size > MEMSIZE)
mr->size = MEMSIZE - mr->start;
#endif
#if 0
printf(" [%zd]={%#"PRIx64"@%#"PRIx64"}",
mr - physmemr, mr->size, mr->start);
#endif
mr++;
}
}
if (mr == physmemr)
panic("no memory configured!");
/*
* Sort memory regions from low to high and coalesce adjacent regions
*/
u_int cnt = mr - physmemr;
if (cnt > 1) {
for (u_int i = 0; i < cnt - 1; i++) {
for (u_int j = i + 1; j < cnt; j++) {
if (physmemr[j].start < physmemr[i].start) {
phys_ram_seg_t tmp = physmemr[i];
physmemr[i] = physmemr[j];
physmemr[j] = tmp;
}
}
}
mr = physmemr;
for (u_int i = 0; i + 1 < cnt; i++, mr++) {
if (mr->start + mr->size == mr[1].start) {
mr->size += mr[1].size;
for (u_int j = 1; i + j + 1 < cnt; j++)
mr[j] = mr[j+1];
cnt--;
}
}
} else if (cnt == 0) {
panic("%s: no memory found", __func__);
}
/*
* Copy physical memory to available memory.
*/
memcpy(availmemr, physmemr, cnt * sizeof(physmemr[0]));
/*
* Adjust available memory to skip kernel at start of memory.
*/
availmemr[0].size -= endkernel - availmemr[0].start;
availmemr[0].start = endkernel;
mr = availmemr;
for (u_int i = 0; i < cnt; i++, mr++) {
/*
* U-boot reserves a boot-page on multi-core chips.
* We need to make sure that we never disturb it.
*/
const paddr_t mr_end = mr->start + mr->size;
if (mr_end > boot_page && boot_page >= mr->start) {
/*
* Normally u-boot will put in at the end
* of memory. But in case it doesn't, deal
* with all possibilities.
*/
if (boot_page + PAGE_SIZE == mr_end) {
mr->size -= PAGE_SIZE;
} else if (boot_page == mr->start) {
mr->start += PAGE_SIZE;
mr->size -= PAGE_SIZE;
} else {
mr->size = boot_page - mr->start;
mr++;
for (u_int j = cnt; j > i + 1; j--) {
availmemr[j] = availmemr[j-1];
}
cnt++;
mr->start = boot_page + PAGE_SIZE;
mr->size = mr_end - mr->start;
}
break;
}
}
/*
* Steal pages at the end of memory for the kernel message buffer.
*/
mr = availmemr + cnt - 1;
KASSERT(mr->size >= round_page(MSGBUFSIZE));
mr->size -= round_page(MSGBUFSIZE);
msgbuf_paddr = (uintptr_t)(mr->start + mr->size);
/*
* Calculate physmem.
*/
for (u_int i = 0; i < cnt; i++)
physmem += atop(physmemr[i].size);
nmemr = cnt;
return physmemr[cnt-1].start + physmemr[cnt-1].size;
}
void
consinit(void)
{
static bool attached = false;
if (attached)
return;
attached = true;
if (comcnfreq == -1) {
const uint32_t porpplsr = cpu_read_4(GLOBAL_BASE + PORPLLSR);
const uint32_t plat_ratio = PLAT_RATIO_GET(porpplsr);
comcnfreq = e500_sys_clk * plat_ratio;
printf(" comcnfreq=%u", comcnfreq);
}
comcnattach(&gur_bst, comcnaddr, comcnspeed, comcnfreq,
COM_TYPE_NORMAL, comcnmode);
}
void
cpu_probe_cache(void)
{
struct cpu_info * const ci = curcpu();
const uint32_t l1cfg0 = mfspr(SPR_L1CFG0);
const int dcache_assoc = L1CFG_CNWAY_GET(l1cfg0);
ci->ci_ci.dcache_size = L1CFG_CSIZE_GET(l1cfg0);
ci->ci_ci.dcache_line_size = 32 << L1CFG_CBSIZE_GET(l1cfg0);
if (L1CFG_CARCH_GET(l1cfg0) == L1CFG_CARCH_HARVARD) {
const uint32_t l1cfg1 = mfspr(SPR_L1CFG1);
ci->ci_ci.icache_size = L1CFG_CSIZE_GET(l1cfg1);
ci->ci_ci.icache_line_size = 32 << L1CFG_CBSIZE_GET(l1cfg1);
} else {
ci->ci_ci.icache_size = ci->ci_ci.dcache_size;
ci->ci_ci.icache_line_size = ci->ci_ci.dcache_line_size;
}
/*
* Possibly recolor.
*/
uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / dcache_assoc));
#ifdef DEBUG
uint32_t l1csr0 = mfspr(SPR_L1CSR0);
if ((L1CSR_CE & l1csr0) == 0)
printf(" DC=off");
uint32_t l1csr1 = mfspr(SPR_L1CSR1);
if ((L1CSR_CE & l1csr1) == 0)
printf(" IC=off");
#endif
}
static uint16_t
getsvr(void)
{
uint16_t svr = mfspr(SPR_SVR) >> 16;
svr &= ~0x8; /* clear security bit */
switch (svr) {
case SVR_MPC8543v1 >> 16: return SVR_MPC8548v1 >> 16;
case SVR_MPC8541v1 >> 16: return SVR_MPC8555v1 >> 16;
case SVR_P2010v2 >> 16: return SVR_P2020v2 >> 16;
case SVR_P1016v1 >> 16: return SVR_P1025v1 >> 16;
case SVR_P1017v1 >> 16: return SVR_P1023v1 >> 16;
default: return svr;
}
}
static const char *
socname(uint32_t svr)
{
svr &= ~0x80000; /* clear security bit */
switch (svr >> 8) {
case SVR_MPC8533 >> 8: return "MPC8533";
case SVR_MPC8536v1 >> 8: return "MPC8536";
case SVR_MPC8541v1 >> 8: return "MPC8541";
case SVR_MPC8543v2 >> 8: return "MPC8543";
case SVR_MPC8544v1 >> 8: return "MPC8544";
case SVR_MPC8545v2 >> 8: return "MPC8545";
case SVR_MPC8547v2 >> 8: return "MPC8547";
case SVR_MPC8548v2 >> 8: return "MPC8548";
case SVR_MPC8555v1 >> 8: return "MPC8555";
case SVR_MPC8568v1 >> 8: return "MPC8568";
case SVR_MPC8567v1 >> 8: return "MPC8567";
case SVR_MPC8572v1 >> 8: return "MPC8572";
case SVR_P2020v2 >> 8: return "P2020";
case SVR_P2010v2 >> 8: return "P2010";
case SVR_P1016v1 >> 8: return "P1016";
case SVR_P1017v1 >> 8: return "P1017";
case SVR_P1023v1 >> 8: return "P1023";
case SVR_P1025v1 >> 8: return "P1025";
default:
panic("%s: unknown SVR %#x", __func__, svr);
}
}
static void
e500_tlb_print(device_t self, const char *name, uint32_t tlbcfg)
{
static const char units[16] = "KKKKKMMMMMGGGGGT";
const uint32_t minsize = 1U << (2 * TLBCFG_MINSIZE(tlbcfg));
const uint32_t assoc = TLBCFG_ASSOC(tlbcfg);
const u_int maxsize_log4k = TLBCFG_MAXSIZE(tlbcfg);
const uint64_t maxsize = 1ULL << (2 * maxsize_log4k % 10);
const uint32_t nentries = TLBCFG_NENTRY(tlbcfg);
aprint_normal_dev(self, "%s:", name);
aprint_normal(" %u", nentries);
if (TLBCFG_AVAIL_P(tlbcfg)) {
aprint_normal(" variable-size (%uKB..%"PRIu64"%cB)",
minsize, maxsize, units[maxsize_log4k]);
} else {
aprint_normal(" fixed-size (%uKB)", minsize);
}
if (assoc == 0 || assoc == nentries)
aprint_normal(" fully");
else
aprint_normal(" %u-way set", assoc);
aprint_normal(" associative entries\n");
}
static void
cpu_print_info(struct cpu_info *ci)
{
uint64_t freq = board_info_get_number("processor-frequency");
device_t self = ci->ci_dev;
char freqbuf[10];
if (freq >= 999500000) {
const uint32_t freq32 = (freq + 500000) / 10000000;
snprintf(freqbuf, sizeof(freqbuf), "%u.%02u GHz",
freq32 / 100, freq32 % 100);
} else {
const uint32_t freq32 = (freq + 500000) / 1000000;
snprintf(freqbuf, sizeof(freqbuf), "%u MHz", freq32);
}
const uint32_t pvr = mfpvr();
const uint32_t svr = mfspr(SPR_SVR);
const uint32_t pir = mfspr(SPR_PIR);
aprint_normal_dev(self, "%s %s%s %u.%u with an e500%s %u.%u core, "
"ID %u%s\n",
freqbuf, socname(svr), (SVR_SECURITY_P(svr) ? "E" : ""),
(svr >> 4) & 15, svr & 15,
(pvr >> 16) == PVR_MPCe500v2 ? "v2" : "",
(pvr >> 4) & 15, pvr & 15,
pir, (pir == 0 ? " (Primary)" : ""));
const uint32_t l1cfg0 = mfspr(SPR_L1CFG0);
aprint_normal_dev(self,
"%uKB/%uB %u-way L1 %s cache\n",
L1CFG_CSIZE_GET(l1cfg0) >> 10,
32 << L1CFG_CBSIZE_GET(l1cfg0),
L1CFG_CNWAY_GET(l1cfg0),
L1CFG_CARCH_GET(l1cfg0) == L1CFG_CARCH_HARVARD
? "data" : "unified");
if (L1CFG_CARCH_GET(l1cfg0) == L1CFG_CARCH_HARVARD) {
const uint32_t l1cfg1 = mfspr(SPR_L1CFG1);
aprint_normal_dev(self,
"%uKB/%uB %u-way L1 %s cache\n",
L1CFG_CSIZE_GET(l1cfg1) >> 10,
32 << L1CFG_CBSIZE_GET(l1cfg1),
L1CFG_CNWAY_GET(l1cfg1),
"instruction");
}
const uint32_t mmucfg = mfspr(SPR_MMUCFG);
aprint_normal_dev(self,
"%u TLBs, %u concurrent %u-bit PIDs (%u total)\n",
MMUCFG_NTLBS_GET(mmucfg) + 1,
MMUCFG_NPIDS_GET(mmucfg),
MMUCFG_PIDSIZE_GET(mmucfg) + 1,
1 << (MMUCFG_PIDSIZE_GET(mmucfg) + 1));
e500_tlb_print(self, "tlb0", mfspr(SPR_TLB0CFG));
e500_tlb_print(self, "tlb1", mfspr(SPR_TLB1CFG));
}
#ifdef MULTIPROCESSOR
static void
e500_cpu_spinup(device_t self, struct cpu_info *ci)
{
uintptr_t spinup_table_addr = board_info_get_number("mp-spin-up-table");
struct pglist splist;
if (spinup_table_addr == 0) {
aprint_error_dev(self, "hatch failed (no spin-up table)");
return;
}
struct uboot_spinup_entry * const e = (void *)spinup_table_addr;
volatile struct cpu_hatch_data * const h = &cpu_hatch_data;
const size_t id = cpu_index(ci);
kcpuset_t * const hatchlings = cpuset_info.cpus_hatched;
if (h->hatch_sp == 0) {
int error = uvm_pglistalloc(PAGE_SIZE, PAGE_SIZE,
64*1024*1024, PAGE_SIZE, 0, &splist, 1, 1);
if (error) {
aprint_error_dev(self,
"unable to allocate hatch stack\n");
return;
}
h->hatch_sp = VM_PAGE_TO_PHYS(TAILQ_FIRST(&splist))
+ PAGE_SIZE - CALLFRAMELEN;
}
for (size_t i = 1; e[i].entry_pir != 0; i++) {
printf("%s: cpu%u: entry#%zu(%p): pir=%u\n",
__func__, ci->ci_cpuid, i, &e[i], e[i].entry_pir);
if (e[i].entry_pir == ci->ci_cpuid) {
ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
ci->ci_curpm = pmap_kernel();
ci->ci_lasttb = cpu_info[0].ci_lasttb;
ci->ci_data.cpu_cc_freq =
cpu_info[0].ci_data.cpu_cc_freq;
h->hatch_self = self;
h->hatch_ci = ci;
h->hatch_running = -1;
h->hatch_pir = e[i].entry_pir;
h->hatch_hid0 = mfspr(SPR_HID0);
u_int tlbidx;
e500_tlb_lookup_xtlb(0, &tlbidx);
h->hatch_tlbidx = tlbidx;
KASSERT(h->hatch_sp != 0);
/*
* Get new timebase. We don't want to deal with
* timebase crossing a 32-bit boundary so make sure
* that we have enough headroom to do the timebase
* synchronization.
*/
#define TBSYNC_SLOP 2000
uint32_t tbl;
uint32_t tbu;
do {
tbu = mfspr(SPR_RTBU);
tbl = mfspr(SPR_RTBL) + TBSYNC_SLOP;
} while (tbl < TBSYNC_SLOP);
h->hatch_tbu = tbu;
h->hatch_tbl = tbl;
__asm("sync;isync");
dcache_wbinv((vaddr_t)h, sizeof(*h));
/*
* And here we go...
*/
e[i].entry_addr_lower =
(uint32_t)e500_spinup_trampoline;
dcache_wbinv((vaddr_t)&e[i], sizeof(e[i]));
__asm __volatile("sync;isync");
__insn_barrier();
for (u_int timo = 0; timo++ < 10000; ) {
dcache_inv((vaddr_t)&e[i], sizeof(e[i]));
if (e[i].entry_addr_lower == 3) {
#if 0
printf(
"%s: cpu%u started in %u spins\n",
__func__, cpu_index(ci), timo);
#endif
break;
}
}
for (u_int timo = 0; timo++ < 10000; ) {
dcache_inv((vaddr_t)h, sizeof(*h));
if (h->hatch_running == 0) {
#if 0
printf(
"%s: cpu%u cracked in %u spins: (running=%d)\n",
__func__, cpu_index(ci),
timo, h->hatch_running);
#endif
break;
}
}
if (h->hatch_running == -1) {
aprint_error_dev(self,
"hatch failed (timeout): running=%d"
", entry=%#x\n",
h->hatch_running, e[i].entry_addr_lower);
goto out;
}
/*
* First then we do is to synchronize timebases.
* TBSYNC_SLOP*16 should be more than enough
* instructions.
*/
while (tbl != mftbl())
continue;
h->hatch_running = 1;
dcache_wbinv((vaddr_t)h, sizeof(*h));
__asm("sync;isync");
__insn_barrier();
printf("%s: cpu%u set to running\n",
__func__, cpu_index(ci));
for (u_int timo = 10000; timo-- > 0; ) {
dcache_inv((vaddr_t)h, sizeof(*h));
if (h->hatch_running > 1)
break;
}
if (h->hatch_running == 1) {
printf(
"%s: tb sync failed: offset from %"PRId64"=%"PRId64" (running=%d)\n",
__func__,
((int64_t)tbu << 32) + tbl,
(int64_t)
(((uint64_t)h->hatch_tbu << 32)
+ (uint64_t)h->hatch_tbl),
h->hatch_running);
goto out;
}
printf(
"%s: tb synced: offset=%"PRId64" (running=%d)\n",
__func__,
(int64_t)
(((uint64_t)h->hatch_tbu << 32)
+ (uint64_t)h->hatch_tbl),
h->hatch_running);
/*
* Now we wait for the hatching to complete. 30ms
* should be long enough.
*/
for (u_int timo = 30000; timo-- > 0; ) {
if (kcpuset_isset(hatchlings, id)) {
aprint_normal_dev(self,
"hatch successful (%u spins, "
"timebase adjusted by %"PRId64")\n",
30000 - timo,
(int64_t)
(((uint64_t)h->hatch_tbu << 32)
+ (uint64_t)h->hatch_tbl));
goto out;
}
DELAY(1);
}
aprint_error_dev(self,
"hatch failed (timeout): running=%u\n",
h->hatch_running);
goto out;
}
}
aprint_error_dev(self, "hatch failed (no spin-up entry for PIR %u)",
ci->ci_cpuid);
out:
if (h->hatch_sp == 0)
uvm_pglistfree(&splist);
}
#endif
void
e500_cpu_hatch(struct cpu_info *ci)
{
mtmsr(mfmsr() | PSL_CE | PSL_ME | PSL_DE);
/*
* Make sure interrupts are blocked.
*/
cpu_write_4(OPENPIC_BASE + OPENPIC_CTPR, 15); /* IPL_HIGH */
/* Set the MAS4 defaults */
mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
tlb_invalidate_all();
intr_cpu_hatch(ci);
cpu_probe_cache();
cpu_print_info(ci);
/*
*/
}
static void
e500_cpu_attach(device_t self, u_int instance)
{
struct cpu_info * const ci = &cpu_info[instance - (instance > 0)];
if (instance > 1) {
#if defined(MULTIPROCESSOR)
ci->ci_idepth = -1;
self->dv_private = ci;
ci->ci_cpuid = instance - (instance > 0);
ci->ci_dev = self;
ci->ci_tlb_info = cpu_info[0].ci_tlb_info;
mi_cpu_attach(ci);
intr_cpu_attach(ci);
cpu_evcnt_attach(ci);
e500_cpu_spinup(self, ci);
return;
#else
aprint_error_dev(self, "disabled (uniprocessor kernel)\n");
return;
#endif
}
self->dv_private = ci;
ci->ci_cpuid = instance - (instance > 0);
ci->ci_dev = self;
intr_cpu_attach(ci);
cpu_evcnt_attach(ci);
KASSERT(ci == curcpu());
intr_cpu_hatch(ci);
cpu_print_info(ci);
}
void
e500_ipi_halt(void)
{
#ifdef MULTIPROCESSOR
struct cpuset_info * const csi = &cpuset_info;
const cpuid_t index = cpu_index(curcpu());
printf("cpu%lu: shutting down\n", index);
kcpuset_set(csi->cpus_halted, index);
#endif
register_t msr, hid0;
msr = wrtee(0);
hid0 = mfspr(SPR_HID0);
hid0 = (hid0 & ~(HID0_TBEN|HID0_NAP|HID0_SLEEP)) | HID0_DOZE;
mtspr(SPR_HID0, hid0);
msr = (msr & ~(PSL_EE|PSL_CE|PSL_ME)) | PSL_WE;
mtmsr(msr);
for (;;); /* loop forever */
}
static void
calltozero(void)
{
panic("call to 0 from %p", __builtin_return_address(0));
}
#if !defined(ROUTERBOOT)
static void
parse_cmdline(char *cp)
{
int ourhowto = 0;
char c;
bool opt = false;
for (; (c = *cp) != '\0'; cp++) {
if (c == '-') {
opt = true;
continue;
}
if (c == ' ') {
opt = false;
continue;
}
if (opt) {
switch (c) {
case 'a': ourhowto |= RB_ASKNAME; break;
case 'd': ourhowto |= AB_DEBUG; break;
case 'q': ourhowto |= AB_QUIET; break;
case 's': ourhowto |= RB_SINGLE; break;
case 'v': ourhowto |= AB_VERBOSE; break;
}
continue;
}
strlcpy(root_string, cp, sizeof(root_string));
break;
}
if (ourhowto) {
boothowto |= ourhowto;
printf(" boothowto=%#x(%#x)", boothowto, ourhowto);
}
if (root_string[0])
printf(" root=%s", root_string);
}
#endif /* !ROUTERBOOT */
void
initppc(vaddr_t startkernel, vaddr_t endkernel,
void *a0, void *a1, char *a2, char *a3)
{
struct cpu_info * const ci = curcpu();
struct cpu_softc * const cpu = ci->ci_softc;
cn_tab = &e500_earlycons;
printf(" initppc(%#"PRIxVADDR", %#"PRIxVADDR", %p, %p, %p, %p)<enter>",
startkernel, endkernel, a0, a1, a2, a3);
#if !defined(ROUTERBOOT)
if (a2[0] != '\0')
printf(" consdev=<%s>", a2);
if (a3[0] != '\0') {
printf(" cmdline=<%s>", a3);
parse_cmdline(a3);
}
#endif /* !ROUTERBOOT */
/*
* Make sure we don't enter NAP or SLEEP if PSL_POW (MSR[WE]) is set.
* DOZE is ok.
*/
const register_t hid0 = mfspr(SPR_HID0);
mtspr(SPR_HID0,
(hid0 & ~(HID0_NAP | HID0_SLEEP)) | HID0_TBEN | HID0_EMCP | HID0_DOZE);
#ifdef CADMUS
/*
* Need to cache this from cadmus since we need to unmap cadmus since
* it falls in the middle of kernel address space.
*/
cadmus_pci = ((uint8_t *)0xf8004000)[CM_PCI];
cadmus_csr = ((uint8_t *)0xf8004000)[CM_CSR];
((uint8_t *)0xf8004000)[CM_CSR] |= CM_RST_PHYRST;
printf(" cadmus_pci=%#x", cadmus_pci);
printf(" cadmus_csr=%#x", cadmus_csr);
((uint8_t *)0xf8004000)[CM_CSR] = 0;
if ((cadmus_pci & CM_PCI_PSPEED) == CM_PCI_PSPEED_66) {
e500_sys_clk *= 2;
}
#endif
#ifdef PIXIS
pixis_spd = ((uint8_t *)PX_BASE)[PX_SPD];
printf(" pixis_spd=%#x sysclk=%"PRIuMAX,
pixis_spd, PX_SPD_SYSCLK_GET(pixis_spd));
#ifndef SYS_CLK
e500_sys_clk = pixis_spd_map[PX_SPD_SYSCLK_GET(pixis_spd)];
#else
printf(" pixis_sysclk=%u", pixis_spd_map[PX_SPD_SYSCLK_GET(pixis_spd)]);
#endif
#endif
printf(" porpllsr=0x%08x",
*(uint32_t *)(GUR_BASE + GLOBAL_BASE + PORPLLSR));
printf(" sys_clk=%"PRIu64, e500_sys_clk);
/*
* Make sure arguments are page aligned.
*/
startkernel = trunc_page(startkernel);
endkernel = round_page(endkernel);
/*
* Initialize the bus space tag used to access the 85xx general
* utility registers. It doesn't need to be extent protected.
* We know the GUR is mapped via a TLB1 entry so we add a limited
* mapiodev which allows mappings in GUR space.
*/
CTASSERT(offsetof(struct tlb_md_io_ops, md_tlb_mapiodev) == 0);
cpu_md_ops.md_tlb_io_ops = (const void *)&early_tlb_mapiodev;
bus_space_init(&gur_bst, NULL, NULL, 0);
bus_space_init(&gur_le_bst, NULL, NULL, 0);
cpu->cpu_bst = &gur_bst;
cpu->cpu_le_bst = &gur_le_bst;
cpu->cpu_bsh = gur_bsh;
/*
* Attach the console early, really early.
*/
consinit();
/*
* Reset the PIC to a known state.
*/
cpu_write_4(OPENPIC_BASE + OPENPIC_GCR, GCR_RST);
while (cpu_read_4(OPENPIC_BASE + OPENPIC_GCR) & GCR_RST)
;
#if 0
cpu_write_4(OPENPIC_BASE + OPENPIC_CTPR, 15); /* IPL_HIGH */
#endif
printf(" openpic-reset(ctpr=%u)",
cpu_read_4(OPENPIC_BASE + OPENPIC_CTPR));
/*
* fill in with an absolute branch to a routine that will panic.
*/
*(volatile int *)0 = 0x48000002 | (int) calltozero;
/*
* Get the cache sizes.
*/
cpu_probe_cache();
printf(" cache(DC=%uKB/%u,IC=%uKB/%u)",
ci->ci_ci.dcache_size >> 10,
ci->ci_ci.dcache_line_size,
ci->ci_ci.icache_size >> 10,
ci->ci_ci.icache_line_size);
/*
* Now find out how much memory is attached
*/
pmemsize = memprobe(endkernel);
cpu->cpu_highmem = pmemsize;
printf(" memprobe=%zuMB", (size_t) (pmemsize >> 20));
/*
* Now we need cleanout the TLB of stuff that we don't need.
*/
e500_tlb_init(endkernel, pmemsize);
printf(" e500_tlbinit(%#lx,%zuMB)",
endkernel, (size_t) (pmemsize >> 20));
/*
*
*/
printf(" hid0=%#lx/%#lx", hid0, mfspr(SPR_HID0));
printf(" hid1=%#lx", mfspr(SPR_HID1));
printf(" pordevsr=%#x", cpu_read_4(GLOBAL_BASE + PORDEVSR));
printf(" devdisr=%#x", cpu_read_4(GLOBAL_BASE + DEVDISR));
mtmsr(mfmsr() | PSL_CE | PSL_ME | PSL_DE);
/*
* Initialize the message buffer.
*/
initmsgbuf((void *)msgbuf_paddr, round_page(MSGBUFSIZE));
printf(" msgbuf=%p", (void *)msgbuf_paddr);
/*
* Initialize exception vectors and interrupts
*/
exception_init(&e500_intrsw);
printf(" exception_init=%p", &e500_intrsw);
mtspr(SPR_TCR, TCR_WIE | mfspr(SPR_TCR));
/*
* Set the page size.
*/
uvm_setpagesize();
/*
* Initialize the pmap.
*/
endkernel = pmap_bootstrap(startkernel, endkernel, availmemr, nmemr);
/*
* Let's take all the indirect calls via our stubs and patch
* them to be direct calls.
*/
cpu_fixup_stubs();
/*
* As a debug measure we can change the TLB entry that maps all of
* memory to one that encompasses the 64KB with the kernel vectors.
* All other pages will be soft faulted into the TLB as needed.
*/
e500_tlb_minimize(endkernel);
/*
* Set some more MD helpers
*/
cpu_md_ops.md_cpunode_locs = mpc8548_cpunode_locs;
cpu_md_ops.md_device_register = e500_device_register;
cpu_md_ops.md_cpu_attach = e500_cpu_attach;
cpu_md_ops.md_cpu_reset = e500_cpu_reset;
#if NGPIO > 0
cpu_md_ops.md_cpunode_attach = pq3gpio_attach;
#endif
printf(" initppc done!\n");
/*
* Look for the Book-E modules in the right place.
*/
module_machine = module_machine_booke;
}
#ifdef MPC8548
static const char * const mpc8548cds_extirq_names[] = {
[0] = "pci inta",
[1] = "pci intb",
[2] = "pci intc",
[3] = "pci intd",
[4] = "irq4",
[5] = "gige phy",
[6] = "atm phy",
[7] = "cpld",
[8] = "irq8",
[9] = "nvram",
[10] = "debug",
[11] = "pci2 inta",
};
#endif
#ifndef MPC8548
static const char * const mpc85xx_extirq_names[] = {
[0] = "extirq 0",
[1] = "extirq 1",
[2] = "extirq 2",
[3] = "extirq 3",
[4] = "extirq 4",
[5] = "extirq 5",
[6] = "extirq 6",
[7] = "extirq 7",
[8] = "extirq 8",
[9] = "extirq 9",
[10] = "extirq 10",
[11] = "extirq 11",
};
#endif
static void
mpc85xx_extirq_setup(void)
{
#ifdef MPC8548
const char * const * names = mpc8548cds_extirq_names;
const size_t n = __arraycount(mpc8548cds_extirq_names);
#else
const char * const * names = mpc85xx_extirq_names;
const size_t n = __arraycount(mpc85xx_extirq_names);
#endif
prop_array_t extirqs = prop_array_create_with_capacity(n);
for (u_int i = 0; i < n; i++) {
prop_string_t ps = prop_string_create_cstring_nocopy(names[i]);
prop_array_set(extirqs, i, ps);
prop_object_release(ps);
}
board_info_add_object("external-irqs", extirqs);
prop_object_release(extirqs);
}
static void
mpc85xx_pci_setup(const char *name, uint32_t intmask, int ist, int inta, ...)
{
prop_dictionary_t pci_intmap = prop_dictionary_create();
KASSERT(pci_intmap != NULL);
prop_number_t mask = prop_number_create_unsigned_integer(intmask);
KASSERT(mask != NULL);
prop_dictionary_set(pci_intmap, "interrupt-mask", mask);
prop_object_release(mask);
prop_number_t pn_ist = prop_number_create_unsigned_integer(ist);
KASSERT(pn_ist != NULL);
prop_number_t pn_intr = prop_number_create_unsigned_integer(inta);
KASSERT(pn_intr != NULL);
prop_dictionary_t entry = prop_dictionary_create();
KASSERT(entry != NULL);
prop_dictionary_set(entry, "interrupt", pn_intr);
prop_dictionary_set(entry, "type", pn_ist);
prop_dictionary_set(pci_intmap, "000000", entry);
prop_object_release(pn_intr);
prop_object_release(entry);
va_list ap;
va_start(ap, inta);
u_int intrinc = __LOWEST_SET_BIT(intmask);
for (u_int i = 0; i < intmask; i += intrinc) {
char prop_name[12];
snprintf(prop_name, sizeof(prop_name), "%06x", i + intrinc);
entry = prop_dictionary_create();
KASSERT(entry != NULL);
pn_intr = prop_number_create_unsigned_integer(va_arg(ap, u_int));
KASSERT(pn_intr != NULL);
prop_dictionary_set(entry, "interrupt", pn_intr);
prop_dictionary_set(entry, "type", pn_ist);
prop_dictionary_set(pci_intmap, prop_name, entry);
prop_object_release(pn_intr);
prop_object_release(entry);
}
va_end(ap);
prop_object_release(pn_ist);
board_info_add_object(name, pci_intmap);
prop_object_release(pci_intmap);
}
void
cpu_startup(void)
{
struct cpu_info * const ci = curcpu();
const uint16_t svr = getsvr();
powersave = 0; /* we can do it but turn it on by default */
booke_cpu_startup(socname(mfspr(SPR_SVR)));
uint32_t v = cpu_read_4(GLOBAL_BASE + PORPLLSR);
uint32_t plat_ratio = PLAT_RATIO_GET(v);
uint32_t e500_ratio = E500_RATIO_GET(v);
uint64_t ccb_freq = e500_sys_clk * plat_ratio;
uint64_t cpu_freq = ccb_freq * e500_ratio / 2;
ci->ci_khz = (cpu_freq + 500) / 1000;
cpu_timebase = ci->ci_data.cpu_cc_freq = ccb_freq / 8;
board_info_add_number("my-id", svr);
board_info_add_bool("pq3");
board_info_add_number("mem-size", pmemsize);
const uint32_t l2ctl = cpu_read_4(L2CACHE_BASE + L2CTL);
uint32_t l2siz = L2CTL_L2SIZ_GET(l2ctl);
uint32_t l2banks = l2siz >> 16;
#ifdef MPC85555
if (svr == (MPC8555v1 >> 16)) {
l2siz >>= 1;
l2banks >>= 1;
}
#endif
paddr_t boot_page = cpu_read_4(GUR_BPTR);
if (boot_page & BPTR_EN) {
bool found = false;
boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
for (const uint32_t *dp = (void *)(boot_page + PAGE_SIZE - 4),
* const bp = (void *)boot_page;
bp <= dp; dp--) {
if (*dp == boot_page) {
uintptr_t spinup_table_addr = (uintptr_t)++dp;
spinup_table_addr =
roundup2(spinup_table_addr, 32);
board_info_add_number("mp-boot-page",
boot_page);
board_info_add_number("mp-spin-up-table",
spinup_table_addr);
printf("Found MP boot page @ %#"PRIxPADDR". "
"Spin-up table @ %#"PRIxPTR"\n",
boot_page, spinup_table_addr);
found = true;
break;
}
}
if (!found) {
printf("Found MP boot page @ %#"PRIxPADDR
" with missing U-boot signature!\n", boot_page);
board_info_add_number("mp-spin-up-table", 0);
}
}
board_info_add_number("l2-cache-size", l2siz);
board_info_add_number("l2-cache-line-size", 32);
board_info_add_number("l2-cache-banks", l2banks);
board_info_add_number("l2-cache-ways", 8);
board_info_add_number("processor-frequency", cpu_freq);
board_info_add_number("bus-frequency", ccb_freq);
board_info_add_number("pci-frequency", e500_sys_clk);
board_info_add_number("timebase-frequency", ccb_freq / 8);
#ifdef CADMUS
const uint8_t phy_base = CM_CSR_EPHY_GET(cadmus_csr) << 2;
board_info_add_number("tsec1-phy-addr", phy_base + 0);
board_info_add_number("tsec2-phy-addr", phy_base + 1);
board_info_add_number("tsec3-phy-addr", phy_base + 2);
board_info_add_number("tsec4-phy-addr", phy_base + 3);
#else
board_info_add_number("tsec1-phy-addr", MII_PHY_ANY);
board_info_add_number("tsec2-phy-addr", MII_PHY_ANY);
board_info_add_number("tsec3-phy-addr", MII_PHY_ANY);
board_info_add_number("tsec4-phy-addr", MII_PHY_ANY);
#endif
uint64_t macstnaddr =
((uint64_t)le32toh(cpu_read_4(ETSEC1_BASE + MACSTNADDR1)) << 16)
| ((uint64_t)le32toh(cpu_read_4(ETSEC1_BASE + MACSTNADDR2)) << 48);
board_info_add_data("tsec-mac-addr-base", &macstnaddr, 6);
#if NPCI > 0 && defined(PCI_MEMBASE)
pcimem_ex = extent_create("pcimem",
PCI_MEMBASE, PCI_MEMBASE + 4*PCI_MEMSIZE,
NULL, 0, EX_WAITOK);
#endif
#if NPCI > 0 && defined(PCI_IOBASE)
pciio_ex = extent_create("pciio",
PCI_IOBASE, PCI_IOBASE + 4*PCI_IOSIZE,
NULL, 0, EX_WAITOK);
#endif
mpc85xx_extirq_setup();
/*
* PCI-Express virtual wire interrupts on combined with
* External IRQ0/1/2/3.
*/
switch (svr) {
#if defined(MPC8548)
case SVR_MPC8548v1 >> 16:
mpc85xx_pci_setup("pcie0-interrupt-map", 0x001800,
IST_LEVEL, 0, 1, 2, 3);
break;
#endif
#if defined(MPC8544) || defined(MPC8572) || defined(MPC8536) \
|| defined(P1025) || defined(P2020) || defined(P1023)
case SVR_MPC8536v1 >> 16:
case SVR_MPC8544v1 >> 16:
case SVR_MPC8572v1 >> 16:
case SVR_P1016v1 >> 16:
case SVR_P1017v1 >> 16:
case SVR_P1023v1 >> 16:
case SVR_P2010v2 >> 16:
case SVR_P2020v2 >> 16:
mpc85xx_pci_setup("pcie3-interrupt-map", 0x001800, IST_LEVEL,
8, 9, 10, 11);
/* FALLTHROUGH */
case SVR_P1025v1 >> 16:
mpc85xx_pci_setup("pcie2-interrupt-map", 0x001800, IST_LEVEL,
4, 5, 6, 7);
mpc85xx_pci_setup("pcie1-interrupt-map", 0x001800, IST_LEVEL,
0, 1, 2, 3);
break;
#endif
}
switch (svr) {
#if defined(MPC8536)
case SVR_MPC8536v1 >> 16:
mpc85xx_pci_setup("pci0-interrupt-map", 0x001800, IST_LEVEL,
1, 2, 3, 4);
break;
#endif
#if defined(MPC8544)
case SVR_MPC8544v1 >> 16:
mpc85xx_pci_setup("pci0-interrupt-map", 0x001800, IST_LEVEL,
0, 1, 2, 3);
break;
#endif
#if defined(MPC8548)
case SVR_MPC8548v1 >> 16:
mpc85xx_pci_setup("pci1-interrupt-map", 0x001800, IST_LEVEL,
0, 1, 2, 3);
mpc85xx_pci_setup("pci2-interrupt-map", 0x001800, IST_LEVEL,
11, 1, 2, 3);
break;
#endif
}
}