NetBSD/sys/arch/arm/footbridge/todclock.c

338 lines
8.1 KiB
C

/* $NetBSD: todclock.c,v 1.2 2002/05/26 12:07:55 bjh21 Exp $ */
/*
* Copyright (c) 1994-1997 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* clock.c
*
* Timer related machine specific code
*
* Created : 29/09/94
*/
/* Include header files */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/device.h>
#include <machine/rtc.h>
#include <arm/footbridge/todclockvar.h>
#include "todclock.h"
#if NTODCLOCK > 1
#error "Can only had 1 todclock device"
#endif
static int yeartoday __P((int));
/*
* softc structure for the todclock device
*/
struct todclock_softc {
struct device sc_dev; /* device node */
void *sc_rtc_arg; /* arg to read/write */
int (*sc_rtc_write) __P((void *, rtc_t *)); /* rtc write function */
int (*sc_rtc_read) __P((void *, rtc_t *)); /* rtc read function */
};
/* prototypes for functions */
static void todclockattach __P((struct device *parent, struct device *self,
void *aux));
static int todclockmatch __P((struct device *parent, struct cfdata *cf,
void *aux));
/*
* We need to remember our softc for functions like inittodr()
* and resettodr()
* since we only ever have one time-of-day device we can just store
* the direct pointer to softc.
*/
static struct todclock_softc *todclock_sc = NULL;
/* driver and attach structures */
struct cfattach todclock_ca = {
sizeof(struct todclock_softc), todclockmatch, todclockattach
};
/*
* int todclockmatch(struct device *parent, struct cfdata *cf, void *aux)
*
* todclock device probe function.
* just validate the attach args
*/
int
todclockmatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct todclock_attach_args *ta = aux;
if (todclock_sc != NULL)
return(0);
if (strcmp(ta->ta_name, "todclock") != 0)
return(0);
if (ta->ta_flags & TODCLOCK_FLAG_FAKE)
return(1);
return(2);
}
/*
* void todclockattach(struct device *parent, struct device *self, void *aux)
*
* todclock device attach function.
* Initialise the softc structure and do a search for children
*/
void
todclockattach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct todclock_softc *sc = (void *)self;
struct todclock_attach_args *ta = aux;
/* set up our softc */
todclock_sc = sc;
todclock_sc->sc_rtc_arg = ta->ta_rtc_arg;
todclock_sc->sc_rtc_write = ta->ta_rtc_write;
todclock_sc->sc_rtc_read = ta->ta_rtc_read;
printf("\n");
/*
* Initialise the time of day register.
* This is normally left to the filing system to do but not all
* filing systems call it e.g. cd9660
*/
inittodr(0);
}
static __inline int
yeartoday(year)
int year;
{
return((year % 4) ? 365 : 366);
}
static int month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static int timeset = 0;
#define SECPERDAY (24*60*60)
#define SECPERNYEAR (365*SECPERDAY)
#define SECPER4YEARS (4*SECPERNYEAR+SECPERDAY)
#define EPOCHYEAR 1970
/*
* Globally visable functions
*
* These functions are used from other parts of the kernel.
* These functions use the functions defined in the tod_sc
* to actually read and write the rtc.
*
* The first todclock to be attached will be used for handling
* the time of day.
*/
/*
* Write back the time of day to the rtc
*/
void
resettodr()
{
int s;
time_t year, mon, day, hour, min, sec;
rtc_t rtc;
/* Have we set the system time in inittodr() */
if (!timeset)
return;
/* We need a todclock device and should always have one */
if (!todclock_sc)
return;
/* Abort early if there is not actually an RTC write routine */
if (todclock_sc->sc_rtc_write == NULL)
return;
sec = time.tv_sec;
sec -= rtc_offset * 60;
year = (sec / SECPER4YEARS) * 4;
sec %= SECPER4YEARS;
/* year now hold the number of years rounded down 4 */
while (sec > (yeartoday(EPOCHYEAR+year) * SECPERDAY)) {
sec -= yeartoday(EPOCHYEAR+year)*SECPERDAY;
year++;
}
/* year is now a correct offset from the EPOCHYEAR */
year+=EPOCHYEAR;
mon=0;
if (yeartoday(year) == 366)
month[1]=29;
else
month[1]=28;
while (sec >= month[mon]*SECPERDAY) {
sec -= month[mon]*SECPERDAY;
mon++;
}
day = sec / SECPERDAY;
sec %= SECPERDAY;
hour = sec / 3600;
sec %= 3600;
min = sec / 60;
sec %= 60;
rtc.rtc_cen = year / 100;
rtc.rtc_year = year % 100;
rtc.rtc_mon = mon+1;
rtc.rtc_day = day+1;
rtc.rtc_hour = hour;
rtc.rtc_min = min;
rtc.rtc_sec = sec;
rtc.rtc_centi =
rtc.rtc_micro = 0;
printf("resettod: %02d/%02d/%02d%02d %02d:%02d:%02d\n", rtc.rtc_day,
rtc.rtc_mon, rtc.rtc_cen, rtc.rtc_year, rtc.rtc_hour,
rtc.rtc_min, rtc.rtc_sec);
s = splclock();
todclock_sc->sc_rtc_write(todclock_sc->sc_rtc_arg, &rtc);
(void)splx(s);
}
/*
* Initialise the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(base)
time_t base;
{
time_t n;
int i, days = 0;
int s;
int year;
rtc_t rtc;
/*
* Default to the suggested time but replace that we one from an
* RTC is we can.
*/
/* Use the suggested time as a fall back */
time.tv_sec = base;
time.tv_usec = 0;
/* Can we read an RTC ? */
if (todclock_sc != NULL && todclock_sc->sc_rtc_read) {
s = splclock();
if (todclock_sc->sc_rtc_read(todclock_sc->sc_rtc_arg, &rtc) == 0) {
(void)splx(s);
return;
}
(void)splx(s);
} else
return;
/* Convert the rtc time into seconds */
n = rtc.rtc_sec + 60 * rtc.rtc_min + 3600 * rtc.rtc_hour;
n += (rtc.rtc_day - 1) * 3600 * 24;
year = (rtc.rtc_year + rtc.rtc_cen * 100) - 1900;
if (yeartoday(year) == 366)
month[1] = 29;
for (i = rtc.rtc_mon - 2; i >= 0; i--)
days += month[i];
month[1] = 28;
for (i = 70; i < year; i++)
days += yeartoday(i);
n += days * 3600 * 24;
n += rtc_offset * 60;
time.tv_sec = n;
time.tv_usec = 0;
/* timeset is used to ensure the time is valid before a resettodr() */
timeset = 1;
/* If the base was 0 then keep quiet */
if (base) {
printf("inittodr: %02d:%02d:%02d.%02d%02d %02d/%02d/%02d%02d\n",
rtc.rtc_hour, rtc.rtc_min, rtc.rtc_sec, rtc.rtc_centi,
rtc.rtc_micro, rtc.rtc_day, rtc.rtc_mon, rtc.rtc_cen,
rtc.rtc_year);
if (n > base + 60) {
days = (n - base) / SECPERDAY;
printf("Clock has gained %d day%c %ld hours %ld minutes %ld secs\n",
days, ((days == 1) ? 0 : 's'),
(long)((n - base) / 3600) % 24,
(long)((n - base) / 60) % 60,
(long) (n - base) % 60);
}
}
}
/* End of todclock.c */