NetBSD/sys/arch/arm/xscale/becc_timer.c
thorpej b1b164a859 Support for ADI Engineering's Big Endian Companion Chip for the
Intel i80200 XScale processor.  Despite its name, the BECC can
run in both big- and little-endian modes.
2003-01-25 01:57:17 +00:00

307 lines
7.0 KiB
C

/* $NetBSD: becc_timer.c,v 1.1 2003/01/25 01:57:20 thorpej Exp $ */
/*
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Timer/clock support for the ADI Engineering Big Endian Companion Chip.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <machine/bus.h>
#include <arm/cpufunc.h>
#include <arm/xscale/beccreg.h>
#include <arm/xscale/beccvar.h>
void (*becc_hardclock_hook)(void);
/*
* Note, since COUNTS_PER_USEC doesn't divide evenly, we round up.
*/
#define COUNTS_PER_SEC BECC_PERIPH_CLOCK
#define COUNTS_PER_USEC ((COUNTS_PER_SEC / 1000000) + 1)
static void *clock_ih;
/*
* Since the timer interrupts when the counter underflows, we need to
* subtract 1 from counts_per_hz when loading the preload register.
*/
static uint32_t counts_per_hz;
int clockhandler(void *);
/*
* becc_calibrate_delay:
*
* Calibrate the delay loop.
*/
void
becc_calibrate_delay(void)
{
/*
* Just use hz=100 for now -- we'll adjust it, if necessary,
* in cpu_initclocks().
*/
counts_per_hz = COUNTS_PER_SEC / 100;
/* Stop both timers, clear interrupts. */
BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
BECC_CSR_WRITE(BECC_TSCRB, TSCRx_TIF);
/* Set the timer preload value. */
BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
/* Start the timer. */
BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
}
/*
* cpu_initclocks:
*
* Initialize the clock and get them going.
*/
void
cpu_initclocks(void)
{
u_int oldirqstate;
#if 0
if (hz < 50 || COUNTS_PER_SEC % hz) {
printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
}
#endif
tick = 1000000 / hz; /* number of microseconds between interrupts */
tickfix = 1000000 - (hz * tick);
if (tickfix) {
int ftp;
ftp = min(ffs(tickfix), ffs(hz));
tickfix >>= (ftp - 1);
tickfixinterval = hz >> (ftp - 1);
}
/*
* We only have one timer available; stathz and profhz are
* always left as 0 (the upper-layer clock code deals with
* this situation).
*/
if (stathz != 0)
printf("Cannot get %d Hz statclock\n", stathz);
stathz = 0;
if (profhz != 0)
printf("Cannot get %d Hz profclock\n", profhz);
profhz = 0;
/* Report the clock frequency. */
printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
oldirqstate = disable_interrupts(I32_bit);
/* Hook up the clock interrupt handler. */
clock_ih = becc_intr_establish(ICU_TIMERA, IPL_CLOCK,
clockhandler, NULL);
if (clock_ih == NULL)
panic("cpu_initclocks: unable to register timer interrupt");
/* Set up the new clock parameters. */
/* Stop timer, clear interrupt */
BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
counts_per_hz = COUNTS_PER_SEC / hz;
/* Set the timer preload value. */
BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
/* ...and start it in motion. */
BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
/* register soft interrupt handler as well */
becc_intr_establish(ICU_SOFT, IPL_SOFT, becc_softint, NULL);
restore_interrupts(oldirqstate);
}
/*
* setstatclockrate:
*
* Set the rate of the statistics clock.
*
* We assume that hz is either stathz or profhz, and that neither
* will change after being set by cpu_initclocks(). We could
* recalculate the intervals here, but that would be a pain.
*/
void
setstatclockrate(int hz)
{
/*
* XXX Use TMR1?
*/
}
/*
* microtime:
*
* Fill in the specified timeval struct with the current time
* accurate to the microsecond.
*/
void
microtime(struct timeval *tvp)
{
static struct timeval lasttv;
u_int oldirqstate;
uint32_t counts;
oldirqstate = disable_interrupts(I32_bit);
/*
* XXX How do we compensate for the -1 behavior of the preload value?
*/
counts = counts_per_hz - BECC_CSR_READ(BECC_TCVRA);
/* Fill in the timeval struct. */
*tvp = time;
tvp->tv_usec += (counts / COUNTS_PER_USEC);
/* Make sure microseconds doesn't overflow. */
while (tvp->tv_usec >= 1000000) {
tvp->tv_usec -= 1000000;
tvp->tv_sec++;
}
/* Make sure the time has advanced. */
if (tvp->tv_sec == lasttv.tv_sec &&
tvp->tv_usec <= lasttv.tv_usec) {
tvp->tv_usec = lasttv.tv_usec + 1;
if (tvp->tv_usec >= 1000000) {
tvp->tv_usec -= 1000000;
tvp->tv_sec++;
}
}
lasttv = *tvp;
restore_interrupts(oldirqstate);
}
/*
* delay:
*
* Delay for at least N microseconds.
*/
void
delay(u_int n)
{
uint32_t cur, last, delta, usecs;
/*
* This works by polling the timer and counting the
* number of microseconds that go by.
*/
last = BECC_CSR_READ(BECC_TCVRA);
delta = usecs = 0;
while (n > usecs) {
cur = BECC_CSR_READ(BECC_TCVRA);
/* Check to see if the timer has wrapped around. */
if (last < cur)
delta += (last + (counts_per_hz - cur));
else
delta += (last - cur);
last = cur;
if (delta >= COUNTS_PER_USEC) {
usecs += delta / COUNTS_PER_USEC;
delta %= COUNTS_PER_USEC;
}
}
}
/*
* inittodr:
*
* Initialize time from the time-of-day register.
*/
void
inittodr(time_t base)
{
time.tv_sec = base;
time.tv_usec = 0;
}
/*
* resettodr:
*
* Reset the time-of-day register with the current time.
*/
void
resettodr(void)
{
}
/*
* clockhandler:
*
* Handle the hardclock interrupt.
*/
int
clockhandler(void *arg)
{
struct clockframe *frame = arg;
/* ACK the interrupt. */
BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM | TSCRx_TIF);
hardclock(frame);
if (becc_hardclock_hook != NULL)
(*becc_hardclock_hook)();
return (1);
}