NetBSD/libexec/lfs_cleanerd/lfs_cleanerd.c

1504 lines
39 KiB
C

/* $NetBSD: lfs_cleanerd.c,v 1.5 2006/04/14 00:58:32 perseant Exp $ */
/*-
* Copyright (c) 2005 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The cleaner daemon for the NetBSD Log-structured File System.
* Only tested for use with version 2 LFSs.
*/
#include <sys/syslog.h>
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <ufs/ufs/inode.h>
#include <ufs/lfs/lfs.h>
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <util.h>
#include "bufcache.h"
#include "vnode.h"
#include "lfs_user.h"
#include "fdfs.h"
#include "cleaner.h"
/*
* Global variables.
*/
/* XXX these top few should really be fs-specific */
int use_fs_idle; /* Use fs idle rather than cpu idle time */
int use_bytes; /* Use bytes written rather than segments cleaned */
int load_threshold; /* How idle is idle (CPU idle) */
int atatime; /* How many segments (bytes) to clean at a time */
int nfss; /* Number of filesystems monitored by this cleanerd */
struct clfs **fsp; /* Array of extended filesystem structures */
int segwait_timeout; /* Time to wait in lfs_segwait() */
int do_quit; /* Quit after one cleaning loop */
int do_coalesce; /* Coalesce filesystem */
int do_small; /* Use small writes through markv */
char *copylog_filename; /* File to use for fs debugging analysis */
int inval_segment; /* Segment to invalidate */
int stat_report; /* Report statistics for this period of cycles */
int debug; /* Turn on debugging */
struct cleaner_stats {
double util_tot;
double util_sos;
off_t bytes_read;
off_t bytes_written;
off_t segs_cleaned;
off_t segs_empty;
off_t segs_error;
} cleaner_stats;
extern u_int32_t cksum(void *, size_t);
extern u_int32_t lfs_sb_cksum(struct dlfs *);
extern u_int32_t lfs_cksum_part(void *, size_t, u_int32_t);
extern int ufs_getlbns(struct lfs *, struct uvnode *, daddr_t, struct indir *, int *);
/* Compat */
void pwarn(const char *unused, ...) { /* Does nothing */ };
/*
* Log a message if debugging is turned on.
*/
void
dlog(char *fmt, ...)
{
va_list ap;
if (debug == 0)
return;
va_start(ap, fmt);
vsyslog(LOG_DEBUG, fmt, ap);
va_end(ap);
}
/*
* Remove the specified filesystem from the list, due to its having
* become unmounted or other error condition.
*/
void
handle_error(struct clfs **fsp, int n)
{
syslog(LOG_NOTICE, "%s: detaching cleaner", fsp[n]->lfs_fsmnt);
free(fsp[n]);
if (n != nfss - 1)
fsp[n] = fsp[nfss - 1];
--nfss;
}
/*
* Reinitialize a filesystem if, e.g., its size changed.
*/
int
reinit_fs(struct clfs *fs)
{
char fsname[MNAMELEN];
strcpy(fsname, fs->lfs_fsmnt);
close(fs->clfs_ifilefd);
close(fs->clfs_devfd);
fd_reclaim(fs->clfs_devvp);
fd_reclaim(fs->lfs_ivnode);
free(fs->clfs_dev);
free(fs->clfs_segtab);
free(fs->clfs_segtabp);
return init_fs(fs, fsname);
}
#ifdef REPAIR_ZERO_FINFO
/*
* Use fsck's lfs routines to load the Ifile from an unmounted fs.
* We interpret "fsname" as the name of the raw disk device.
*/
int
init_unmounted_fs(struct clfs *fs, char *fsname)
{
struct lfs *disc_fs;
int i;
fs->clfs_dev = fsname;
if ((fs->clfs_devfd = open(fs->clfs_dev, O_RDWR)) < 0) {
syslog(LOG_ERR, "couldn't open device %s read/write",
fs->clfs_dev);
return -1;
}
disc_fs = lfs_init(fs->clfs_devfd, 0, 0, 0, 0);
fs->lfs_dlfs = disc_fs->lfs_dlfs; /* Structure copy */
strncpy(fs->lfs_fsmnt, fsname, MNAMELEN);
fs->lfs_ivnode = (struct uvnode *)disc_fs->lfs_ivnode;
fs->clfs_devvp = fd_vget(fs->clfs_devfd, fs->lfs_fsize, fs->lfs_ssize,
atatime);
/* Allocate and clear segtab */
fs->clfs_segtab = (struct clfs_seguse *)malloc(fs->lfs_nseg *
sizeof(*fs->clfs_segtab));
fs->clfs_segtabp = (struct clfs_seguse **)malloc(fs->lfs_nseg *
sizeof(*fs->clfs_segtabp));
for (i = 0; i < fs->lfs_nseg; i++) {
fs->clfs_segtabp[i] = &(fs->clfs_segtab[i]);
fs->clfs_segtab[i].flags = 0x0;
}
syslog(LOG_NOTICE, "%s: unmounted cleaner starting", fsname);
return 0;
}
#endif
/*
* Set up the file descriptors, including the Ifile descriptor.
* If we can't get the Ifile, this is not an LFS (or the kernel is
* too old to support the fcntl).
* XXX Merge this and init_unmounted_fs, switching on whether
* XXX "fsname" is a dir or a char special device. Should
* XXX also be able to read unmounted devices out of fstab, the way
* XXX fsck does.
*/
int
init_fs(struct clfs *fs, char *fsname)
{
struct statvfs sf;
int rootfd;
int i;
/*
* Get the raw device from the block device.
* XXX this is ugly. Is there a way to discover the raw device
* XXX for a given mount point?
*/
if (statvfs(fsname, &sf) < 0)
return -1;
fs->clfs_dev = malloc(strlen(sf.f_mntfromname) + 2);
sprintf(fs->clfs_dev, "/dev/r%s", sf.f_mntfromname + 5);
if ((fs->clfs_devfd = open(fs->clfs_dev, O_RDONLY)) < 0) {
syslog(LOG_ERR, "couldn't open device %s for reading",
fs->clfs_dev);
return -1;
}
/* Find the Ifile and open it */
if ((rootfd = open(fsname, O_RDONLY)) < 0)
return -2;
if (fcntl(rootfd, LFCNIFILEFH, &fs->clfs_ifilefh) < 0)
return -3;
if ((fs->clfs_ifilefd = fhopen(&fs->clfs_ifilefh, O_RDONLY)) < 0)
return -4;
close(rootfd);
/* Load in the superblock */
if (pread(fs->clfs_devfd, &(fs->lfs_dlfs), sizeof(struct dlfs),
LFS_LABELPAD) < 0)
return -1;
/* If this is not a version 2 filesystem, complain and exit */
if (fs->lfs_version != 2) {
syslog(LOG_ERR, "%s: not a version 2 LFS", fsname);
return -1;
}
/* Assume fsname is the mounted name */
strncpy(fs->lfs_fsmnt, fsname, MNAMELEN);
/* Set up vnodes for Ifile and raw device */
fs->lfs_ivnode = fd_vget(fs->clfs_ifilefd, fs->lfs_bsize, 0, 0);
fs->clfs_devvp = fd_vget(fs->clfs_devfd, fs->lfs_fsize, fs->lfs_ssize,
atatime);
/* Allocate and clear segtab */
fs->clfs_segtab = (struct clfs_seguse *)malloc(fs->lfs_nseg *
sizeof(*fs->clfs_segtab));
fs->clfs_segtabp = (struct clfs_seguse **)malloc(fs->lfs_nseg *
sizeof(*fs->clfs_segtabp));
for (i = 0; i < fs->lfs_nseg; i++) {
fs->clfs_segtabp[i] = &(fs->clfs_segtab[i]);
fs->clfs_segtab[i].flags = 0x0;
}
syslog(LOG_NOTICE, "%s: attaching cleaner", fsname);
return 0;
}
/*
* Invalidate all the currently held Ifile blocks so they will be
* reread when we clean. Check the size while we're at it, and
* resize the buffer cache if necessary.
*/
void
reload_ifile(struct clfs *fs)
{
struct ubuf *bp;
struct stat st;
int ohashmax;
extern int hashmax;
while ((bp = LIST_FIRST(&fs->lfs_ivnode->v_dirtyblkhd)) != NULL) {
bremfree(bp);
buf_destroy(bp);
}
while ((bp = LIST_FIRST(&fs->lfs_ivnode->v_cleanblkhd)) != NULL) {
bremfree(bp);
buf_destroy(bp);
}
/* If Ifile is larger than buffer cache, rehash */
fstat(fs->clfs_ifilefd, &st);
if (st.st_size / fs->lfs_bsize > hashmax) {
ohashmax = hashmax;
bufrehash(st.st_size / fs->lfs_bsize);
dlog("%s: resized buffer hash from %d to %d",
fs->lfs_fsmnt, ohashmax, hashmax);
}
}
/*
* Get IFILE entry for the given inode, store in ifpp. The buffer
* which contains that data is returned in bpp, and must be brelse()d
* by the caller.
*/
void
lfs_ientry(IFILE **ifpp, struct clfs *fs, ino_t ino, struct ubuf **bpp)
{
int error;
error = bread(fs->lfs_ivnode, ino / fs->lfs_ifpb + fs->lfs_cleansz +
fs->lfs_segtabsz, fs->lfs_bsize, NOCRED, bpp);
*ifpp = (IFILE *)(*bpp)->b_data + ino % fs->lfs_ifpb;
return;
}
#ifdef TEST_PATTERN
/*
* Check ROOTINO for file data. The assumption is that we are running
* the "twofiles" test with the rest of the filesystem empty. Files
* created by "twofiles" match the test pattern, but ROOTINO and the
* executable itself (assumed to be inode 3) should not match.
*/
static void
check_test_pattern(BLOCK_INFO *bip)
{
int j;
unsigned char *cp = bip->bi_bp;
/* Check inode sanity */
if (bip->bi_lbn == LFS_UNUSED_LBN) {
assert(((struct ufs1_dinode *)bip->bi_bp)->di_inumber ==
bip->bi_inode);
}
/* These can have the test pattern and it's all good */
if (bip->bi_inode > 3)
return;
for (j = 0; j < bip->bi_size; j++) {
if (cp[j] != (j & 0xff))
break;
}
assert(j < bip->bi_size);
}
#endif /* TEST_PATTERN */
/*
* Parse the partial segment at daddr, adding its information to
* bip. Return the address of the next partial segment to read.
*/
int32_t
parse_pseg(struct clfs *fs, daddr_t daddr, BLOCK_INFO **bipp, int *bic)
{
SEGSUM *ssp;
IFILE *ifp;
BLOCK_INFO *bip, *nbip;
int32_t *iaddrp, idaddr, odaddr;
FINFO *fip;
struct ubuf *ifbp;
struct ufs1_dinode *dip;
u_int32_t ck, vers;
int fic, inoc, obic;
int i;
unsigned char *cp;
odaddr = daddr;
obic = *bic;
bip = *bipp;
/*
* Retrieve the segment header, set up the SEGSUM pointer
* as well as the first FINFO and inode address pointer.
*/
cp = fd_ptrget(fs->clfs_devvp, daddr);
ssp = (SEGSUM *)cp;
iaddrp = ((int32_t *)(cp + fs->lfs_ibsize)) - 1;
fip = (FINFO *)(cp + sizeof(SEGSUM));
/*
* Check segment header magic and checksum
*/
if (ssp->ss_magic != SS_MAGIC) {
syslog(LOG_WARNING, "%s: sumsum magic number bad at 0x%x:"
" read 0x%x, expected 0x%x", fs->lfs_fsmnt,
(int32_t)daddr, ssp->ss_magic, SS_MAGIC);
return 0x0;
}
ck = cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
if (ck != ssp->ss_sumsum) {
syslog(LOG_WARNING, "%s: sumsum checksum mismatch at 0x%x:"
" read 0x%x, computed 0x%x", fs->lfs_fsmnt,
(int32_t)daddr, ssp->ss_sumsum, ck);
return 0x0;
}
/* Initialize data sum */
ck = 0;
/* Point daddr at next block after segment summary */
++daddr;
/*
* Loop over file info and inode pointers. We always move daddr
* forward here because we are also computing the data checksum
* as we go.
*/
fic = inoc = 0;
while (fic < ssp->ss_nfinfo || inoc < ssp->ss_ninos) {
/*
* We must have either a file block or an inode block.
* If we don't have either one, it's an error.
*/
if (fic >= ssp->ss_nfinfo && *iaddrp != daddr) {
syslog(LOG_WARNING, "%s: bad pseg at %x (seg %d)",
fs->lfs_fsmnt, odaddr, dtosn(fs, odaddr));
*bipp = bip;
return 0x0;
}
/*
* Note each inode from the inode blocks
*/
if (inoc < ssp->ss_ninos && *iaddrp == daddr) {
cp = fd_ptrget(fs->clfs_devvp, daddr);
ck = lfs_cksum_part(cp, sizeof(u_int32_t), ck);
dip = (struct ufs1_dinode *)cp;
for (i = 0; i < fs->lfs_inopb; i++) {
if (dip[i].di_inumber == 0)
break;
/*
* Check currency before adding it
*/
#ifndef REPAIR_ZERO_FINFO
lfs_ientry(&ifp, fs, dip[i].di_inumber, &ifbp);
idaddr = ifp->if_daddr;
brelse(ifbp);
if (idaddr != daddr)
#endif
continue;
/*
* A current inode. Add it.
*/
++*bic;
nbip = (BLOCK_INFO *)realloc(bip, *bic *
sizeof(*bip));
if (nbip)
bip = nbip;
else {
--*bic;
*bipp = bip;
return 0x0;
}
bip[*bic - 1].bi_inode = dip[i].di_inumber;
bip[*bic - 1].bi_lbn = LFS_UNUSED_LBN;
bip[*bic - 1].bi_daddr = daddr;
bip[*bic - 1].bi_segcreate = ssp->ss_create;
bip[*bic - 1].bi_version = dip[i].di_gen;
bip[*bic - 1].bi_bp = &(dip[i]);
bip[*bic - 1].bi_size = DINODE1_SIZE;
}
inoc += i;
daddr += btofsb(fs, fs->lfs_ibsize);
--iaddrp;
continue;
}
/*
* Note each file block from the finfo blocks
*/
if (fic >= ssp->ss_nfinfo)
continue;
/* Count this finfo, whether or not we use it */
++fic;
/*
* If this finfo has nblocks==0, it was written wrong.
* Kernels with this problem always wrote this zero-sized
* finfo last, so just ignore it.
*/
if (fip->fi_nblocks == 0) {
#ifdef REPAIR_ZERO_FINFO
struct ubuf *nbp;
SEGSUM *nssp;
syslog(LOG_WARNING, "fixing short FINFO at %x (seg %d)",
odaddr, dtosn(fs, odaddr));
bread(fs->clfs_devvp, odaddr, fs->lfs_fsize, NOCRED, &nbp);
nssp = (SEGSUM *)nbp->b_data;
--nssp->ss_nfinfo;
nssp->ss_sumsum = cksum(&nssp->ss_datasum,
fs->lfs_sumsize - sizeof(nssp->ss_sumsum));
bwrite(nbp);
#endif
continue;
}
/*
* Check currency before adding blocks
*/
#ifdef REPAIR_ZERO_FINFO
vers = -1;
#else
lfs_ientry(&ifp, fs, fip->fi_ino, &ifbp);
vers = ifp->if_version;
brelse(ifbp);
#endif
if (vers != fip->fi_version) {
size_t size;
/* Read all the blocks from the data summary */
for (i = 0; i < fip->fi_nblocks; i++) {
size = (i == fip->fi_nblocks - 1) ?
fip->fi_lastlength : fs->lfs_bsize;
cp = fd_ptrget(fs->clfs_devvp, daddr);
ck = lfs_cksum_part(cp, sizeof(u_int32_t), ck);
daddr += btofsb(fs, size);
}
fip = (FINFO *)(fip->fi_blocks + fip->fi_nblocks);
continue;
}
/* Add all the blocks from the finfos (current or not) */
nbip = (BLOCK_INFO *)realloc(bip, (*bic + fip->fi_nblocks) *
sizeof(*bip));
if (nbip)
bip = nbip;
else {
*bipp = bip;
return 0x0;
}
for (i = 0; i < fip->fi_nblocks; i++) {
bip[*bic + i].bi_inode = fip->fi_ino;
bip[*bic + i].bi_lbn = fip->fi_blocks[i];
bip[*bic + i].bi_daddr = daddr;
bip[*bic + i].bi_segcreate = ssp->ss_create;
bip[*bic + i].bi_version = fip->fi_version;
bip[*bic + i].bi_size = (i == fip->fi_nblocks - 1) ?
fip->fi_lastlength : fs->lfs_bsize;
cp = fd_ptrget(fs->clfs_devvp, daddr);
ck = lfs_cksum_part(cp, sizeof(u_int32_t), ck);
bip[*bic + i].bi_bp = cp;
daddr += btofsb(fs, bip[*bic + i].bi_size);
#ifdef TEST_PATTERN
check_test_pattern(bip + *bic + i); /* XXXDEBUG */
#endif
}
*bic += fip->fi_nblocks;
fip = (FINFO *)(fip->fi_blocks + fip->fi_nblocks);
}
#ifndef REPAIR_ZERO_FINFO
if (ssp->ss_datasum != ck) {
syslog(LOG_WARNING, "%s: data checksum bad at 0x%x:"
" read 0x%x, computed 0x%x", fs->lfs_fsmnt, odaddr,
ssp->ss_datasum, ck);
*bic = obic;
return 0x0;
}
#endif
*bipp = bip;
return daddr;
}
static void
log_segment_read(struct clfs *fs, int sn)
{
FILE *fp;
char *cp;
/*
* Write the segment read, and its contents, into a log file in
* the current directory. We don't need to log the location of
* the segment, since that can be inferred from the segments up
* to this point (ss_nextseg field of the previously written segment).
*
* We can use this info later to reconstruct the filesystem at any
* given point in time for analysis, by replaying the log forward
* indexed by the segment serial numbers; but it is not suitable
* for everyday use since the copylog will be simply enormous.
*/
cp = fd_ptrget(fs->clfs_devvp, sntod(fs, sn));
fp = fopen(copylog_filename, "ab");
if (fp != NULL) {
if (fwrite(cp, (size_t)fs->lfs_ssize, 1, fp) < 0) {
perror("writing segment to copy log");
}
}
fclose(fp);
}
/*
* Read a segment to populate the BLOCK_INFO structures.
* Return the number of partial segments read and parsed.
*/
int
load_segment(struct clfs *fs, int sn, BLOCK_INFO **bipp, int *bic)
{
int32_t daddr;
int i, npseg;
daddr = sntod(fs, sn);
if (daddr < btofsb(fs, LFS_LABELPAD))
daddr = btofsb(fs, LFS_LABELPAD);
for (i = 0; i < LFS_MAXNUMSB; i++) {
if (fs->lfs_sboffs[i] == daddr) {
daddr += btofsb(fs, LFS_SBPAD);
break;
}
}
/* Preload the segment buffer */
if (fd_preload(fs->clfs_devvp, sntod(fs, sn)) < 0)
return -1;
if (copylog_filename)
log_segment_read(fs, sn);
/* Note bytes read for stats */
cleaner_stats.segs_cleaned++;
cleaner_stats.bytes_read += fs->lfs_ssize;
++fs->clfs_nactive;
npseg = 0;
while(dtosn(fs, daddr) == sn &&
dtosn(fs, daddr + btofsb(fs, fs->lfs_bsize)) == sn) {
daddr = parse_pseg(fs, daddr, bipp, bic);
if (daddr == 0x0) {
++cleaner_stats.segs_error;
break;
}
++npseg;
}
return npseg;
}
void
calc_cb(struct clfs *fs, int sn, struct clfs_seguse *t)
{
time_t now;
int64_t age, benefit, cost;
time(&now);
age = (now < t->lastmod ? 0 : now - t->lastmod);
/* Under no circumstances clean active or already-clean segments */
if ((t->flags & SEGUSE_ACTIVE) || !(t->flags & SEGUSE_DIRTY)) {
t->priority = 0;
return;
}
/*
* If the segment is empty, there is no reason to clean it.
* Clear its error condition, if any, since we are never going to
* try to parse this one.
*/
if (t->nbytes == 0) {
t->flags &= ~SEGUSE_ERROR; /* Strip error once empty */
t->priority = 0;
return;
}
if (t->flags & SEGUSE_ERROR) { /* No good if not already empty */
/* No benefit */
t->priority = 0;
return;
}
if (t->nbytes < 0 || t->nbytes > fs->lfs_ssize) {
/* Another type of error */
syslog(LOG_WARNING, "segment %d: bad seguse count %d",
sn, t->nbytes);
t->flags |= SEGUSE_ERROR;
t->priority = 0;
return;
}
/*
* The non-degenerate case. Use Rosenblum's cost-benefit algorithm.
* Calculate the benefit from cleaning this segment (one segment,
* minus fragmentation, dirty blocks and a segment summary block)
* and weigh that against the cost (bytes read plus bytes written).
* We count the summary headers as "dirty" to avoid cleaning very
* old and very full segments.
*/
benefit = (int64_t)fs->lfs_ssize - t->nbytes -
(t->nsums + 1) * fs->lfs_fsize;
if (fs->lfs_bsize > fs->lfs_fsize) /* fragmentation */
benefit -= (fs->lfs_bsize / 2);
if (benefit <= 0) {
t->priority = 0;
return;
}
cost = fs->lfs_ssize + t->nbytes;
t->priority = (256 * benefit * age) / cost;
return;
}
/*
* Comparator for BLOCK_INFO structures. Anything not in one of the segments
* we're looking at sorts higher; after that we sort first by inode number
* and then by block number (unsigned, i.e., negative sorts higher) *but*
* sort inodes before data blocks.
*/
static int
bi_comparator(const void *va, const void *vb)
{
BLOCK_INFO *a, *b;
a = (BLOCK_INFO *)va;
b = (BLOCK_INFO *)vb;
/* Check for out-of-place block */
if (a->bi_segcreate == a->bi_daddr &&
b->bi_segcreate != b->bi_daddr)
return -1;
if (a->bi_segcreate != a->bi_daddr &&
b->bi_segcreate == b->bi_daddr)
return 1;
if (a->bi_size <= 0 && b->bi_size > 0)
return 1;
if (b->bi_size <= 0 && a->bi_size > 0)
return -1;
/* Check inode number */
if (a->bi_inode != b->bi_inode)
return a->bi_inode - b->bi_inode;
/* Check lbn */
if (a->bi_lbn == LFS_UNUSED_LBN) /* Inodes sort lower than blocks */
return -1;
if (b->bi_lbn == LFS_UNUSED_LBN)
return 1;
if ((u_int32_t)a->bi_lbn > (u_int32_t)b->bi_lbn)
return 1;
else
return -1;
}
/*
* Comparator for sort_segments: cost-benefit equation.
*/
static int
cb_comparator(const void *va, const void *vb)
{
struct clfs_seguse *a, *b;
a = *(struct clfs_seguse **)va;
b = *(struct clfs_seguse **)vb;
return a->priority > b->priority ? -1 : 1;
}
void
toss_old_blocks(struct clfs *fs, BLOCK_INFO **bipp, int *bic)
{
int i, r;
BLOCK_INFO *bip = *bipp;
struct lfs_fcntl_markv /* {
BLOCK_INFO *blkiov;
int blkcnt;
} */ lim;
if (bic == 0 || bip == NULL)
return;
/*
* Kludge: Store the disk address in segcreate so we know which
* ones to toss.
*/
for (i = 0; i < *bic; i++)
bip[i].bi_segcreate = bip[i].bi_daddr;
/* Sort the blocks */
heapsort(bip, *bic, sizeof(BLOCK_INFO), bi_comparator);
/* Use bmapv to locate the blocks */
lim.blkiov = bip;
lim.blkcnt = *bic;
if ((r = fcntl(fs->clfs_ifilefd, LFCNBMAPV, &lim)) < 0) {
syslog(LOG_WARNING, "%s: bmapv returned %d (%m)",
fs->lfs_fsmnt, r);
return;
}
/* Toss blocks not in this segment */
heapsort(bip, *bic, sizeof(BLOCK_INFO), bi_comparator);
/* Get rid of stale blocks */
for (i = 0; i < *bic; i++)
if (bip[i].bi_segcreate != bip[i].bi_daddr)
break;
*bic = i; /* XXX realloc bip? */
*bipp = bip;
return;
}
/*
* Clean a segment and mark it invalid.
*/
int
invalidate_segment(struct clfs *fs, int sn)
{
BLOCK_INFO *bip;
int i, r, bic;
off_t nb;
double util;
struct lfs_fcntl_markv /* {
BLOCK_INFO *blkiov;
int blkcnt;
} */ lim;
dlog("%s: inval seg %d", fs->lfs_fsmnt, sn);
bip = NULL;
bic = 0;
fs->clfs_nactive = 0;
load_segment(fs, sn, &bip, &bic);
toss_old_blocks(fs, &bip, &bic);
/* Record statistics */
for (i = nb = 0; i < bic; i++)
nb += bip[i].bi_size;
util = ((double)nb) / (fs->clfs_nactive * fs->lfs_ssize);
cleaner_stats.util_tot += util;
cleaner_stats.util_sos += util * util;
cleaner_stats.bytes_written += nb;
/*
* Use markv to move the blocks.
*/
lim.blkiov = bip;
lim.blkcnt = bic;
if ((r = fcntl(fs->clfs_ifilefd, LFCNMARKV, &lim)) < 0) {
syslog(LOG_WARNING, "%s: markv returned %d (%m) "
"for seg %d", fs->lfs_fsmnt, r, sn);
return r;
}
/*
* Finally call invalidate to invalidate the segment.
*/
if ((r = fcntl(fs->clfs_ifilefd, LFCNINVAL, &sn)) < 0) {
syslog(LOG_WARNING, "%s: inval returned %d (%m) "
"for seg %d", fs->lfs_fsmnt, r, sn);
return r;
}
return 0;
}
/*
* Check to see if the given ino/lbn pair is represented in the BLOCK_INFO
* array we are sending to the kernel, or if the kernel will have to add it.
* The kernel will only add each such pair once, though, so keep track of
* previous requests in a separate "extra" BLOCK_INFO array. Returns 1
* if the block needs to be added, 0 if it is already represented.
*/
static int
check_or_add(ino_t ino, int32_t lbn, BLOCK_INFO *bip, int bic, BLOCK_INFO **ebipp, int *ebicp)
{
BLOCK_INFO *t, *ebip = *ebipp;
int ebic = *ebicp;
int k;
for (k = 0; k < bic; k++) {
if (bip[k].bi_inode != ino)
break;
if (bip[k].bi_lbn == lbn) {
return 0;
}
}
/* Look on the list of extra blocks, too */
for (k = 0; k < ebic; k++) {
if (ebip[k].bi_inode == ino && ebip[k].bi_lbn == lbn) {
return 0;
}
}
++ebic;
t = realloc(ebip, ebic * sizeof(BLOCK_INFO));
if (t == NULL)
return 1; /* Note *ebipc is not updated */
ebip = t;
ebip[ebic - 1].bi_inode = ino;
ebip[ebic - 1].bi_lbn = lbn;
*ebipp = ebip;
*ebicp = ebic;
return 1;
}
/*
* Look for indirect blocks we will have to write which are not
* contained in this collection of blocks. This constitutes
* a hidden cleaning cost, since we are unaware of it until we
* have already read the segments. Return the total cost, and fill
* in *ifc with the part of that cost due to rewriting the Ifile.
*/
static off_t
check_hidden_cost(struct clfs *fs, BLOCK_INFO *bip, int bic, off_t *ifc)
{
int start;
struct indir in[NIADDR + 1];
int num;
int i, j, ebic;
BLOCK_INFO *ebip;
int32_t lbn;
start = 0;
ebip = NULL;
ebic = 0;
for (i = 0; i < bic; i++) {
if (i == 0 || bip[i].bi_inode != bip[start].bi_inode) {
start = i;
/*
* Look for IFILE blocks, unless this is the Ifile.
*/
if (bip[i].bi_inode != fs->lfs_ifile) {
lbn = fs->lfs_cleansz + bip[i].bi_inode /
fs->lfs_ifpb;
*ifc += check_or_add(fs->lfs_ifile, lbn,
bip, bic, &ebip, &ebic);
}
}
if (bip[i].bi_lbn == LFS_UNUSED_LBN)
continue;
if (bip[i].bi_lbn < NDADDR)
continue;
ufs_getlbns((struct lfs *)fs, NULL, (daddr_t)bip[i].bi_lbn, in, &num);
for (j = 0; j < num; j++) {
check_or_add(bip[i].bi_inode, in[j].in_lbn,
bip + start, bic - start, &ebip, &ebic);
}
}
return ebic;
}
/*
* Select segments to clean, add blocks from these segments to a cleaning
* list, and send this list through lfs_markv() to move them to new
* locations on disk.
*/
int
clean_fs(struct clfs *fs, CLEANERINFO *cip)
{
int i, j, ngood, sn, bic, r;
struct ubuf *bp;
SEGUSE *sup;
static BLOCK_INFO *bip;
struct lfs_fcntl_markv /* {
BLOCK_INFO *blkiov;
int blkcnt;
} */ lim;
int mc;
BLOCK_INFO *mbip;
int inc;
off_t nb;
off_t goal;
off_t extra, if_extra;
double util;
/* Read the segment table into our private structure */
for (i = 0; i < fs->lfs_nseg; i+= fs->lfs_sepb) {
bread(fs->lfs_ivnode, fs->lfs_cleansz + i / fs->lfs_sepb,
fs->lfs_bsize, NOCRED, &bp);
for (j = 0; j < fs->lfs_sepb && i + j < fs->lfs_nseg; j++) {
sup = ((SEGUSE *)bp->b_data) + j;
fs->clfs_segtab[i + j].nbytes = sup->su_nbytes;
fs->clfs_segtab[i + j].nsums = sup->su_nsums;
fs->clfs_segtab[i + j].lastmod = sup->su_lastmod;
/* Keep error status but renew other flags */
fs->clfs_segtab[i + j].flags &= SEGUSE_ERROR;
fs->clfs_segtab[i + j].flags |= sup->su_flags;
/* Compute cost-benefit coefficient */
calc_cb(fs, i + j, fs->clfs_segtab + i + j);
}
brelse(bp);
}
/* Sort segments based on cleanliness, fulness, and condition */
heapsort(fs->clfs_segtabp, fs->lfs_nseg, sizeof(struct clfs_seguse *),
cb_comparator);
/* If no segment is cleanable, just return */
if (fs->clfs_segtabp[0]->priority == 0) {
dlog("%s: no segment cleanable", fs->lfs_fsmnt);
return 0;
}
/* Load some segments' blocks into bip */
bic = 0;
fs->clfs_nactive = 0;
ngood = 0;
if (use_bytes) {
/* Set attainable goal */
goal = fs->lfs_ssize * atatime;
if (goal > (cip->clean - 1) * fs->lfs_ssize / 2)
goal = MAX((cip->clean - 1) * fs->lfs_ssize,
fs->lfs_ssize) / 2;
dlog("%s: cleaning with goal %" PRId64 " bytes (%d segs clean)",
fs->lfs_fsmnt, goal, cip->clean);
syslog(LOG_INFO, "%s: cleaning with goal %" PRId64 " bytes (%d segs clean)",
fs->lfs_fsmnt, goal, cip->clean);
for (i = 0; i < fs->lfs_nseg &&
bic * fs->lfs_bsize < goal; i++) {
if (fs->clfs_segtabp[i]->priority == 0)
break;
sn = (fs->clfs_segtabp[i] - fs->clfs_segtab);
dlog("%s: add seg %d prio %" PRIu64
" containing %ld bytes",
fs->lfs_fsmnt, sn, fs->clfs_segtabp[i]->priority,
fs->clfs_segtabp[i]->nbytes);
if ((r = load_segment(fs, sn, &bip, &bic)) > 0)
++ngood;
else
fd_release(fs->clfs_devvp);
toss_old_blocks(fs, &bip, &bic);
if (r < 0)
break;
}
} else {
/* Set attainable goal */
goal = atatime;
if (goal > cip->clean - 1)
goal = MAX(cip->clean - 1, 1);
dlog("%s: cleaning with goal %d segments (%d clean)",
fs->lfs_fsmnt, (int)goal, cip->clean);
for (i = 0; i < fs->lfs_nseg && ngood < goal; i++) {
if (fs->clfs_segtabp[i]->priority == 0)
break;
sn = (fs->clfs_segtabp[i] - fs->clfs_segtab);
dlog("%s: add seg %d prio %" PRIu64,
fs->lfs_fsmnt, sn, fs->clfs_segtabp[i]->priority);
if ((r = load_segment(fs, sn, &bip, &bic)) > 0)
++ngood;
else if (r < 0)
break;
else
fd_release(fs->clfs_devvp);
}
toss_old_blocks(fs, &bip, &bic);
}
/* If there is nothing to do, try again later. */
if (bic == 0) {
dlog("%s: no blocks to clean in %d cleanable segments",
fs->lfs_fsmnt, (int)ngood);
fd_release_all(fs->clfs_devvp);
return 0;
}
/* Record statistics */
for (i = nb = 0; i < bic; i++)
nb += bip[i].bi_size;
util = ((double)nb) / (fs->clfs_nactive * fs->lfs_ssize);
cleaner_stats.util_tot += util;
cleaner_stats.util_sos += util * util;
cleaner_stats.bytes_written += nb;
/*
* Check out our blocks to see if there are hidden cleaning costs.
* If there are, we might be cleaning ourselves deeper into a hole
* rather than doing anything useful.
* XXX do something about this.
*/
if_extra = 0;
extra = fs->lfs_bsize * (off_t)check_hidden_cost(fs, bip, bic, &if_extra);
if_extra *= fs->lfs_bsize;
/*
* Use markv to move the blocks.
*/
if (do_small)
inc = MAXPHYS / fs->lfs_bsize - 1;
else
inc = LFS_MARKV_MAXBLKCNT / 2;
for (mc = 0, mbip = bip; mc < bic; mc += inc, mbip += inc) {
lim.blkiov = mbip;
lim.blkcnt = (bic - mc > inc ? inc : bic - mc);
#ifdef TEST_PATTERN
dlog("checking blocks %d-%d", mc, mc + lim.blkcnt - 1);
for (i = 0; i < lim.blkcnt; i++) {
check_test_pattern(mbip + i);
}
#endif /* TEST_PATTERN */
dlog("sending blocks %d-%d", mc, mc + lim.blkcnt - 1);
if ((r = fcntl(fs->clfs_ifilefd, LFCNMARKV, &lim)) < 0) {
syslog(LOG_WARNING, "%s: markv returned %d (%m)",
fs->lfs_fsmnt, r);
if (errno != EAGAIN && errno != ESHUTDOWN) {
fd_release_all(fs->clfs_devvp);
return r;
}
}
}
/*
* Report progress (or lack thereof)
*/
syslog(LOG_INFO, "%s: wrote %" PRId64 " dirty + %"
PRId64 " supporting indirect + %"
PRId64 " supporting Ifile = %"
PRId64 " bytes to clean %d segs (%" PRId64 "%% recovery)",
fs->lfs_fsmnt, (int64_t)nb, (int64_t)(extra - if_extra),
(int64_t)if_extra, (int64_t)(nb + extra), ngood,
(ngood ? (int64_t)(100 - (100 * (nb + extra)) /
(ngood * fs->lfs_ssize)) :
(int64_t)0));
if (nb + extra >= ngood * fs->lfs_ssize)
syslog(LOG_WARNING, "%s: cleaner not making forward progress",
fs->lfs_fsmnt);
/*
* Finally call reclaim to prompt cleaning of the segments.
*/
fcntl(fs->clfs_ifilefd, LFCNRECLAIM, NULL);
fd_release_all(fs->clfs_devvp);
return 0;
}
/*
* Read the cleanerinfo block and apply cleaning policy to determine whether
* the given filesystem needs to be cleaned. Returns 1 if it does, 0 if it
* does not, or -1 on error.
*/
int
needs_cleaning(struct clfs *fs, CLEANERINFO *cip)
{
struct ubuf *bp;
struct stat st;
daddr_t fsb_per_seg, max_free_segs;
time_t now;
double loadavg;
/* If this fs is "on hold", don't clean it. */
if (fs->clfs_onhold)
return 0;
/*
* Read the cleanerinfo block from the Ifile. We don't want
* the cached information, so invalidate the buffer before
* handing it back.
*/
if (bread(fs->lfs_ivnode, 0, fs->lfs_bsize, NOCRED, &bp)) {
syslog(LOG_ERR, "%s: can't read inode", fs->lfs_fsmnt);
return -1;
}
*cip = *(CLEANERINFO *)bp->b_data; /* Structure copy */
bp->b_flags |= B_INVAL;
brelse(bp);
cleaner_stats.bytes_read += fs->lfs_bsize;
/*
* If the number of segments changed under us, reinit.
* We don't have to start over from scratch, however,
* since we don't hold any buffers.
*/
if (fs->lfs_nseg != cip->clean + cip->dirty) {
if (reinit_fs(fs) < 0) {
/* The normal case for unmount */
syslog(LOG_NOTICE, "%s: filesystem unmounted", fs->lfs_fsmnt);
return -1;
}
syslog(LOG_NOTICE, "%s: nsegs changed", fs->lfs_fsmnt);
}
/* Compute theoretical "free segments" maximum based on usage */
fsb_per_seg = segtod(fs, 1);
max_free_segs = MAX(cip->bfree, 0) / fsb_per_seg + fs->lfs_minfreeseg;
dlog("%s: bfree = %d, avail = %d, clean = %d/%d",
fs->lfs_fsmnt, cip->bfree, cip->avail, cip->clean, fs->lfs_nseg);
/* If the writer is waiting on us, clean it */
if (cip->clean <= fs->lfs_minfreeseg)
return 1;
/* If there are enough segments, don't clean it */
if (cip->bfree - cip->avail <= fsb_per_seg &&
cip->avail > fsb_per_seg)
return 0;
/* If we are in dire straits, clean it */
if (cip->bfree - cip->avail > fsb_per_seg &&
cip->avail <= fsb_per_seg)
return 1;
/* If under busy threshold, clean regardless of load */
if (cip->clean < max_free_segs * BUSY_LIM)
return 1;
/* Check busy status; clean if idle and under idle limit */
if (use_fs_idle) {
/* Filesystem idle */
time(&now);
if (fstat(fs->clfs_ifilefd, &st) < 0) {
syslog(LOG_ERR, "%s: failed to stat ifile",
fs->lfs_fsmnt);
return -1;
}
if (now - st.st_mtime > segwait_timeout &&
cip->clean < max_free_segs * IDLE_LIM)
return 1;
} else {
/* CPU idle - use one-minute load avg */
if (getloadavg(&loadavg, 1) == -1) {
syslog(LOG_ERR, "%s: failed to get load avg",
fs->lfs_fsmnt);
return -1;
}
if (loadavg < load_threshold &&
cip->clean < max_free_segs * IDLE_LIM)
return 1;
}
return 0;
}
/*
* Report statistics. If the signal was SIGUSR2, clear the statistics too.
* If the signal was SIGINT, exit.
*/
static void
sig_report(int sig)
{
double avg = 0.0, stddev;
avg = cleaner_stats.util_tot / MAX(cleaner_stats.segs_cleaned, 1.0);
stddev = cleaner_stats.util_sos / MAX(cleaner_stats.segs_cleaned -
avg * avg, 1.0);
syslog(LOG_INFO, "bytes read: %" PRId64, cleaner_stats.bytes_read);
syslog(LOG_INFO, "bytes written: %" PRId64, cleaner_stats.bytes_written);
syslog(LOG_INFO, "segments cleaned: %" PRId64, cleaner_stats.segs_cleaned);
#if 0
/* "Empty segments" is meaningless, since the kernel handles those */
syslog(LOG_INFO, "empty segments: %" PRId64, cleaner_stats.segs_empty);
#endif
syslog(LOG_INFO, "error segments: %" PRId64, cleaner_stats.segs_error);
syslog(LOG_INFO, "utilization total: %g", cleaner_stats.util_tot);
syslog(LOG_INFO, "utilization sos: %g", cleaner_stats.util_sos);
syslog(LOG_INFO, "utilization avg: %4.2f", avg);
syslog(LOG_INFO, "utilization sdev: %9.6f", stddev);
if (debug)
bufstats();
if (sig == SIGUSR2)
memset(&cleaner_stats, 0, sizeof(cleaner_stats));
if (sig == SIGINT)
exit(0);
}
static void
sig_exit(int sig)
{
exit(0);
}
static void
usage(void)
{
errx(1, "usage: lfs_cleanerd [-bcdfmqs] [-i segnum] [-l load] "
"[-n nsegs] [-r report_freq] [-t timeout] fs_name ...");
}
/*
* Main.
*/
int
main(int argc, char **argv)
{
int i, opt, error, r, loopcount;
struct timeval tv;
CLEANERINFO ci;
#ifndef USE_CLIENT_SERVER
char *cp, *pidname;
#endif
/*
* Set up defaults
*/
atatime = 1;
segwait_timeout = 300; /* Five minutes */
load_threshold = 0.2;
stat_report = 0;
inval_segment = -1;
copylog_filename = NULL;
/*
* Parse command-line arguments
*/
while ((opt = getopt(argc, argv, "bC:cdfi:l:mn:qr:st:")) != -1) {
switch (opt) {
case 'b': /* Use bytes written, not segments read */
use_bytes = 1;
break;
case 'C': /* copy log */
copylog_filename = optarg;
break;
case 'c': /* Coalesce files */
do_coalesce++;
break;
case 'd': /* Debug mode. */
debug++;
break;
case 'f': /* Use fs idle time rather than cpu idle */
use_fs_idle = 1;
break;
case 'i': /* Invalidate this segment */
inval_segment = atoi(optarg);
break;
case 'l': /* Load below which to clean */
load_threshold = atof(optarg);
break;
case 'm': /* [compat only] */
break;
case 'n': /* How many segs to clean at once */
atatime = atoi(optarg);
break;
case 'q': /* Quit after one run */
do_quit = 1;
break;
case 'r': /* Report every stat_report segments */
stat_report = atoi(optarg);
break;
case 's': /* Small writes */
do_small = 1;
break;
case 't': /* timeout */
segwait_timeout = atoi(optarg);
break;
default:
usage();
/* NOTREACHED */
}
}
argc -= optind;
argv += optind;
if (argc < 1)
usage();
if (inval_segment >= 0 && argc != 1) {
errx(1, "lfs_cleanerd: may only specify one filesystem when "
"using -i flag");
}
/*
* Set up daemon mode or verbose debug mode
*/
if (debug) {
openlog("lfs_cleanerd", LOG_NDELAY | LOG_PID | LOG_PERROR,
LOG_DAEMON);
signal(SIGINT, sig_report);
} else {
if (daemon(0, 0) == -1)
err(1, "lfs_cleanerd: couldn't become a daemon!");
openlog("lfs_cleanerd", LOG_NDELAY | LOG_PID, LOG_DAEMON);
signal(SIGINT, sig_exit);
}
/*
* Look for an already-running master daemon. If there is one,
* send it our filesystems to add to its list and exit.
* If there is none, become the master.
*/
#ifdef USE_CLIENT_SERVER
try_to_become_master(argc, argv);
#else
/* XXX think about this */
asprintf(&pidname, "lfs_cleanerd:m:%s", argv[0]);
if (pidname == NULL) {
syslog(LOG_ERR, "malloc failed: %m");
exit(1);
}
for (cp = pidname; cp != NULL; cp = strchr(cp, '/'))
*cp = '|';
pidfile(pidname);
#endif
/*
* Signals mean daemon should report its statistics
*/
memset(&cleaner_stats, 0, sizeof(cleaner_stats));
signal(SIGUSR1, sig_report);
signal(SIGUSR2, sig_report);
/*
* Start up buffer cache. We only use this for the Ifile,
* and we will resize it if necessary, so it can start small.
*/
bufinit(4);
#ifdef REPAIR_ZERO_FINFO
{
BLOCK_INFO *bip = NULL;
int bic = 0;
nfss = 1;
fsp = (struct clfs **)malloc(sizeof(*fsp));
fsp[0] = (struct clfs *)calloc(1, sizeof(**fsp));
if (init_unmounted_fs(fsp[0], argv[0]) < 0) {
err(1, "init_unmounted_fs");
}
dlog("Filesystem has %d segments", fsp[0]->lfs_nseg);
for (i = 0; i < fsp[0]->lfs_nseg; i++) {
load_segment(fsp[0], i, &bip, &bic);
bic = 0;
}
exit(0);
}
#endif
/*
* Initialize cleaning structures, open devices, etc.
*/
nfss = argc;
fsp = (struct clfs **)malloc(nfss * sizeof(*fsp));
for (i = 0; i < nfss; i++) {
fsp[i] = (struct clfs *)calloc(1, sizeof(**fsp));
if ((r = init_fs(fsp[i], argv[i])) < 0) {
syslog(LOG_ERR, "%s: couldn't init: error code %d",
argv[i], r);
handle_error(fsp, i);
--i; /* Do the new #i over again */
}
}
/*
* If asked to coalesce, do so and exit.
*/
if (do_coalesce) {
for (i = 0; i < nfss; i++)
clean_all_inodes(fsp[i]);
exit(0);
}
/*
* If asked to invalidate a segment, do that and exit.
*/
if (inval_segment >= 0) {
invalidate_segment(fsp[0], inval_segment);
exit(0);
}
/*
* Main cleaning loop.
*/
loopcount = 0;
while (nfss > 0) {
int cleaned_one;
do {
#ifdef USE_CLIENT_SERVER
check_control_socket();
#endif
cleaned_one = 0;
for (i = 0; i < nfss; i++) {
if ((error = needs_cleaning(fsp[i], &ci)) < 0) {
handle_error(fsp, i);
continue;
}
if (error == 0) /* No need to clean */
continue;
reload_ifile(fsp[i]);
if (clean_fs(fsp[i], &ci) < 0) {
handle_error(fsp, i);
continue;
}
++cleaned_one;
}
++loopcount;
if (stat_report && loopcount % stat_report == 0)
sig_report(0);
if (do_quit)
exit(0);
} while(cleaned_one);
tv.tv_sec = segwait_timeout;
tv.tv_usec = 0;
fcntl(fsp[0]->clfs_ifilefd, LFCNSEGWAITALL, &tv);
}
/* NOTREACHED */
return 0;
}