360 lines
11 KiB
C
360 lines
11 KiB
C
/* $NetBSD: tcds_dma.c,v 1.28 1999/03/15 05:28:07 nisimura Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994 Peter Galbavy. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Peter Galbavy.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
|
|
|
|
__KERNEL_RCSID(0, "$NetBSD: tcds_dma.c,v 1.28 1999/03/15 05:28:07 nisimura Exp $");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
|
|
#include <vm/vm.h>
|
|
|
|
#include <dev/scsipi/scsi_all.h>
|
|
#include <dev/scsipi/scsipi_all.h>
|
|
#include <dev/scsipi/scsiconf.h>
|
|
|
|
#include <dev/ic/ncr53c9xreg.h>
|
|
#include <dev/ic/ncr53c9xvar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/tc/tcvar.h>
|
|
#include <alpha/tc/tcdsreg.h>
|
|
#include <alpha/tc/tcdsvar.h>
|
|
#include <alpha/tc/ascvar.h>
|
|
|
|
void
|
|
tcds_dma_reset(sc)
|
|
struct tcds_slotconfig *sc;
|
|
{
|
|
/* TCDS SCSI disable/reset/enable. */
|
|
tcds_scsi_reset(sc); /* XXX */
|
|
|
|
sc->sc_active = 0; /* and of course we aren't */
|
|
}
|
|
|
|
int
|
|
tcds_dma_isintr(sc)
|
|
struct tcds_slotconfig *sc;
|
|
{
|
|
int x;
|
|
|
|
x = tcds_scsi_isintr(sc, 1);
|
|
|
|
/* XXX */
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* Pseudo (chained) interrupt from the asc driver to kick the
|
|
* current running DMA transfer. I am relying on ascintr() to
|
|
* pickup and clean errors for now
|
|
*
|
|
* return 1 if it was a DMA continue.
|
|
*/
|
|
int
|
|
tcds_dma_intr(sc)
|
|
struct tcds_slotconfig *sc;
|
|
{
|
|
struct ncr53c9x_softc *nsc = &sc->sc_asc->sc_ncr53c9x;
|
|
bus_dmamap_t map = sc->sc_dmamap;
|
|
u_int32_t dud;
|
|
int trans, resid;
|
|
u_int32_t *addr, dudmask;
|
|
u_int8_t tcl, tcm, tch;
|
|
bus_addr_t pa;
|
|
|
|
NCR_DMA(("tcds_dma %d: intr", sc->sc_slot));
|
|
|
|
if (tcds_scsi_iserr(sc))
|
|
return (0);
|
|
|
|
/* This is an "assertion" :) */
|
|
if (sc->sc_active == 0)
|
|
panic("tcds_dma_intr: DMA wasn't active");
|
|
|
|
/* DMA has stopped */
|
|
tcds_dma_enable(sc, 0);
|
|
sc->sc_active = 0;
|
|
|
|
if (sc->sc_dmasize == 0) {
|
|
/* A "Transfer Pad" operation completed */
|
|
tcl = NCR_READ_REG(nsc, NCR_TCL);
|
|
tcm = NCR_READ_REG(nsc, NCR_TCM);
|
|
NCR_DMA(("tcds_dma_intr: discarded %d bytes (tcl=%d, tcm=%d)\n",
|
|
tcl | (tcm << 8), tcl, tcm));
|
|
return 0;
|
|
}
|
|
|
|
resid = 0;
|
|
if (!sc->sc_iswrite &&
|
|
(resid = (NCR_READ_REG(nsc, NCR_FFLAG) & NCRFIFO_FF)) != 0) {
|
|
NCR_DMA(("dmaintr: empty esp FIFO of %d ", resid));
|
|
DELAY(1);
|
|
}
|
|
|
|
resid += (tcl = NCR_READ_REG(nsc, NCR_TCL));
|
|
resid += (tcm = NCR_READ_REG(nsc, NCR_TCM)) << 8;
|
|
if (nsc->sc_rev == NCR_VARIANT_ESP200)
|
|
resid += (tch = NCR_READ_REG(nsc, NCR_TCH)) << 16;
|
|
else
|
|
tch = 0;
|
|
|
|
if (resid == 0 && (nsc->sc_rev <= NCR_VARIANT_ESP100A) &&
|
|
(nsc->sc_espstat & NCRSTAT_TC) == 0)
|
|
resid = 65536;
|
|
|
|
trans = sc->sc_dmasize - resid;
|
|
if (trans < 0) { /* transferred < 0 ? */
|
|
printf("tcds_dma %d: xfer (%d) > req (%d)\n",
|
|
sc->sc_slot, trans, (int)sc->sc_dmasize);
|
|
trans = sc->sc_dmasize;
|
|
}
|
|
|
|
NCR_DMA(("tcds_dma_intr: tcl=%d, tcm=%d, tch=%d; trans=%d, resid=%d\n",
|
|
tcl, tcm, tch, trans, resid));
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
|
|
(sc->sc_iswrite ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
|
|
|
|
/*
|
|
* Clean up unaligned DMAs into main memory.
|
|
*/
|
|
if (sc->sc_iswrite) {
|
|
/* Handle unaligned starting address, length. */
|
|
dud = bus_space_read_4(sc->sc_bst, sc->sc_bsh, sc->sc_dud0);
|
|
if ((dud & TCDS_DUD0_VALIDBITS) != 0) {
|
|
addr = (u_int32_t *)
|
|
((paddr_t)*sc->sc_dmaaddr & ~0x3);
|
|
dudmask = 0;
|
|
if (dud & TCDS_DUD0_VALID00)
|
|
panic("tcds_dma: dud0 byte 0 valid");
|
|
if (dud & TCDS_DUD0_VALID01)
|
|
dudmask |= TCDS_DUD_BYTE01;
|
|
if (dud & TCDS_DUD0_VALID10)
|
|
dudmask |= TCDS_DUD_BYTE10;
|
|
#ifdef DIAGNOSTIC
|
|
if (dud & TCDS_DUD0_VALID11)
|
|
dudmask |= TCDS_DUD_BYTE11;
|
|
#endif
|
|
NCR_DMA(("dud0 at 0x%p dudmask 0x%x\n",
|
|
addr, dudmask));
|
|
*addr = (*addr & ~dudmask) | (dud & dudmask);
|
|
}
|
|
dud = bus_space_read_4(sc->sc_bst, sc->sc_bsh, sc->sc_dud1);
|
|
if ((dud & TCDS_DUD1_VALIDBITS) != 0) {
|
|
pa = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
|
|
sc->sc_sda) << 2;
|
|
dudmask = 0;
|
|
if (dud & TCDS_DUD1_VALID00)
|
|
dudmask |= TCDS_DUD_BYTE00;
|
|
if (dud & TCDS_DUD1_VALID01)
|
|
dudmask |= TCDS_DUD_BYTE01;
|
|
if (dud & TCDS_DUD1_VALID10)
|
|
dudmask |= TCDS_DUD_BYTE10;
|
|
#ifdef DIAGNOSTIC
|
|
if (dud & TCDS_DUD1_VALID11)
|
|
panic("tcds_dma: dud1 byte 3 valid");
|
|
#endif
|
|
NCR_DMA(("dud1 at 0x%lx dudmask 0x%x\n",
|
|
pa, dudmask));
|
|
/* XXX Fix TC_PHYS_TO_UNCACHED() */
|
|
#if defined(__alpha__)
|
|
addr = (u_int32_t *)ALPHA_PHYS_TO_K0SEG(pa);
|
|
#elif defined(__mips__)
|
|
addr = (u_int32_t *)MIPS_PHYS_TO_KSEG1(pa);
|
|
#else
|
|
#error TurboChannel only exists on DECs, folks...
|
|
#endif
|
|
*addr = (*addr & ~dudmask) | (dud & dudmask);
|
|
}
|
|
/* XXX deal with saved residual byte? */
|
|
}
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, map);
|
|
|
|
*sc->sc_dmalen -= trans;
|
|
*sc->sc_dmaaddr += trans;
|
|
|
|
#if 0 /* this is not normal operation just yet */
|
|
if (*sc->sc_dmalen == 0 ||
|
|
nsc->sc_phase != nsc->sc_prevphase)
|
|
return 0;
|
|
|
|
/* and again */
|
|
dma_start(sc, sc->sc_dmaaddr, sc->sc_dmalen, sc->sc_iswrite);
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#define DMAMAX(a) (0x02000 - ((a) & 0x1fff))
|
|
|
|
/*
|
|
* start a dma transfer or keep it going
|
|
*/
|
|
int
|
|
tcds_dma_setup(sc, addr, len, datain, dmasize)
|
|
struct tcds_slotconfig *sc;
|
|
caddr_t *addr;
|
|
size_t *len, *dmasize;
|
|
int datain; /* DMA into main memory */
|
|
{
|
|
bus_dmamap_t map = sc->sc_dmamap;
|
|
u_int32_t dic;
|
|
size_t size;
|
|
|
|
sc->sc_dmaaddr = addr;
|
|
sc->sc_dmalen = len;
|
|
sc->sc_iswrite = datain;
|
|
|
|
NCR_DMA(("tcds_dma %d: start %d@%p,%d\n", sc->sc_slot,
|
|
(int)*sc->sc_dmalen, *sc->sc_dmaaddr, sc->sc_iswrite));
|
|
|
|
/*
|
|
* the rules say we cannot transfer more than the limit
|
|
* of this DMA chip (64k) and we cannot cross a 8k boundary.
|
|
*/
|
|
|
|
size = min(*dmasize, DMAMAX((size_t) *sc->sc_dmaaddr));
|
|
*dmasize = sc->sc_dmasize = size;
|
|
|
|
NCR_DMA(("dma_start: dmasize = %d\n", (int)sc->sc_dmasize));
|
|
|
|
if (bus_dmamap_load(sc->sc_dmat, map, *addr, size,
|
|
NULL, BUS_DMA_NOWAIT)) {
|
|
/*
|
|
* XXX Should return an error, here, but the upper-layer
|
|
* XXX doesn't check the return value!
|
|
*/
|
|
panic("tcds_dma_setup: dmamap load failed");
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
|
|
(sc->sc_iswrite ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
|
|
|
|
/* Load address, set/clear unaligned transfer and read/write bits. */
|
|
bus_space_write_4(sc->sc_bst, sc->sc_bsh, sc->sc_sda,
|
|
map->dm_segs[0].ds_addr >> 2);
|
|
dic = bus_space_read_4(sc->sc_bst, sc->sc_bsh, sc->sc_dic);
|
|
dic &= ~TCDS_DIC_ADDRMASK;
|
|
dic |= map->dm_segs[0].ds_addr & TCDS_DIC_ADDRMASK;
|
|
if (datain)
|
|
dic |= TCDS_DIC_WRITE;
|
|
else
|
|
dic &= ~TCDS_DIC_WRITE;
|
|
bus_space_write_4(sc->sc_bst, sc->sc_bsh, sc->sc_dic, dic);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
tcds_dma_go(sc)
|
|
struct tcds_slotconfig *sc;
|
|
{
|
|
|
|
/* mark unit as DMA-active */
|
|
sc->sc_active = 1;
|
|
|
|
/* Start DMA */
|
|
tcds_dma_enable(sc, 1);
|
|
}
|
|
|
|
int
|
|
tcds_dma_isactive(sc)
|
|
struct tcds_slotconfig *sc;
|
|
{
|
|
|
|
return (sc->sc_active);
|
|
}
|
|
|
|
int
|
|
tcds_dma_init(sc)
|
|
struct tcds_slotconfig *sc;
|
|
{
|
|
|
|
/*
|
|
* The TCDS ASIC cannot DMA across 8k boundaries, and this
|
|
* driver is written such that each DMA segment gets a new
|
|
* call to tcds_dma_setup(). Thus, the DMA map only needs
|
|
* to support 8k transfers.
|
|
*/
|
|
return (bus_dmamap_create(sc->sc_dmat, 0x2000, 1, 0x2000,
|
|
0x2000, BUS_DMA_NOWAIT, &sc->sc_dmamap));
|
|
}
|