NetBSD/sys/arch/sparc64/dev/sbus.c

764 lines
21 KiB
C

/* $NetBSD: sbus.c,v 1.78 2007/03/04 06:00:49 christos Exp $ */
/*
* Copyright (c) 1999-2002 Eduardo Horvath
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Sbus stuff.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.78 2007/03/04 06:00:49 christos Exp $");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/extent.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/reboot.h>
#include <machine/bus.h>
#include <machine/openfirm.h>
#include <sparc64/sparc64/cache.h>
#include <sparc64/dev/iommureg.h>
#include <sparc64/dev/iommuvar.h>
#include <sparc64/dev/sbusreg.h>
#include <dev/sbus/sbusvar.h>
#include <uvm/uvm_extern.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/sparc64.h>
#ifdef DEBUG
#define SDB_DVMA 0x1
#define SDB_INTR 0x2
int sbus_debug = 0;
#define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0)
#else
#define DPRINTF(l, s)
#endif
void sbusreset(int);
static bus_dma_tag_t sbus_alloc_dmatag(struct sbus_softc *);
static int sbus_get_intr(struct sbus_softc *, int, struct openprom_intr **,
int *, int);
static int sbus_overtemp(void *);
static int _sbus_bus_map(
bus_space_tag_t,
bus_addr_t, /*offset*/
bus_size_t, /*size*/
int, /*flags*/
vaddr_t, /* XXX unused -- compat w/sparc */
bus_space_handle_t *);
static void *sbus_intr_establish(
bus_space_tag_t,
int, /*`device class' priority*/
int, /*Sbus interrupt level*/
int (*)(void *), /*handler*/
void *, /*handler arg*/
void (*)(void)); /*optional fast trap*/
/* autoconfiguration driver */
int sbus_match(struct device *, struct cfdata *, void *);
void sbus_attach(struct device *, struct device *, void *);
CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
sbus_match, sbus_attach, NULL, NULL);
extern struct cfdriver sbus_cd;
/*
* DVMA routines
*/
int sbus_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t,
struct proc *, int);
void sbus_dmamap_unload(bus_dma_tag_t, bus_dmamap_t);
int sbus_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *,
int, bus_size_t, int);
void sbus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t,
int);
int sbus_dmamem_alloc(bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags);
void sbus_dmamem_free(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs);
int sbus_dmamem_map(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs,
size_t size, void **kvap, int flags);
void sbus_dmamem_unmap(bus_dma_tag_t tag, void *kva, size_t size);
/*
* Child devices receive the Sbus interrupt level in their attach
* arguments. We translate these to CPU IPLs using the following
* tables. Note: obio bus interrupt levels are identical to the
* processor IPL.
*
* The second set of tables is used when the Sbus interrupt level
* cannot be had from the PROM as an `interrupt' property. We then
* fall back on the `intr' property which contains the CPU IPL.
*/
/*
* This value is or'ed into the attach args' interrupt level cookie
* if the interrupt level comes from an `intr' property, i.e. it is
* not an Sbus interrupt level.
*/
#define SBUS_INTR_COMPAT 0x80000000
/*
* Print the location of some sbus-attached device (called just
* before attaching that device). If `sbus' is not NULL, the
* device was found but not configured; print the sbus as well.
* Return UNCONF (config_find ignores this if the device was configured).
*/
int
sbus_print(void *args, const char *busname)
{
struct sbus_attach_args *sa = args;
int i;
if (busname)
aprint_normal("%s at %s", sa->sa_name, busname);
aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
(u_long)sa->sa_offset);
for (i = 0; i < sa->sa_nintr; i++) {
struct openprom_intr *sbi = &sa->sa_intr[i];
aprint_normal(" vector %lx ipl %ld",
(u_long)sbi->oi_vec,
(long)INTLEV(sbi->oi_pri));
}
return (UNCONF);
}
int
sbus_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct mainbus_attach_args *ma = aux;
return (strcmp(cf->cf_name, ma->ma_name) == 0);
}
/*
* Attach an Sbus.
*/
void
sbus_attach(struct device *parent, struct device *self, void *aux)
{
struct sbus_softc *sc = (struct sbus_softc *)self;
struct mainbus_attach_args *ma = aux;
struct intrhand *ih;
int ipl;
char *name;
int node = ma->ma_node;
int node0, error;
bus_space_tag_t sbt;
struct sbus_attach_args sa;
sc->sc_bustag = ma->ma_bustag;
sc->sc_dmatag = ma->ma_dmatag;
sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
/* XXXX Use sysio PROM mappings for interrupt vector regs. */
sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh);
sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
sc->sc_bh);
#ifdef _LP64
/*
* 32-bit kernels use virtual addresses for bus space operations
* so we may as well use the prom VA.
*
* 64-bit kernels use physical addresses for bus space operations
* so mapping this in again will reduce TLB thrashing.
*/
if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
printf("%s: cannot map registers\n", self->dv_xname);
return;
}
#endif
/*
* Record clock frequency for synchronous SCSI.
* IS THIS THE CORRECT DEFAULT??
*/
sc->sc_clockfreq = prom_getpropint(node, "clock-frequency",
25*1000*1000);
printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
sbt = bus_space_tag_alloc(sc->sc_bustag, sc);
sbt->type = SBUS_BUS_SPACE;
sbt->sparc_bus_map = _sbus_bus_map;
sbt->sparc_intr_establish = sbus_intr_establish;
sc->sc_dmatag = sbus_alloc_dmatag(sc);
/*
* Get the SBus burst transfer size if burst transfers are supported
*/
sc->sc_burst = prom_getpropint(node, "burst-sizes", 0);
/*
* Collect address translations from the OBP.
*/
error = prom_getprop(node, "ranges", sizeof(struct openprom_range),
&sbt->nranges, &sbt->ranges);
if (error)
panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
/* initialize the IOMMU */
/* punch in our copies */
sc->sc_is.is_bustag = sc->sc_bustag;
bus_space_subregion(sc->sc_bustag, sc->sc_bh,
(vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
sizeof (struct iommureg), &sc->sc_is.is_iommu);
/* initialize our strbuf_ctl */
sc->sc_is.is_sb[0] = &sc->sc_sb;
sc->sc_sb.sb_is = &sc->sc_is;
bus_space_subregion(sc->sc_bustag, sc->sc_bh,
(vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
/* Point sb_flush to our flush buffer. */
sc->sc_sb.sb_flush = &sc->sc_flush;
/* give us a nice name.. */
name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
if (name == 0)
panic("couldn't malloc iommu name");
snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname);
iommu_init(name, &sc->sc_is, 0, -1);
/* Enable the over temp intr */
ih = (struct intrhand *)
malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
ih->ih_map = &sc->sc_sysio->therm_int_map;
ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
ih->ih_fun = sbus_overtemp;
ipl = 1;
ih->ih_pil = (1<<ipl);
ih->ih_number = INTVEC(*(ih->ih_map));
intr_establish(ipl, ih);
*(ih->ih_map) |= INTMAP_V|(CPU_UPAID << INTMAP_TID_SHIFT);
/*
* Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
* NULL DMA pointer will be translated by the first page of the IOTSB.
* To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
*/
{
u_long dummy;
if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
(u_long *)&dummy) != 0)
panic("sbus iommu: can't toss first dvma page");
}
/*
* Loop through ROM children, fixing any relative addresses
* and then configuring each device.
* `specials' is an array of device names that are treated
* specially:
*/
node0 = OF_child(node);
for (node = node0; node; node = OF_peer(node)) {
char *name1 = prom_getpropstring(node, "name");
if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
node, &sa) != 0) {
printf("sbus_attach: %s: incomplete\n", name1);
continue;
}
(void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
sbus_destroy_attach_args(&sa);
}
}
int
sbus_setup_attach_args(struct sbus_softc *sc, bus_space_tag_t bustag,
bus_dma_tag_t dmatag, int node, struct sbus_attach_args *sa)
{
/*struct openprom_addr sbusreg;*/
/*int base;*/
int error;
int n;
memset(sa, 0, sizeof(struct sbus_attach_args));
n = 0;
error = prom_getprop(node, "name", 1, &n, &sa->sa_name);
if (error != 0)
return (error);
sa->sa_name[n] = '\0';
sa->sa_bustag = bustag;
sa->sa_dmatag = dmatag;
sa->sa_node = node;
sa->sa_frequency = sc->sc_clockfreq;
error = prom_getprop(node, "reg", sizeof(struct openprom_addr),
&sa->sa_nreg, &sa->sa_reg);
if (error != 0) {
char buf[32];
if (error != ENOENT ||
!node_has_property(node, "device_type") ||
strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf),
"hierarchical") != 0)
return (error);
}
for (n = 0; n < sa->sa_nreg; n++) {
/* Convert to relative addressing, if necessary */
uint32_t base = sa->sa_reg[n].oa_base;
if (SBUS_ABS(base)) {
sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
}
}
if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
sa->sa_slot)) != 0)
return (error);
error = prom_getprop(node, "address", sizeof(uint32_t),
&sa->sa_npromvaddrs, &sa->sa_promvaddrs);
if (error != 0 && error != ENOENT)
return (error);
return (0);
}
void
sbus_destroy_attach_args(struct sbus_attach_args *sa)
{
if (sa->sa_name != NULL)
free(sa->sa_name, M_DEVBUF);
if (sa->sa_nreg != 0)
free(sa->sa_reg, M_DEVBUF);
if (sa->sa_intr)
free(sa->sa_intr, M_DEVBUF);
if (sa->sa_promvaddrs)
free((void *)sa->sa_promvaddrs, M_DEVBUF);
memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/
}
int
_sbus_bus_map(bus_space_tag_t t, bus_addr_t addr, bus_size_t size, int flags,
vaddr_t v, bus_space_handle_t *hp)
{
int error;
if (t->ranges != NULL) {
if ((error = bus_space_translate_address_generic(
t->ranges, t->nranges, &addr)) != 0)
return (error);
}
return (bus_space_map(t->parent, addr, size, flags, hp));
}
bus_addr_t
sbus_bus_addr(bus_space_tag_t t, u_int btype, u_int offset)
{
int slot = btype;
struct openprom_range *rp;
int i;
for (i = 0; i < t->nranges; i++) {
rp = &t->ranges[i];
if (rp->or_child_space != slot)
continue;
return BUS_ADDR(rp->or_parent_space,
rp->or_parent_base + offset);
}
return (0);
}
/*
* Each attached device calls sbus_establish after it initializes
* its sbusdev portion.
*/
void
sbus_establish(register struct sbusdev *sd, register struct device *dev)
{
register struct sbus_softc *sc;
register struct device *curdev;
/*
* We have to look for the sbus by name, since it is not necessarily
* our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
* We don't just use the device structure of the above-attached
* sbus, since we might (in the future) support multiple sbus's.
*/
for (curdev = device_parent(dev); ; curdev = device_parent(curdev)) {
if (!curdev || !curdev->dv_xname)
panic("sbus_establish: can't find sbus parent for %s",
sd->sd_dev->dv_xname
? sd->sd_dev->dv_xname
: "<unknown>" );
if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
break;
}
sc = (struct sbus_softc *) curdev;
sd->sd_dev = dev;
sd->sd_bchain = sc->sc_sbdev;
sc->sc_sbdev = sd;
}
/*
* Reset the given sbus.
*/
void
sbusreset(int sbus)
{
register struct sbusdev *sd;
struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
struct device *dev;
printf("reset %s:", sc->sc_dev.dv_xname);
for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
if (sd->sd_reset) {
dev = sd->sd_dev;
(*sd->sd_reset)(dev);
printf(" %s", dev->dv_xname);
}
}
/* Reload iommu regs */
iommu_reset(&sc->sc_is);
}
/*
* Handle an overtemp situation.
*
* SPARCs have temperature sensors which generate interrupts
* if the machine's temperature exceeds a certain threshold.
* This handles the interrupt and powers off the machine.
* The same needs to be done to PCI controller drivers.
*/
int
sbus_overtemp(void *arg)
{
/* Should try a clean shutdown first */
printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
delay(20);
cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
}
/*
* Get interrupt attributes for an Sbus device.
*/
int
sbus_get_intr(struct sbus_softc *sc, int node, struct openprom_intr **ipp,
int *np, int slot)
{
int *ipl;
int n, i;
char buf[32];
/*
* The `interrupts' property contains the Sbus interrupt level.
*/
ipl = NULL;
if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) {
struct openprom_intr *ip;
int pri;
/* Default to interrupt level 2 -- otherwise unused */
pri = INTLEVENCODE(2);
/* Change format to an `struct sbus_intr' array */
ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
M_NOWAIT);
if (ip == NULL)
return (ENOMEM);
/*
* Now things get ugly. We need to take this value which is
* the interrupt vector number and encode the IPL into it
* somehow. Luckily, the interrupt vector has lots of free
* space and we can easily stuff the IPL in there for a while.
*/
prom_getpropstringA(node, "device_type", buf, sizeof buf);
if (buf[0] == '\0')
prom_getpropstringA(node, "name", buf, sizeof buf);
for (i = 0; intrmap[i].in_class; i++)
if (strcmp(intrmap[i].in_class, buf) == 0) {
pri = INTLEVENCODE(intrmap[i].in_lev);
break;
}
/*
* Sbus card devices need the slot number encoded into
* the vector as this is generally not done.
*/
if ((ipl[0] & INTMAP_OBIO) == 0)
pri |= slot << 3;
for (n = 0; n < *np; n++) {
/*
* We encode vector and priority into sbi_pri so we
* can pass them as a unit. This will go away if
* sbus_establish ever takes an sbus_intr instead
* of an integer level.
* Stuff the real vector in sbi_vec.
*/
ip[n].oi_pri = pri|ipl[n];
ip[n].oi_vec = ipl[n];
}
free(ipl, M_DEVBUF);
*ipp = ip;
}
return (0);
}
/*
* Install an interrupt handler for an Sbus device.
*/
void *
sbus_intr_establish(bus_space_tag_t t, int pri, int level,
int (*handler)(void *), void *arg, void (*fastvec)(void))
{
struct sbus_softc *sc = t->cookie;
struct intrhand *ih;
int ipl;
long vec = pri;
ih = (struct intrhand *)
malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
return (NULL);
if ((vec & SBUS_INTR_COMPAT) != 0)
ipl = vec & ~SBUS_INTR_COMPAT;
else {
/* Decode and remove IPL */
ipl = INTLEV(vec);
vec = INTVEC(vec);
DPRINTF(SDB_INTR,
("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
(long)ipl, (long)vec, (u_long)intrlev[vec]));
if ((vec & INTMAP_OBIO) == 0) {
/* We're in an SBUS slot */
/* Register the map and clear intr registers */
int slot = INTSLOT(pri);
ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
#ifdef DEBUG
if (sbus_debug & SDB_INTR) {
int64_t imap = *ih->ih_map;
printf("SBUS %lx IRQ as %llx in slot %d\n",
(long)vec, (long long)imap, slot);
printf("\tmap addr %p clr addr %p\n",
ih->ih_map, ih->ih_clr);
}
#endif
/* Enable the interrupt */
vec |= INTMAP_V | sc->sc_ign |
(CPU_UPAID << INTMAP_TID_SHIFT);
*(ih->ih_map) = vec;
} else {
int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
int64_t imap = 0;
int i;
/* Insert IGN */
vec |= sc->sc_ign;
for (i = 0; &intrptr[i] <=
(int64_t *)&sc->sc_sysio->reserved_int_map &&
INTVEC(imap = intrptr[i]) != INTVEC(vec); i++)
;
if (INTVEC(imap) == INTVEC(vec)) {
DPRINTF(SDB_INTR,
("OBIO %lx IRQ as %lx in slot %d\n",
vec, (long)imap, i));
/* Register the map and clear intr registers */
ih->ih_map = &intrptr[i];
intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
ih->ih_clr = &intrptr[i];
/* Enable the interrupt */
imap |= INTMAP_V
|(CPU_UPAID << INTMAP_TID_SHIFT);
/* XXXX */
*(ih->ih_map) = imap;
} else
panic("IRQ not found!");
}
}
#ifdef DEBUG
if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
#endif
ih->ih_fun = handler;
ih->ih_arg = arg;
ih->ih_number = vec;
ih->ih_pil = (1<<ipl);
intr_establish(ipl, ih);
return (ih);
}
static bus_dma_tag_t
sbus_alloc_dmatag(struct sbus_softc *sc)
{
bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
sdt = (bus_dma_tag_t)
malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
if (sdt == NULL)
/* Panic? */
return (psdt);
sdt->_cookie = sc;
sdt->_parent = psdt;
#define PCOPY(x) sdt->x = psdt->x
PCOPY(_dmamap_create);
PCOPY(_dmamap_destroy);
sdt->_dmamap_load = sbus_dmamap_load;
PCOPY(_dmamap_load_mbuf);
PCOPY(_dmamap_load_uio);
sdt->_dmamap_load_raw = sbus_dmamap_load_raw;
sdt->_dmamap_unload = sbus_dmamap_unload;
sdt->_dmamap_sync = sbus_dmamap_sync;
sdt->_dmamem_alloc = sbus_dmamem_alloc;
sdt->_dmamem_free = sbus_dmamem_free;
sdt->_dmamem_map = sbus_dmamem_map;
sdt->_dmamem_unmap = sbus_dmamem_unmap;
PCOPY(_dmamem_mmap);
#undef PCOPY
sc->sc_dmatag = sdt;
return (sdt);
}
int
sbus_dmamap_load(bus_dma_tag_t tag, bus_dmamap_t map, void *buf,
bus_size_t buflen, struct proc *p, int flags)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags));
}
int
sbus_dmamap_load_raw(bus_dma_tag_t tag, bus_dmamap_t map,
bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size));
}
void
sbus_dmamap_unload(bus_dma_tag_t tag, bus_dmamap_t map)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
iommu_dvmamap_unload(tag, &sc->sc_sb, map);
}
void
sbus_dmamap_sync(bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t offset,
bus_size_t len, int ops)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) {
/* Flush the CPU then the IOMMU */
bus_dmamap_sync(tag->_parent, map, offset, len, ops);
iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
}
if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) {
/* Flush the IOMMU then the CPU */
iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
bus_dmamap_sync(tag->_parent, map, offset, len, ops);
}
}
int
sbus_dmamem_alloc(bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment,
bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
int flags)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary,
segs, nsegs, rsegs, flags));
}
void
sbus_dmamem_free(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs);
}
int
sbus_dmamem_map(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs,
size_t size, void **kvap, int flags)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags));
}
void
sbus_dmamem_unmap(bus_dma_tag_t tag, void *kva, size_t size)
{
struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size);
}