NetBSD/sys/dev/midictl.c
jmcneill 8a962f23f2 Merge jmcneill-audiomp3 branch, which is derived from ad-audiomp2. From
the original ad-audiomp branch notes:

  Add MP locking to the audio drivers.

  Making the audio drivers MP safe is necessary before efforts
  can be made to make the VM system MP safe.

  The are two locks per device instance, an ISR lock and
  a character device lock. The ISR lock replaces calls to
  splaudio()/splx(), and will be held across calls to device
  methods which were called at splaudio() before (e.g.
  trigger_output). The character device lock is held across
  calls to nearly all of the methods, excluding some only
  used for initialization, e.g. get_locks.

Welcome to 5.99.57.
2011-11-23 23:07:28 +00:00

733 lines
20 KiB
C

/* $NetBSD: midictl.c,v 1.7 2011/11/23 23:07:31 jmcneill Exp $ */
/*-
* Copyright (c) 2006, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Chapman Flack, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: midictl.c,v 1.7 2011/11/23 23:07:31 jmcneill Exp $");
/*
* See midictl.h for an overview of the purpose and use of this module.
*/
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/kmem.h>
#include "midictl.h"
/*
* The upper part of this file is MIDI-aware, and deals with things like
* decoding MIDI Control Change messages, dealing with the ones that require
* special handling as mode messages or parameter updates, and so on.
*
* It relies on a "store" layer (implemented in the lower part of this file)
* that only must be able to stash away 2-, 8-, or 16-bit quantities (which
* it may pack into larger units as it sees fit) and find them again given
* a class, channel, and key (controller/parameter number).
*
* The MIDI controllers can have 1-, 7-, or 14-bit values; the parameters are
* also 14-bit. The 14-bit values have to be set in two MIDI messages, 7 bits
* at a time. The MIDI layer uses store-managed 2- or 8-bit slots for the
* smaller types, and uses the free high bit to indicate that it has explicitly
* set the value. (Because the store is allowed to pack things, it may 'find'
* a zero entry for a value we never set, because it shares a word with a
* different value that has been set. We know it is not a real value because
* the high bit is clear.)
*
* The 14-bit values are handled similarly: 16-bit store slots are used to hold
* them, with the two free high bits indicating independently whether the MSB
* and the LSB have been explicitly set--as two separate MIDI messages are
* required. If such a control is queried when only one half has been explicitly
* set, the result is as if it had been set to the specified default value
* before the explicit set.
*/
typedef enum { CTL1, CTL7, CTL14, RPN, NRPN } class;
/*
* assert(does_not_apply(KNFNamespaceArgumentAgainstNamesInPrototypes,
* PrototypesOfStaticFunctionsWithinNonIncludedFile));
*/
static void reset_all_controllers(midictl *mc, uint_fast8_t chan);
static void enter14(midictl *mc, uint_fast8_t chan, class c,
uint_fast16_t key, _Bool islsb, uint8_t val);
static uint_fast16_t read14(midictl *mc, uint_fast8_t chan, class c,
uint_fast16_t key, uint_fast16_t dflt);
static class classify(uint_fast16_t *key, _Bool *islsb);
static midictl_notify notify_no_one;
static _Bool store_locate(midictl_store *s, class c,
uint_fast8_t chan, uint_fast16_t key);
/*
* store_extract and store_update operate on the bucket most recently found
* by store_locate on this store. That works because reentrancy of midictl
* functions is limited: they /can/ be reentered during midictl_notify
* callbacks, but not at other arbitrary times. We never call notify /during/
* a locate/extract/update transaction.
*/
static uint16_t store_extract(midictl_store *s, class c,
uint_fast8_t chan, uint_fast16_t key);
static void store_update(midictl_store *s, class c,
uint_fast8_t chan, uint_fast16_t key, uint16_t value);
#define PN_SET 0x8000 /* a parameter number has been explicitly set */
#define C14MSET 0x8000 /* MSB of a 14-bit val has been set */
#define C14LSET 0x4000 /* LSB of a 14-bit val has been set */
#define C7_SET 0x80 /* a 7-bit ctl has been set */
#define C1_SET 2 /* a 1-bit ctl has been set */
/*
* I M P L E M E N T A T I O N O F T H E S T O R E :
*
* MIDI defines a metric plethora of possible controllers, registered
* parameters, and nonregistered parameters: a bit more than 32k possible words
* to store. The saving grace is that only a handful are likely to appear in
* typical MIDI data, and only a handful are likely implemented by or
* interesting to a typical client. So the store implementation needs to be
* suited to a largish but quite sparse data set.
*
* A double-hashed, open address table is used here. Each slot is a uint64
* that contains the match key (control class|channel|ctl-or-PN-number) as
* well as the values for two or more channels. CTL14s, RPNs, and NRPNs can
* be packed two channels to the slot; CTL7s, six channels; and CTL1s get all
* 16 channels into one slot. The channel value used in the key is the lowest
* channel stored in the slot. Open addressing is appropriate here because the
* link fields in a chained approach would be at least 100% overhead, and also,
* we don't delete (MIDICTL_RESET is the only event that logically deletes
* things, and at the moment it does not remove anything from the table, but
* zeroes the stored value). If wanted, the deletion algorithm for open
* addressing could be used, with shrinking/rehashing when the load factor
* drops below 3/8 (1/2 is the current threshold for expansion), and the
* rehashing would relieve the fills-with-DELETED problem in most cases. But
* for now the table never shrinks while the device is open.
*/
struct midictl_store {
uint64_t *table;
uint64_t key;
uint32_t idx;
uint32_t lgcapacity;
uint32_t used;
kcondvar_t cv;
kmutex_t *lock;
bool destroy;
};
#define INITIALLGCAPACITY 6 /* initial capacity 1<<6 */
#define IS_USED 1<<15
#define IS_CTL7 1<<14
#define CTL1SHIFT(chan) (23+((chan)<<1))
#define CTL7SHIFT(chan) (16+((chan)<<3))
#define CTLESHIFT(chan) (23+((chan)<<4))
#define NEED_REHASH(s) ((s)->used * 2 >= 1 << (s)->lgcapacity)
static uint_fast8_t const packing[] = {
[CTL1 ] = 16, /* 16 * 2 bits ==> 32 bits, all chns in one bucket */
[CTL7 ] = 6, /* 6 * 8 bits ==> 48 bits, 6 chns in one bucket */
[CTL14] = 2, /* 2 *16 bits ==> 32 bits, 2 chns in one bucket */
[RPN ] = 2,
[NRPN ] = 2
};
static uint32_t store_idx(uint32_t lgcapacity,
uint64_t *table,
uint64_t key, uint64_t mask);
static void store_rehash(midictl_store *s);
static void store_thread(void *);
int
midictl_open(midictl *mc)
{
midictl_store *s;
int error;
if (mc->lock == NULL)
panic("midictl_open: no lock");
if (NULL == mc->notify)
mc->notify = notify_no_one;
s = kmem_zalloc(sizeof(*s), KM_SLEEP);
if (s == NULL) {
return ENOMEM;
}
s->lgcapacity = INITIALLGCAPACITY;
s->table = kmem_zalloc(sizeof(*s->table)<<s->lgcapacity, KM_SLEEP);
if (s->table == NULL) {
kmem_free(s->table, sizeof(*s->table)<<s->lgcapacity);
kmem_free(s, sizeof(*s));
return ENOMEM;
}
s->lock = mc->lock;
cv_init(&s->cv, "midictlv");
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, store_thread,
s, NULL, "midictlt");
if (error != 0) {
printf("midictl: cannot create kthread, error = %d\n", error);
cv_destroy(&s->cv);
kmem_free(s->table, sizeof(*s->table)<<s->lgcapacity);
kmem_free(s, sizeof(*s));
return error;
}
mc->store = s;
return 0;
}
void
midictl_close(midictl *mc)
{
midictl_store *s;
kmutex_t *lock;
s = mc->store;
lock = s->lock;
mutex_enter(lock);
s->destroy = true;
cv_broadcast(&s->cv);
mutex_exit(lock);
}
void
midictl_change(midictl *mc, uint_fast8_t chan, uint8_t *ctlval)
{
class c;
uint_fast16_t key, val;
_Bool islsb, present;
KASSERT(mutex_owned(mc->lock));
KASSERT(!mc->store->destroy);
switch ( ctlval[0] ) {
/*
* Channel mode messages:
*/
case MIDI_CTRL_OMNI_OFF:
case MIDI_CTRL_OMNI_ON:
case MIDI_CTRL_POLY_OFF:
case MIDI_CTRL_POLY_ON:
if ( chan != mc->base_channel )
return; /* ignored - not on base channel */
else
return; /* XXX ignored anyway - not implemented yet */
case MIDI_CTRL_NOTES_OFF:
mc->notify(mc->cookie, MIDICTL_NOTES_OFF, chan, 0);
return;
case MIDI_CTRL_LOCAL:
mc->notify(mc->cookie, MIDICTL_LOCAL, chan, ctlval[1]);
return;
case MIDI_CTRL_SOUND_OFF:
mc->notify(mc->cookie, MIDICTL_SOUND_OFF, chan, 0);
return;
case MIDI_CTRL_RESET:
reset_all_controllers(mc, chan);
return;
/*
* Control changes to be handled specially:
*/
case MIDI_CTRL_RPN_LSB:
mc-> rpn &= ~0x7f;
mc-> rpn |= PN_SET | (0x7f & ctlval[1]);
mc->nrpn &= ~PN_SET;
return;
case MIDI_CTRL_RPN_MSB:
mc-> rpn &= ~0x7f<<7;
mc-> rpn |= PN_SET | (0x7f & ctlval[1])<<7;
mc->nrpn &= ~PN_SET;
return;
case MIDI_CTRL_NRPN_LSB:
mc->nrpn &= ~0x7f;
mc->nrpn |= PN_SET | (0x7f & ctlval[1]);
mc-> rpn &= ~PN_SET;
return;
case MIDI_CTRL_NRPN_MSB:
mc->nrpn &= ~0x7f<<7;
mc->nrpn |= PN_SET | (0x7f & ctlval[1])<<7;
mc-> rpn &= ~PN_SET;
return;
case MIDI_CTRL_DATA_ENTRY_LSB:
islsb = 1;
goto whichparm;
case MIDI_CTRL_DATA_ENTRY_MSB:
islsb = 0;
whichparm:
if ( 0 == ( (mc->rpn ^ mc->nrpn) & PN_SET ) )
return; /* exactly one must be current */
if ( mc->rpn & PN_SET ) {
key = mc->rpn;
c = RPN;
} else {
key = mc->nrpn;
c = NRPN;
}
key &= 0x3fff;
if ( 0x3fff == key ) /* 'null' parm# to lock out changes */
return;
enter14(mc, chan, c, key, islsb, ctlval[1]);
return;
case MIDI_CTRL_RPN_INCREMENT: /* XXX for later - these are a PITA to */
case MIDI_CTRL_RPN_DECREMENT: /* get right - 'right' varies by param */
/* see http://www.midi.org/about-midi/rp18.shtml */
return;
}
/*
* Channel mode, RPN, and NRPN operations have been ruled out.
* This is an ordinary control change.
*/
key = ctlval[0];
c = classify(&key, &islsb);
switch ( c ) {
case CTL14:
enter14(mc, chan, c, key, islsb, ctlval[1]);
return;
case CTL7:
present = store_locate(mc->store, c, chan, key);
if ( !mc->accept_any_ctl_rpn ) {
if ( !present )
break;
val = store_extract(mc->store, c, chan, key);
if ( !(val&C7_SET) )
break;
}
store_update(mc->store, c, chan, key,
C7_SET | (0x7f & ctlval[1]));
mc->notify(mc->cookie, MIDICTL_CTLR, chan, key);
return;
case CTL1:
present = store_locate(mc->store, c, chan, key);
if ( !mc->accept_any_ctl_rpn ) {
if ( !present )
break;
val = store_extract(mc->store, c, chan, key);
if ( !(val&C1_SET) )
break;
}
store_update(mc->store, c, chan, key,
C1_SET | (ctlval[1]>63));
mc->notify(mc->cookie, MIDICTL_CTLR, chan, key);
return;
case RPN:
case NRPN:
return; /* won't see these - sop for gcc */
}
}
uint_fast16_t
midictl_read(midictl *mc, uint_fast8_t chan, uint_fast8_t ctlr,
uint_fast16_t dflt)
{
uint_fast16_t key, val;
class c;
_Bool islsb, present;
KASSERT(mutex_owned(mc->lock));
KASSERT(!mc->store->destroy);
key = ctlr;
c = classify(&key, &islsb);
switch ( c ) {
case CTL1:
present = store_locate(mc->store, c, chan, key);
if ( !present ||
!(C1_SET&(val = store_extract(mc->store, c, chan, key))) ) {
val = C1_SET | (dflt > 63); /* convert to boolean */
store_update(mc->store, c, chan, key, val);
}
return (val & 1) ? 127 : 0;
case CTL7:
present = store_locate(mc->store, c, chan, key);
if ( !present ||
!(C7_SET&(val = store_extract(mc->store, c, chan, key))) ) {
val = C7_SET | (dflt & 0x7f);
store_update(mc->store, c, chan, key, val);
}
return val & 0x7f;
case CTL14:
KASSERT(!islsb);
return read14(mc, chan, c, key, dflt);
case RPN:
case NRPN:
break; /* sop for gcc */
}
return 0; /* sop for gcc */
}
uint_fast16_t
midictl_rpn_read(midictl *mc, uint_fast8_t chan, uint_fast16_t ctlr,
uint_fast16_t dflt)
{
KASSERT(mutex_owned(mc->lock));
KASSERT(!mc->store->destroy);
return read14(mc, chan, RPN, ctlr, dflt);
}
uint_fast16_t
midictl_nrpn_read(midictl *mc, uint_fast8_t chan, uint_fast16_t ctlr,
uint_fast16_t dflt)
{
KASSERT(mutex_owned(mc->lock));
KASSERT(!mc->store->destroy);
return read14(mc, chan, NRPN, ctlr, dflt);
}
static void
reset_all_controllers(midictl *mc, uint_fast8_t chan)
{
uint_fast16_t ctlr, key;
class c;
_Bool islsb, present;
KASSERT(mutex_owned(mc->lock));
for ( ctlr = 0 ; ; ++ ctlr ) {
switch ( ctlr ) {
/*
* exempt by http://www.midi.org/about-midi/rp15.shtml:
*/
case MIDI_CTRL_BANK_SELECT_MSB: /* 0 */
case MIDI_CTRL_CHANNEL_VOLUME_MSB: /* 7 */
case MIDI_CTRL_PAN_MSB: /* 10 */
continue;
case MIDI_CTRL_BANK_SELECT_LSB: /* 32 */
ctlr += 31; /* skip all these LSBs anyway */
continue;
case MIDI_CTRL_SOUND_VARIATION: /* 70 */
ctlr += 9; /* skip all Sound Controllers */
continue;
case MIDI_CTRL_EFFECT_DEPTH_1: /* 91 */
goto loop_exit; /* nothing more gets reset */
/*
* exempt for our own personal reasons:
*/
case MIDI_CTRL_DATA_ENTRY_MSB: /* 6 */
continue; /* doesn't go to the store */
}
key = ctlr;
c = classify(&key, &islsb);
present = store_locate(mc->store, c, chan, key);
if ( !present )
continue;
store_update(mc->store, c, chan, key, 0); /* no C*SET */
}
loop_exit:
mc->notify(mc->cookie, MIDICTL_RESET, chan, 0);
}
static void
enter14(midictl *mc, uint_fast8_t chan, class c, uint_fast16_t key,
_Bool islsb, uint8_t val)
{
uint16_t stval;
_Bool present;
KASSERT(mutex_owned(mc->lock));
present = store_locate(mc->store, c, chan, key);
stval = (present) ? store_extract(mc->store, c, chan, key) : 0;
if ( !( stval & (C14MSET|C14LSET) ) ) {
if ( !((NRPN==c)? mc->accept_any_nrpn: mc->accept_any_ctl_rpn) )
return;
}
if ( islsb )
stval = C14LSET | val | ( stval & ~0x7f );
else
stval = C14MSET | ( val << 7 ) | ( stval & ~0x3f80 );
store_update(mc->store, c, chan, key, stval);
mc->notify(mc->cookie, CTL14 == c ? MIDICTL_CTLR
: RPN == c ? MIDICTL_RPN
: MIDICTL_NRPN, chan, key);
}
static uint_fast16_t
read14(midictl *mc, uint_fast8_t chan, class c, uint_fast16_t key,
uint_fast16_t dflt)
{
uint16_t val;
_Bool present;
KASSERT(mutex_owned(mc->lock));
present = store_locate(mc->store, c, chan, key);
if ( !present )
goto neitherset;
val = store_extract(mc->store, c, chan, key);
switch ( val & (C14MSET|C14LSET) ) {
case C14MSET|C14LSET:
return val & 0x3fff;
case C14MSET:
val = C14LSET | (val & ~0x7f) | (dflt & 0x7f);
break;
case C14LSET:
val = C14MSET | (val & ~0x3f8) | (dflt & 0x3f8);
break;
neitherset:
case 0:
val = C14MSET|C14LSET | (dflt & 0x3fff);
}
store_update(mc->store, c, chan, key, val);
return val & 0x3fff;
}
/*
* Determine the controller class; ranges based on
* http://www.midi.org/about-midi/table3.shtml dated 1995/1999/2002
* and viewed 2 June 2006.
*/
static class
classify(uint_fast16_t *key, _Bool *islsb) {
if ( *key < 32 ) {
*islsb = 0;
return CTL14;
} else if ( *key < 64 ) {
*islsb = 1;
*key -= 32;
return CTL14;
} else if ( *key < 70 ) {
return CTL1;
} /* 70-84 defined, 85-90 undef'd, 91-95 def'd */
return CTL7; /* 96-101,120- handled above, 102-119 all undef'd */
/* treat them all as CTL7 */
}
static void
notify_no_one(void *cookie, midictl_evt evt,
uint_fast8_t chan, uint_fast16_t k)
{
}
#undef PN_SET
#undef C14MSET
#undef C14LSET
#undef C7_SET
#undef C1_SET
static void
store_thread(void *arg)
{
midictl_store *s;
s = arg;
mutex_enter(s->lock);
for (;;) {
if (s->destroy) {
mutex_exit(s->lock);
cv_destroy(&s->cv);
kmem_free(s->table, sizeof(*s->table)<<s->lgcapacity);
kmem_free(s, sizeof(*s));
kthread_exit(0);
} else if (NEED_REHASH(s)) {
store_rehash(s);
} else {
cv_wait(&s->cv, s->lock);
}
}
}
static _Bool
store_locate(midictl_store *s, class c, uint_fast8_t chan, uint_fast16_t key)
{
uint64_t mask;
KASSERT(mutex_owned(s->lock));
if ( s->used >= 1 << s->lgcapacity )
panic("%s: repeated attempts to expand table failed", __func__);
chan = packing[c] * (chan/packing[c]);
if ( CTL7 == c ) { /* only 16 bits here (key's only 7) */
s->key = IS_USED | IS_CTL7 | (chan << 7) | key;
mask = 0xffff;
} else { /* use 23 bits (key could be 14) */
s->key = (c << 20) | (chan << 16) | IS_USED | key;
mask = 0x7fffff;
}
s->idx = store_idx(s->lgcapacity, s->table, s->key, mask);
if ( !(s->table[s->idx] & IS_USED) )
return 0;
return 1;
}
static uint16_t
store_extract(midictl_store *s, class c, uint_fast8_t chan,
uint_fast16_t key)
{
KASSERT(mutex_owned(s->lock));
chan %= packing[c];
switch ( c ) {
case CTL1:
return 3 & (s->table[s->idx]>>CTL1SHIFT(chan));
case CTL7:
return 0xff & (s->table[s->idx]>>CTL7SHIFT(chan));
case CTL14:
case RPN:
case NRPN:
break;
}
return 0xffff & (s->table[s->idx]>>CTLESHIFT(chan));
}
static void
store_update(midictl_store *s, class c, uint_fast8_t chan,
uint_fast16_t key, uint16_t value)
{
uint64_t orig;
KASSERT(mutex_owned(s->lock));
orig = s->table[s->idx];
if ( !(orig & IS_USED) ) {
orig = s->key;
++ s->used;
}
chan %= packing[c];
switch ( c ) {
case CTL1:
orig &= ~(((uint64_t)3)<<CTL1SHIFT(chan));
orig |= ((uint64_t)(3 & value)) << CTL1SHIFT(chan);
break;
case CTL7:
orig &= ~(((uint64_t)0xff)<<CTL7SHIFT(chan));
orig |= ((uint64_t)(0xff & value)) << CTL7SHIFT(chan);
break;
case CTL14:
case RPN:
case NRPN:
orig &= ~(((uint64_t)0xffff)<<CTLESHIFT(chan));
orig |= ((uint64_t)value) << CTLESHIFT(chan);
break;
}
s->table[s->idx] = orig;
if (NEED_REHASH(s))
cv_broadcast(&s->cv);
}
static uint32_t
store_idx(uint32_t lgcapacity, uint64_t *table,
uint64_t key, uint64_t mask)
{
uint32_t val;
uint32_t k, h1, h2;
int32_t idx;
k = key;
h1 = ((k * 0x61c88646) >> (32-lgcapacity)) & ((1<<lgcapacity) - 1);
h2 = ((k * 0x9e3779b9) >> (32-lgcapacity)) & ((1<<lgcapacity) - 1);
h2 |= 1;
for ( idx = h1 ;; idx -= h2 ) {
if ( idx < 0 )
idx += 1<<lgcapacity;
val = (uint32_t)(table[idx] & mask);
if ( val == k )
break;
if ( !(val & IS_USED) )
break;
}
return idx;
}
static void
store_rehash(midictl_store *s)
{
uint64_t *newtbl, *oldtbl, mask;
uint32_t oldlgcap, newlgcap, oidx, nidx;
KASSERT(mutex_owned(s->lock));
oldlgcap = s->lgcapacity;
newlgcap = oldlgcap + s->lgcapacity;
mutex_exit(s->lock);
newtbl = kmem_zalloc(sizeof(*newtbl) << newlgcap, KM_SLEEP);
mutex_enter(s->lock);
if (newtbl == NULL) {
kpause("midictls", false, hz, s->lock);
return;
}
/*
* If s->lgcapacity is changed from what we saved int oldlgcap
* then someone else has already done this for us.
* XXXMRG but only function changes s->lgcapacity from its
* initial value, and it is called singled threaded from the
* main store_thread(), so this code seems dead to me.
*/
if (oldlgcap != s->lgcapacity) {
KASSERT(FALSE);
mutex_exit(s->lock);
kmem_free(newtbl, sizeof(*newtbl) << newlgcap);
mutex_enter(s->lock);
return;
}
for (oidx = 1 << s->lgcapacity ; oidx-- > 0 ; ) {
if (!(s->table[oidx] & IS_USED))
continue;
if (s->table[oidx] & IS_CTL7)
mask = 0xffff;
else
mask = 0x3fffff;
nidx = store_idx(newlgcap, newtbl,
s->table[oidx] & mask, mask);
newtbl[nidx] = s->table[oidx];
}
oldtbl = s->table;
s->table = newtbl;
s->lgcapacity = newlgcap;
mutex_exit(s->lock);
kmem_free(oldtbl, sizeof(*oldtbl) << oldlgcap);
mutex_enter(s->lock);
}