1601 lines
38 KiB
C
1601 lines
38 KiB
C
/* $NetBSD: zs.c,v 1.43 1996/10/11 00:47:03 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)zs.c 8.1 (Berkeley) 7/19/93
|
|
*/
|
|
|
|
/*
|
|
* Zilog Z8530 (ZSCC) driver.
|
|
*
|
|
* Runs two tty ports (ttya and ttyb) on zs0,
|
|
* and runs a keyboard and mouse on zs1, and
|
|
* possibly two more tty ports (ttyc and ttyd) on zs2.
|
|
*
|
|
* This driver knows far too much about chip to usage mappings.
|
|
*/
|
|
#include "zs.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/conf.h>
|
|
|
|
#include <machine/autoconf.h>
|
|
#include <machine/conf.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/kbd.h>
|
|
|
|
#include <sparc/sparc/vaddrs.h>
|
|
#include <sparc/sparc/auxreg.h>
|
|
#include <dev/ic/z8530reg.h>
|
|
#include <sparc/dev/zsvar.h>
|
|
|
|
#ifdef KGDB
|
|
#include <machine/remote-sl.h>
|
|
#endif
|
|
|
|
#define ZSMAJOR 12 /* XXX */
|
|
|
|
#define ZS_KBD 2 /* XXX */
|
|
#define ZS_MOUSE 3 /* XXX */
|
|
|
|
/* the magic number below was stolen from the Sprite source. */
|
|
#define PCLK (19660800/4) /* PCLK pin input clock rate */
|
|
|
|
/*
|
|
* Select software interrupt bit based on TTY ipl.
|
|
*/
|
|
#if PIL_TTY == 1
|
|
# define IE_ZSSOFT IE_L1
|
|
#elif PIL_TTY == 4
|
|
# define IE_ZSSOFT IE_L4
|
|
#elif PIL_TTY == 6
|
|
# define IE_ZSSOFT IE_L6
|
|
#else
|
|
# error "no suitable software interrupt bit"
|
|
#endif
|
|
|
|
/*
|
|
* Software state per found chip.
|
|
*/
|
|
struct zs_softc {
|
|
struct device sc_dev; /* base device */
|
|
volatile struct zsdevice *sc_zs; /* chip registers */
|
|
struct evcnt sc_intrcnt; /* count interrupts */
|
|
struct zs_chanstate sc_cs[2]; /* chan A/B software state */
|
|
};
|
|
|
|
/* Definition of the driver for autoconfig. */
|
|
static int zsmatch __P((struct device *, void *, void *));
|
|
static void zsattach __P((struct device *, struct device *, void *));
|
|
|
|
struct cfattach zs_ca = {
|
|
sizeof(struct zs_softc), zsmatch, zsattach
|
|
};
|
|
|
|
struct cfdriver zs_cd = {
|
|
NULL, "zs", DV_TTY
|
|
};
|
|
|
|
/* Interrupt handlers. */
|
|
static int zshard __P((void *));
|
|
static struct intrhand levelhard = { zshard };
|
|
static int zssoft __P((void *));
|
|
static struct intrhand levelsoft = { zssoft };
|
|
|
|
struct zs_chanstate *zslist;
|
|
|
|
/* Routines called from other code. */
|
|
static void zsiopen __P((struct tty *));
|
|
static void zsiclose __P((struct tty *));
|
|
static void zsstart __P((struct tty *));
|
|
static int zsparam __P((struct tty *, struct termios *));
|
|
|
|
/* Routines purely local to this driver. */
|
|
static int zs_getspeed __P((volatile struct zschan *));
|
|
#ifdef KGDB
|
|
static void zs_reset __P((volatile struct zschan *, int, int));
|
|
#endif
|
|
static void zs_modem __P((struct zs_chanstate *, int));
|
|
static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
|
|
|
|
/* Console stuff. */
|
|
static struct tty *zs_ctty; /* console `struct tty *' */
|
|
static int zs_consin = -1, zs_consout = -1;
|
|
static void zscnputc __P((int)); /* console putc function */
|
|
static volatile struct zschan *zs_conschan;
|
|
static struct tty *zs_checkcons __P((struct zs_softc *, int,
|
|
struct zs_chanstate *));
|
|
|
|
#ifdef KGDB
|
|
/* KGDB stuff. Must reboot to change zs_kgdbunit. */
|
|
extern int kgdb_dev, kgdb_rate;
|
|
static int zs_kgdb_savedspeed;
|
|
static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
|
|
void zskgdb __P((int));
|
|
static int zs_kgdb_getc __P((void *));
|
|
static void zs_kgdb_putc __P((void *, int));
|
|
#endif
|
|
|
|
static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
|
|
static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
|
|
static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
|
|
|
|
void zsabort __P((void));
|
|
static void zsoverrun __P((int, long *, char *));
|
|
|
|
static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
|
|
|
|
/*
|
|
* Console keyboard L1-A processing is done in the hardware interrupt code,
|
|
* so we need to duplicate some of the console keyboard decode state. (We
|
|
* must not use the regular state as the hardware code keeps ahead of the
|
|
* software state: the software state tracks the most recent ring input but
|
|
* the hardware state tracks the most recent ZSCC input.) See also kbd.h.
|
|
*/
|
|
static struct conk_state { /* console keyboard state */
|
|
char conk_id; /* true => ID coming up (console only) */
|
|
char conk_l1; /* true => L1 pressed (console only) */
|
|
} zsconk_state;
|
|
|
|
int zshardscope;
|
|
int zsshortcuts; /* number of "shortcut" software interrupts */
|
|
|
|
#ifdef SUN4
|
|
static u_int zs_read __P((volatile struct zschan *, u_int reg));
|
|
static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
|
|
|
|
static u_int
|
|
zs_read(zc, reg)
|
|
volatile struct zschan *zc;
|
|
u_int reg;
|
|
{
|
|
u_char val;
|
|
|
|
zc->zc_csr = reg;
|
|
ZS_DELAY();
|
|
val = zc->zc_csr;
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
static u_int
|
|
zs_write(zc, reg, val)
|
|
volatile struct zschan *zc;
|
|
u_int reg, val;
|
|
{
|
|
zc->zc_csr = reg;
|
|
ZS_DELAY();
|
|
zc->zc_csr = val;
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
#endif /* SUN4 */
|
|
|
|
/*
|
|
* Match slave number to zs unit number, so that misconfiguration will
|
|
* not set up the keyboard as ttya, etc.
|
|
*/
|
|
static int
|
|
zsmatch(parent, vcf, aux)
|
|
struct device *parent;
|
|
void *vcf, *aux;
|
|
{
|
|
struct cfdata *cf = vcf;
|
|
struct confargs *ca = aux;
|
|
struct romaux *ra = &ca->ca_ra;
|
|
|
|
if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
|
|
return (0);
|
|
if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
|
|
(ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
|
|
return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
|
|
ra->ra_len = NBPG;
|
|
return (probeget(ra->ra_vaddr, 1) != -1);
|
|
}
|
|
|
|
/*
|
|
* Attach a found zs.
|
|
*
|
|
* USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
|
|
* SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
|
|
*/
|
|
static void
|
|
zsattach(parent, dev, aux)
|
|
struct device *parent;
|
|
struct device *dev;
|
|
void *aux;
|
|
{
|
|
register int zs = dev->dv_unit, unit;
|
|
register struct zs_softc *sc;
|
|
register struct zs_chanstate *cs;
|
|
register volatile struct zsdevice *addr;
|
|
register struct tty *tp, *ctp;
|
|
register struct confargs *ca = aux;
|
|
register struct romaux *ra = &ca->ca_ra;
|
|
int pri;
|
|
static int didintr, prevpri;
|
|
int ringsize;
|
|
|
|
if ((addr = zsaddr[zs]) == NULL)
|
|
addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
|
|
if (ca->ca_bustype==BUS_MAIN)
|
|
if ((void *)addr != ra->ra_vaddr)
|
|
panic("zsattach");
|
|
if (ra->ra_nintr != 1) {
|
|
kprintf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
|
|
return;
|
|
}
|
|
pri = ra->ra_intr[0].int_pri;
|
|
kprintf(" pri %d, softpri %d\n", pri, PIL_TTY);
|
|
if (!didintr) {
|
|
didintr = 1;
|
|
prevpri = pri;
|
|
intr_establish(pri, &levelhard);
|
|
intr_establish(PIL_TTY, &levelsoft);
|
|
} else if (pri != prevpri)
|
|
panic("broken zs interrupt scheme");
|
|
sc = (struct zs_softc *)dev;
|
|
evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
|
|
sc->sc_zs = addr;
|
|
unit = zs * 2;
|
|
cs = sc->sc_cs;
|
|
|
|
/* link into interrupt list with order (A,B) (B=A+1) */
|
|
cs[0].cs_next = &cs[1];
|
|
cs[0].cs_sc = sc;
|
|
cs[1].cs_next = zslist;
|
|
cs[1].cs_sc = sc;
|
|
zslist = cs;
|
|
|
|
cs->cs_unit = unit;
|
|
cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
|
|
cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
|
|
if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
|
|
tp = ctp;
|
|
else {
|
|
tp = ttymalloc();
|
|
tp->t_dev = makedev(ZSMAJOR, unit);
|
|
tp->t_oproc = zsstart;
|
|
tp->t_param = zsparam;
|
|
}
|
|
cs->cs_ttyp = tp;
|
|
#ifdef KGDB
|
|
if (ctp == NULL)
|
|
zs_checkkgdb(unit, cs, tp);
|
|
#endif
|
|
if (unit == ZS_KBD) {
|
|
/*
|
|
* Keyboard: tell /dev/kbd driver how to talk to us.
|
|
*/
|
|
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
|
|
tp->t_cflag = CS8;
|
|
kbd_serial(tp, zsiopen, zsiclose);
|
|
cs->cs_conk = 1; /* do L1-A processing */
|
|
ringsize = 128;
|
|
} else {
|
|
if (tp != ctp)
|
|
tty_attach(tp);
|
|
ringsize = 4096;
|
|
}
|
|
cs->cs_ringmask = ringsize - 1;
|
|
cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
|
|
M_DEVBUF, M_NOWAIT);
|
|
|
|
unit++;
|
|
cs++;
|
|
cs->cs_unit = unit;
|
|
cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
|
|
cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
|
|
if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
|
|
tp = ctp;
|
|
else {
|
|
tp = ttymalloc();
|
|
tp->t_dev = makedev(ZSMAJOR, unit);
|
|
tp->t_oproc = zsstart;
|
|
tp->t_param = zsparam;
|
|
}
|
|
cs->cs_ttyp = tp;
|
|
#ifdef KGDB
|
|
if (ctp == NULL)
|
|
zs_checkkgdb(unit, cs, tp);
|
|
#endif
|
|
if (unit == ZS_MOUSE) {
|
|
/*
|
|
* Mouse: tell /dev/mouse driver how to talk to us.
|
|
*/
|
|
tp->t_ispeed = tp->t_ospeed = B1200;
|
|
tp->t_cflag = CS8;
|
|
ms_serial(tp, zsiopen, zsiclose);
|
|
ringsize = 128;
|
|
} else {
|
|
if (tp != ctp)
|
|
tty_attach(tp);
|
|
ringsize = 4096;
|
|
}
|
|
cs->cs_ringmask = ringsize - 1;
|
|
cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
|
|
M_DEVBUF, M_NOWAIT);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Put a channel in a known state. Interrupts may be left disabled
|
|
* or enabled, as desired.
|
|
*/
|
|
static void
|
|
zs_reset(zc, inten, speed)
|
|
volatile struct zschan *zc;
|
|
int inten, speed;
|
|
{
|
|
int tconst;
|
|
static u_char reg[16] = {
|
|
0,
|
|
0,
|
|
0,
|
|
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
|
|
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
|
|
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
ZSWR10_NRZ,
|
|
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
|
|
0,
|
|
0,
|
|
ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
|
|
ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
|
|
};
|
|
|
|
reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
|
|
tconst = BPS_TO_TCONST(PCLK / 16, speed);
|
|
reg[12] = tconst;
|
|
reg[13] = tconst >> 8;
|
|
zs_loadchannelregs(zc, reg);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Declare the given tty (which is in fact &cons) as a console input
|
|
* or output. This happens before the zs chip is attached; the hookup
|
|
* is finished later, in zs_setcons() below.
|
|
*
|
|
* This is used only for ports a and b. The console keyboard is decoded
|
|
* independently (we always send unit-2 input to /dev/kbd, which will
|
|
* direct it to /dev/console if appropriate).
|
|
*/
|
|
void
|
|
zsconsole(tp, unit, out, fnstop)
|
|
register struct tty *tp;
|
|
register int unit;
|
|
int out;
|
|
void (**fnstop) __P((struct tty *, int));
|
|
{
|
|
int zs;
|
|
volatile struct zsdevice *addr;
|
|
|
|
if (unit >= ZS_KBD)
|
|
panic("zsconsole");
|
|
if (out) {
|
|
zs_consout = unit;
|
|
zs = unit >> 1;
|
|
if ((addr = zsaddr[zs]) == NULL)
|
|
addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
|
|
zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
|
|
&addr->zs_chan[ZS_CHAN_B];
|
|
v_putc = zscnputc;
|
|
} else
|
|
zs_consin = unit;
|
|
if (fnstop)
|
|
*fnstop = &zsstop;
|
|
zs_ctty = tp;
|
|
}
|
|
|
|
/*
|
|
* Polled console output putchar.
|
|
*/
|
|
static void
|
|
zscnputc(c)
|
|
int c;
|
|
{
|
|
register volatile struct zschan *zc = zs_conschan;
|
|
register int s;
|
|
|
|
if (c == '\n')
|
|
zscnputc('\r');
|
|
/*
|
|
* Must block output interrupts (i.e., raise to >= splzs) without
|
|
* lowering current ipl. Need a better way.
|
|
*/
|
|
s = splhigh();
|
|
if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
|
|
(void) splzs();
|
|
while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
|
|
ZS_DELAY();
|
|
zc->zc_data = c;
|
|
ZS_DELAY();
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Set up the given unit as console input, output, both, or neither, as
|
|
* needed. Return console tty if it is to receive console input.
|
|
*/
|
|
static struct tty *
|
|
zs_checkcons(sc, unit, cs)
|
|
struct zs_softc *sc;
|
|
int unit;
|
|
struct zs_chanstate *cs;
|
|
{
|
|
register struct tty *tp;
|
|
char *i, *o;
|
|
|
|
if ((tp = zs_ctty) == NULL) /* XXX */
|
|
return (0);
|
|
i = zs_consin == unit ? "input" : NULL;
|
|
o = zs_consout == unit ? "output" : NULL;
|
|
if (i == NULL && o == NULL)
|
|
return (0);
|
|
|
|
/* rewire the minor device (gack) */
|
|
tp->t_dev = makedev(major(tp->t_dev), unit);
|
|
|
|
/*
|
|
* Rewire input and/or output. Note that baud rate reflects
|
|
* input settings, not output settings, but we can do no better
|
|
* if the console is split across two ports.
|
|
*
|
|
* XXX split consoles don't work anyway -- this needs to be
|
|
* thrown away and redone
|
|
*/
|
|
if (i) {
|
|
tp->t_param = zsparam;
|
|
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
|
|
tp->t_cflag = CS8;
|
|
ttsetwater(tp);
|
|
}
|
|
if (o) {
|
|
tp->t_oproc = zsstart;
|
|
}
|
|
kprintf("%s%c: console %s\n",
|
|
sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
|
|
cs->cs_consio = 1;
|
|
cs->cs_brkabort = 1;
|
|
return (tp);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
|
|
* Pick up the current speed and character size and restore the original
|
|
* speed.
|
|
*/
|
|
static void
|
|
zs_checkkgdb(unit, cs, tp)
|
|
int unit;
|
|
struct zs_chanstate *cs;
|
|
struct tty *tp;
|
|
{
|
|
|
|
if (kgdb_dev == makedev(ZSMAJOR, unit)) {
|
|
tp->t_ispeed = tp->t_ospeed = kgdb_rate;
|
|
tp->t_cflag = CS8;
|
|
cs->cs_kgdb = 1;
|
|
cs->cs_speed = zs_kgdb_savedspeed;
|
|
(void) zsparam(tp, &tp->t_termios);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Compute the current baud rate given a ZSCC channel.
|
|
*/
|
|
static int
|
|
zs_getspeed(zc)
|
|
register volatile struct zschan *zc;
|
|
{
|
|
register int tconst;
|
|
|
|
tconst = ZS_READ(zc, 12);
|
|
tconst |= ZS_READ(zc, 13) << 8;
|
|
return (TCONST_TO_BPS(PCLK / 16, tconst));
|
|
}
|
|
|
|
|
|
/*
|
|
* Do an internal open.
|
|
*/
|
|
static void
|
|
zsiopen(tp)
|
|
struct tty *tp;
|
|
{
|
|
|
|
(void) zsparam(tp, &tp->t_termios);
|
|
ttsetwater(tp);
|
|
tp->t_state = TS_ISOPEN | TS_CARR_ON;
|
|
}
|
|
|
|
/*
|
|
* Do an internal close. Eventually we should shut off the chip when both
|
|
* ports on it are closed.
|
|
*/
|
|
static void
|
|
zsiclose(tp)
|
|
struct tty *tp;
|
|
{
|
|
|
|
ttylclose(tp, 0); /* ??? */
|
|
ttyclose(tp); /* ??? */
|
|
tp->t_state = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Open a zs serial port. This interface may not be used to open
|
|
* the keyboard and mouse ports. (XXX)
|
|
*/
|
|
int
|
|
zsopen(dev, flags, mode, p)
|
|
dev_t dev;
|
|
int flags;
|
|
int mode;
|
|
struct proc *p;
|
|
{
|
|
register struct tty *tp;
|
|
register struct zs_chanstate *cs;
|
|
struct zs_softc *sc;
|
|
int unit = minor(dev), zs = unit >> 1, error, s;
|
|
|
|
if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL ||
|
|
unit == ZS_KBD || unit == ZS_MOUSE)
|
|
return (ENXIO);
|
|
cs = &sc->sc_cs[unit & 1];
|
|
if (cs->cs_consio)
|
|
return (ENXIO); /* ??? */
|
|
tp = cs->cs_ttyp;
|
|
s = spltty();
|
|
if ((tp->t_state & TS_ISOPEN) == 0) {
|
|
ttychars(tp);
|
|
if (tp->t_ispeed == 0) {
|
|
tp->t_iflag = TTYDEF_IFLAG;
|
|
tp->t_oflag = TTYDEF_OFLAG;
|
|
tp->t_cflag = TTYDEF_CFLAG;
|
|
tp->t_lflag = TTYDEF_LFLAG;
|
|
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
|
|
}
|
|
(void) zsparam(tp, &tp->t_termios);
|
|
ttsetwater(tp);
|
|
} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
|
|
splx(s);
|
|
return (EBUSY);
|
|
}
|
|
error = 0;
|
|
for (;;) {
|
|
register int rr0;
|
|
|
|
/* loop, turning on the device, until carrier present */
|
|
zs_modem(cs, 1);
|
|
/* May never get status intr if carrier already on. -gwr */
|
|
rr0 = cs->cs_zc->zc_csr;
|
|
ZS_DELAY();
|
|
if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
|
|
tp->t_state |= TS_CARR_ON;
|
|
if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
|
|
tp->t_state & TS_CARR_ON)
|
|
break;
|
|
tp->t_state |= TS_WOPEN;
|
|
error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
|
|
ttopen, 0);
|
|
if (error) {
|
|
if (!(tp->t_state & TS_ISOPEN)) {
|
|
zs_modem(cs, 0);
|
|
tp->t_state &= ~TS_WOPEN;
|
|
ttwakeup(tp);
|
|
}
|
|
splx(s);
|
|
return error;
|
|
}
|
|
}
|
|
splx(s);
|
|
if (error == 0)
|
|
error = linesw[tp->t_line].l_open(dev, tp);
|
|
if (error)
|
|
zs_modem(cs, 0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Close a zs serial port.
|
|
*/
|
|
int
|
|
zsclose(dev, flags, mode, p)
|
|
dev_t dev;
|
|
int flags;
|
|
int mode;
|
|
struct proc *p;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register struct tty *tp;
|
|
struct zs_softc *sc;
|
|
int unit = minor(dev), s;
|
|
|
|
sc = zs_cd.cd_devs[unit >> 1];
|
|
cs = &sc->sc_cs[unit & 1];
|
|
tp = cs->cs_ttyp;
|
|
linesw[tp->t_line].l_close(tp, flags);
|
|
if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
|
|
(tp->t_state & TS_ISOPEN) == 0) {
|
|
zs_modem(cs, 0);
|
|
/* hold low for 1 second */
|
|
(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
|
|
}
|
|
if (cs->cs_creg[5] & ZSWR5_BREAK)
|
|
{
|
|
s = splzs();
|
|
cs->cs_preg[5] &= ~ZSWR5_BREAK;
|
|
cs->cs_creg[5] &= ~ZSWR5_BREAK;
|
|
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
|
|
splx(s);
|
|
}
|
|
ttyclose(tp);
|
|
#ifdef KGDB
|
|
/* Reset the speed if we're doing kgdb on this port */
|
|
if (cs->cs_kgdb) {
|
|
tp->t_ispeed = tp->t_ospeed = kgdb_rate;
|
|
(void) zsparam(tp, &tp->t_termios);
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read/write zs serial port.
|
|
*/
|
|
int
|
|
zsread(dev, uio, flags)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int flags;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register struct zs_softc *sc;
|
|
register struct tty *tp;
|
|
int unit = minor(dev);
|
|
|
|
sc = zs_cd.cd_devs[unit >> 1];
|
|
cs = &sc->sc_cs[unit & 1];
|
|
tp = cs->cs_ttyp;
|
|
|
|
return (linesw[tp->t_line].l_read(tp, uio, flags));
|
|
|
|
}
|
|
|
|
int
|
|
zswrite(dev, uio, flags)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int flags;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register struct zs_softc *sc;
|
|
register struct tty *tp;
|
|
int unit = minor(dev);
|
|
|
|
sc = zs_cd.cd_devs[unit >> 1];
|
|
cs = &sc->sc_cs[unit & 1];
|
|
tp = cs->cs_ttyp;
|
|
|
|
return (linesw[tp->t_line].l_write(tp, uio, flags));
|
|
}
|
|
|
|
struct tty *
|
|
zstty(dev)
|
|
dev_t dev;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register struct zs_softc *sc;
|
|
int unit = minor(dev);
|
|
|
|
sc = zs_cd.cd_devs[unit >> 1];
|
|
cs = &sc->sc_cs[unit & 1];
|
|
|
|
return (cs->cs_ttyp);
|
|
}
|
|
|
|
static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
|
|
static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
|
|
static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
|
|
|
|
/*
|
|
* ZS hardware interrupt. Scan all ZS channels. NB: we know here that
|
|
* channels are kept in (A,B) pairs.
|
|
*
|
|
* Do just a little, then get out; set a software interrupt if more
|
|
* work is needed.
|
|
*
|
|
* We deliberately ignore the vectoring Zilog gives us, and match up
|
|
* only the number of `reset interrupt under service' operations, not
|
|
* the order.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zshard(intrarg)
|
|
void *intrarg;
|
|
{
|
|
register struct zs_chanstate *a;
|
|
#define b (a + 1)
|
|
register volatile struct zschan *zc;
|
|
register int rr3, intflags = 0, v, i, ringmask;
|
|
|
|
#define ZSHARD_NEED_SOFTINTR 1
|
|
#define ZSHARD_WAS_SERVICED 2
|
|
#define ZSHARD_CHIP_GOTINTR 4
|
|
|
|
for (a = zslist; a != NULL; a = b->cs_next) {
|
|
ringmask = a->cs_ringmask;
|
|
rr3 = ZS_READ(a->cs_zc, 3);
|
|
if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
|
|
intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
|
|
zc = a->cs_zc;
|
|
i = a->cs_rbput;
|
|
if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
|
|
a->cs_rbuf[i++ & ringmask] = v;
|
|
intflags |= ZSHARD_NEED_SOFTINTR;
|
|
}
|
|
if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
|
|
a->cs_rbuf[i++ & ringmask] = v;
|
|
intflags |= ZSHARD_NEED_SOFTINTR;
|
|
}
|
|
if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
|
|
a->cs_rbuf[i++ & ringmask] = v;
|
|
intflags |= ZSHARD_NEED_SOFTINTR;
|
|
}
|
|
a->cs_rbput = i;
|
|
}
|
|
if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
|
|
intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
|
|
zc = b->cs_zc;
|
|
i = b->cs_rbput;
|
|
if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
|
|
b->cs_rbuf[i++ & ringmask] = v;
|
|
intflags |= ZSHARD_NEED_SOFTINTR;
|
|
}
|
|
if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
|
|
b->cs_rbuf[i++ & ringmask] = v;
|
|
intflags |= ZSHARD_NEED_SOFTINTR;
|
|
}
|
|
if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
|
|
b->cs_rbuf[i++ & ringmask] = v;
|
|
intflags |= ZSHARD_NEED_SOFTINTR;
|
|
}
|
|
b->cs_rbput = i;
|
|
}
|
|
if (intflags & ZSHARD_CHIP_GOTINTR) {
|
|
a->cs_sc->sc_intrcnt.ev_count++;
|
|
intflags &= ~ZSHARD_CHIP_GOTINTR;
|
|
}
|
|
}
|
|
#undef b
|
|
|
|
if (intflags & ZSHARD_NEED_SOFTINTR) {
|
|
if (CPU_ISSUN4COR4M) {
|
|
/* XXX -- but this will go away when zshard moves to locore.s */
|
|
struct clockframe *p = intrarg;
|
|
|
|
if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
|
|
zsshortcuts++;
|
|
(void) spltty();
|
|
if (zshardscope) {
|
|
LED_ON;
|
|
LED_OFF;
|
|
}
|
|
return (zssoft(intrarg));
|
|
}
|
|
}
|
|
|
|
#if defined(SUN4M)
|
|
if (CPU_ISSUN4M)
|
|
raise(0, PIL_TTY);
|
|
else
|
|
#endif
|
|
ienab_bis(IE_ZSSOFT);
|
|
}
|
|
return (intflags & ZSHARD_WAS_SERVICED);
|
|
}
|
|
|
|
static int
|
|
zsrint(cs, zc)
|
|
register struct zs_chanstate *cs;
|
|
register volatile struct zschan *zc;
|
|
{
|
|
register u_int c = zc->zc_data;
|
|
|
|
ZS_DELAY();
|
|
if (cs->cs_conk) {
|
|
register struct conk_state *conk = &zsconk_state;
|
|
|
|
/*
|
|
* Check here for console abort function, so that we
|
|
* can abort even when interrupts are locking up the
|
|
* machine.
|
|
*/
|
|
if (c == KBD_RESET) {
|
|
conk->conk_id = 1; /* ignore next byte */
|
|
conk->conk_l1 = 0;
|
|
} else if (conk->conk_id)
|
|
conk->conk_id = 0; /* stop ignoring bytes */
|
|
else if (c == KBD_L1)
|
|
conk->conk_l1 = 1; /* L1 went down */
|
|
else if (c == (KBD_L1|KBD_UP))
|
|
conk->conk_l1 = 0; /* L1 went up */
|
|
else if (c == KBD_A && conk->conk_l1) {
|
|
zsabort();
|
|
conk->conk_l1 = 0; /* we never see the up */
|
|
goto clearit; /* eat the A after L1-A */
|
|
}
|
|
}
|
|
#ifdef KGDB
|
|
if (c == FRAME_START && cs->cs_kgdb &&
|
|
(cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
|
|
zskgdb(cs->cs_unit);
|
|
goto clearit;
|
|
}
|
|
#endif
|
|
/* compose receive character and status */
|
|
c <<= 8;
|
|
c |= ZS_READ(zc, 1);
|
|
|
|
/* clear receive error & interrupt condition */
|
|
zc->zc_csr = ZSWR0_RESET_ERRORS;
|
|
ZS_DELAY();
|
|
zc->zc_csr = ZSWR0_CLR_INTR;
|
|
ZS_DELAY();
|
|
|
|
return (ZRING_MAKE(ZRING_RINT, c));
|
|
|
|
clearit:
|
|
zc->zc_csr = ZSWR0_RESET_ERRORS;
|
|
ZS_DELAY();
|
|
zc->zc_csr = ZSWR0_CLR_INTR;
|
|
ZS_DELAY();
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zsxint(cs, zc)
|
|
register struct zs_chanstate *cs;
|
|
register volatile struct zschan *zc;
|
|
{
|
|
register int i = cs->cs_tbc;
|
|
|
|
if (i == 0) {
|
|
zc->zc_csr = ZSWR0_RESET_TXINT;
|
|
ZS_DELAY();
|
|
zc->zc_csr = ZSWR0_CLR_INTR;
|
|
ZS_DELAY();
|
|
return (ZRING_MAKE(ZRING_XINT, 0));
|
|
}
|
|
cs->cs_tbc = i - 1;
|
|
zc->zc_data = *cs->cs_tba++;
|
|
ZS_DELAY();
|
|
zc->zc_csr = ZSWR0_CLR_INTR;
|
|
ZS_DELAY();
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zssint(cs, zc)
|
|
register struct zs_chanstate *cs;
|
|
register volatile struct zschan *zc;
|
|
{
|
|
register u_int rr0;
|
|
|
|
rr0 = zc->zc_csr;
|
|
ZS_DELAY();
|
|
zc->zc_csr = ZSWR0_RESET_STATUS;
|
|
ZS_DELAY();
|
|
zc->zc_csr = ZSWR0_CLR_INTR;
|
|
ZS_DELAY();
|
|
/*
|
|
* The chip's hardware flow control is, as noted in zsreg.h,
|
|
* busted---if the DCD line goes low the chip shuts off the
|
|
* receiver (!). If we want hardware CTS flow control but do
|
|
* not have it, and carrier is now on, turn HFC on; if we have
|
|
* HFC now but carrier has gone low, turn it off.
|
|
*/
|
|
if (rr0 & ZSRR0_DCD) {
|
|
if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
|
|
(cs->cs_creg[3] & ZSWR3_HFC) == 0) {
|
|
cs->cs_creg[3] |= ZSWR3_HFC;
|
|
ZS_WRITE(zc, 3, cs->cs_creg[3]);
|
|
}
|
|
} else {
|
|
if (cs->cs_creg[3] & ZSWR3_HFC) {
|
|
cs->cs_creg[3] &= ~ZSWR3_HFC;
|
|
ZS_WRITE(zc, 3, cs->cs_creg[3]);
|
|
}
|
|
}
|
|
if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
|
|
/*
|
|
* XXX This might not be necessary. Test and
|
|
* delete if it isn't.
|
|
*/
|
|
if (CPU_ISSUN4) {
|
|
while (zc->zc_csr & ZSRR0_BREAK)
|
|
ZS_DELAY();
|
|
}
|
|
zsabort();
|
|
return (0);
|
|
}
|
|
return (ZRING_MAKE(ZRING_SINT, rr0));
|
|
}
|
|
|
|
void
|
|
zsabort()
|
|
{
|
|
|
|
#ifdef DDB
|
|
Debugger();
|
|
#else
|
|
kprintf("stopping on keyboard abort\n");
|
|
callrom();
|
|
#endif
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* KGDB framing character received: enter kernel debugger. This probably
|
|
* should time out after a few seconds to avoid hanging on spurious input.
|
|
*/
|
|
void
|
|
zskgdb(unit)
|
|
int unit;
|
|
{
|
|
|
|
kprintf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
|
|
kgdb_connect(1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Print out a ring or fifo overrun error message.
|
|
*/
|
|
static void
|
|
zsoverrun(unit, ptime, what)
|
|
int unit;
|
|
long *ptime;
|
|
char *what;
|
|
{
|
|
|
|
if (*ptime != time.tv_sec) {
|
|
*ptime = time.tv_sec;
|
|
log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
|
|
(unit & 1) + 'a', what);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ZS software interrupt. Scan all channels for deferred interrupts.
|
|
*/
|
|
int
|
|
zssoft(arg)
|
|
void *arg;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register volatile struct zschan *zc;
|
|
register struct linesw *line;
|
|
register struct tty *tp;
|
|
register int get, n, c, cc, unit, s, ringmask, ringsize;
|
|
int retval = 0;
|
|
|
|
for (cs = zslist; cs != NULL; cs = cs->cs_next) {
|
|
ringmask = cs->cs_ringmask;
|
|
get = cs->cs_rbget;
|
|
again:
|
|
n = cs->cs_rbput; /* atomic */
|
|
if (get == n) /* nothing more on this line */
|
|
continue;
|
|
retval = 1;
|
|
unit = cs->cs_unit; /* set up to handle interrupts */
|
|
zc = cs->cs_zc;
|
|
tp = cs->cs_ttyp;
|
|
line = &linesw[tp->t_line];
|
|
/*
|
|
* Compute the number of interrupts in the receive ring.
|
|
* If the count is overlarge, we lost some events, and
|
|
* must advance to the first valid one. It may get
|
|
* overwritten if more data are arriving, but this is
|
|
* too expensive to check and gains nothing (we already
|
|
* lost out; all we can do at this point is trade one
|
|
* kind of loss for another).
|
|
*/
|
|
ringsize = ringmask + 1;
|
|
n -= get;
|
|
if (n > ringsize) {
|
|
zsoverrun(unit, &cs->cs_rotime, "ring");
|
|
get += n - ringsize;
|
|
n = ringsize;
|
|
}
|
|
while (--n >= 0) {
|
|
/* race to keep ahead of incoming interrupts */
|
|
c = cs->cs_rbuf[get++ & ringmask];
|
|
switch (ZRING_TYPE(c)) {
|
|
|
|
case ZRING_RINT:
|
|
c = ZRING_VALUE(c);
|
|
if (c & ZSRR1_DO)
|
|
zsoverrun(unit, &cs->cs_fotime, "fifo");
|
|
cc = c >> 8;
|
|
if (c & ZSRR1_FE)
|
|
cc |= TTY_FE;
|
|
if (c & ZSRR1_PE)
|
|
cc |= TTY_PE;
|
|
/*
|
|
* this should be done through
|
|
* bstreams XXX gag choke
|
|
*/
|
|
if (unit == ZS_KBD)
|
|
kbd_rint(cc);
|
|
else if (unit == ZS_MOUSE)
|
|
ms_rint(cc);
|
|
else
|
|
line->l_rint(cc, tp);
|
|
break;
|
|
|
|
case ZRING_XINT:
|
|
/*
|
|
* Transmit done: change registers and resume,
|
|
* or clear BUSY.
|
|
*/
|
|
if (cs->cs_heldchange) {
|
|
s = splzs();
|
|
c = zc->zc_csr;
|
|
ZS_DELAY();
|
|
if ((c & ZSRR0_DCD) == 0)
|
|
cs->cs_preg[3] &= ~ZSWR3_HFC;
|
|
bcopy((caddr_t)cs->cs_preg,
|
|
(caddr_t)cs->cs_creg, 16);
|
|
zs_loadchannelregs(zc, cs->cs_creg);
|
|
splx(s);
|
|
cs->cs_heldchange = 0;
|
|
if (cs->cs_heldtbc &&
|
|
(tp->t_state & TS_TTSTOP) == 0) {
|
|
cs->cs_tbc = cs->cs_heldtbc - 1;
|
|
zc->zc_data = *cs->cs_tba++;
|
|
ZS_DELAY();
|
|
goto again;
|
|
}
|
|
}
|
|
tp->t_state &= ~TS_BUSY;
|
|
if (tp->t_state & TS_FLUSH)
|
|
tp->t_state &= ~TS_FLUSH;
|
|
else
|
|
ndflush(&tp->t_outq,
|
|
cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
|
|
line->l_start(tp);
|
|
break;
|
|
|
|
case ZRING_SINT:
|
|
/*
|
|
* Status line change. HFC bit is run in
|
|
* hardware interrupt, to avoid locking
|
|
* at splzs here.
|
|
*/
|
|
c = ZRING_VALUE(c);
|
|
if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
|
|
cc = (c & ZSRR0_DCD) != 0;
|
|
if (line->l_modem(tp, cc) == 0)
|
|
zs_modem(cs, cc);
|
|
}
|
|
cs->cs_rr0 = c;
|
|
break;
|
|
|
|
default:
|
|
log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
|
|
unit >> 1, (unit & 1) + 'a', c);
|
|
break;
|
|
}
|
|
}
|
|
cs->cs_rbget = get;
|
|
goto again;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
zsioctl(dev, cmd, data, flag, p)
|
|
dev_t dev;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
int flag;
|
|
struct proc *p;
|
|
{
|
|
int unit = minor(dev);
|
|
struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
|
|
register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
|
|
register struct tty *tp = cs->cs_ttyp;
|
|
register int error, s;
|
|
|
|
error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
|
|
if (error >= 0)
|
|
return (error);
|
|
error = ttioctl(tp, cmd, data, flag, p);
|
|
if (error >= 0)
|
|
return (error);
|
|
|
|
switch (cmd) {
|
|
case TIOCSBRK:
|
|
s = splzs();
|
|
cs->cs_preg[5] |= ZSWR5_BREAK;
|
|
cs->cs_creg[5] |= ZSWR5_BREAK;
|
|
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
|
|
splx(s);
|
|
break;
|
|
case TIOCCBRK:
|
|
s = splzs();
|
|
cs->cs_preg[5] &= ~ZSWR5_BREAK;
|
|
cs->cs_creg[5] &= ~ZSWR5_BREAK;
|
|
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
|
|
splx(s);
|
|
break;
|
|
case TIOCGFLAGS: {
|
|
int bits = 0;
|
|
|
|
if (cs->cs_softcar)
|
|
bits |= TIOCFLAG_SOFTCAR;
|
|
if (cs->cs_creg[15] & ZSWR15_DCD_IE)
|
|
bits |= TIOCFLAG_CLOCAL;
|
|
if (cs->cs_creg[3] & ZSWR3_HFC)
|
|
bits |= TIOCFLAG_CRTSCTS;
|
|
*(int *)data = bits;
|
|
break;
|
|
}
|
|
case TIOCSFLAGS: {
|
|
int userbits;
|
|
|
|
error = suser(p->p_ucred, &p->p_acflag);
|
|
if (error != 0)
|
|
return (EPERM);
|
|
|
|
userbits = *(int *)data;
|
|
|
|
/*
|
|
* can have `local' or `softcar', and `rtscts' or `mdmbuf'
|
|
# defaulting to software flow control.
|
|
*/
|
|
if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
|
|
return(EINVAL);
|
|
if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
|
|
return(ENXIO);
|
|
|
|
s = splzs();
|
|
if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
|
|
cs->cs_softcar = 1; /* turn on softcar */
|
|
cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
|
|
cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
|
|
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
|
|
} else if (userbits & TIOCFLAG_CLOCAL) {
|
|
cs->cs_softcar = 0; /* turn off softcar */
|
|
cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
|
|
cs->cs_creg[15] |= ZSWR15_DCD_IE;
|
|
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
|
|
tp->t_termios.c_cflag |= CLOCAL;
|
|
}
|
|
if (userbits & TIOCFLAG_CRTSCTS) {
|
|
cs->cs_preg[15] |= ZSWR15_CTS_IE;
|
|
cs->cs_creg[15] |= ZSWR15_CTS_IE;
|
|
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
|
|
cs->cs_preg[3] |= ZSWR3_HFC;
|
|
cs->cs_creg[3] |= ZSWR3_HFC;
|
|
ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
|
|
tp->t_termios.c_cflag |= CRTSCTS;
|
|
} else {
|
|
/* no mdmbuf, so we must want software flow control */
|
|
cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
|
|
cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
|
|
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
|
|
cs->cs_preg[3] &= ~ZSWR3_HFC;
|
|
cs->cs_creg[3] &= ~ZSWR3_HFC;
|
|
ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
|
|
tp->t_termios.c_cflag &= ~CRTSCTS;
|
|
}
|
|
splx(s);
|
|
break;
|
|
}
|
|
case TIOCSDTR:
|
|
zs_modem(cs, 1);
|
|
break;
|
|
case TIOCCDTR:
|
|
zs_modem(cs, 0);
|
|
break;
|
|
case TIOCMSET:
|
|
case TIOCMGET:
|
|
case TIOCMBIS:
|
|
case TIOCMBIC:
|
|
default:
|
|
return (ENOTTY);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Start or restart transmission.
|
|
*/
|
|
static void
|
|
zsstart(tp)
|
|
register struct tty *tp;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register int s, nch;
|
|
int unit = minor(tp->t_dev);
|
|
struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
|
|
|
|
cs = &sc->sc_cs[unit & 1];
|
|
s = spltty();
|
|
|
|
/*
|
|
* If currently active or delaying, no need to do anything.
|
|
*/
|
|
if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
|
|
goto out;
|
|
|
|
/*
|
|
* If there are sleepers, and output has drained below low
|
|
* water mark, awaken.
|
|
*/
|
|
if (tp->t_outq.c_cc <= tp->t_lowat) {
|
|
if (tp->t_state & TS_ASLEEP) {
|
|
tp->t_state &= ~TS_ASLEEP;
|
|
wakeup((caddr_t)&tp->t_outq);
|
|
}
|
|
selwakeup(&tp->t_wsel);
|
|
}
|
|
|
|
nch = ndqb(&tp->t_outq, 0); /* XXX */
|
|
if (nch) {
|
|
register char *p = tp->t_outq.c_cf;
|
|
|
|
/* mark busy, enable tx done interrupts, & send first byte */
|
|
tp->t_state |= TS_BUSY;
|
|
(void) splzs();
|
|
cs->cs_preg[1] |= ZSWR1_TIE;
|
|
cs->cs_creg[1] |= ZSWR1_TIE;
|
|
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
|
|
cs->cs_zc->zc_data = *p;
|
|
ZS_DELAY();
|
|
cs->cs_tba = p + 1;
|
|
cs->cs_tbc = nch - 1;
|
|
} else {
|
|
/*
|
|
* Nothing to send, turn off transmit done interrupts.
|
|
* This is useful if something is doing polled output.
|
|
*/
|
|
(void) splzs();
|
|
cs->cs_preg[1] &= ~ZSWR1_TIE;
|
|
cs->cs_creg[1] &= ~ZSWR1_TIE;
|
|
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
|
|
}
|
|
out:
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Stop output, e.g., for ^S or output flush.
|
|
*/
|
|
void
|
|
zsstop(tp, flag)
|
|
register struct tty *tp;
|
|
int flag;
|
|
{
|
|
register struct zs_chanstate *cs;
|
|
register int s, unit = minor(tp->t_dev);
|
|
struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
|
|
|
|
cs = &sc->sc_cs[unit & 1];
|
|
s = splzs();
|
|
if (tp->t_state & TS_BUSY) {
|
|
/*
|
|
* Device is transmitting; must stop it.
|
|
*/
|
|
cs->cs_tbc = 0;
|
|
if ((tp->t_state & TS_TTSTOP) == 0)
|
|
tp->t_state |= TS_FLUSH;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Set ZS tty parameters from termios.
|
|
*
|
|
* This routine makes use of the fact that only registers
|
|
* 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
|
|
*/
|
|
static int
|
|
zsparam(tp, t)
|
|
register struct tty *tp;
|
|
register struct termios *t;
|
|
{
|
|
int unit = minor(tp->t_dev);
|
|
struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
|
|
register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
|
|
register int tmp, tmp5, cflag, s;
|
|
|
|
/*
|
|
* Because PCLK is only run at 4.9 MHz, the fastest we
|
|
* can go is 51200 baud (this corresponds to TC=1).
|
|
* This is somewhat unfortunate as there is no real
|
|
* reason we should not be able to handle higher rates.
|
|
*/
|
|
tmp = t->c_ospeed;
|
|
if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
|
|
return (EINVAL);
|
|
if (tmp == 0) {
|
|
/* stty 0 => drop DTR and RTS */
|
|
zs_modem(cs, 0);
|
|
return (0);
|
|
}
|
|
tmp = BPS_TO_TCONST(PCLK / 16, tmp);
|
|
if (tmp < 2)
|
|
return (EINVAL);
|
|
|
|
cflag = t->c_cflag;
|
|
tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
|
|
tp->t_cflag = cflag;
|
|
|
|
/*
|
|
* Block interrupts so that state will not
|
|
* be altered until we are done setting it up.
|
|
*/
|
|
s = splzs();
|
|
cs->cs_preg[12] = tmp;
|
|
cs->cs_preg[13] = tmp >> 8;
|
|
cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
|
|
switch (cflag & CSIZE) {
|
|
case CS5:
|
|
tmp = ZSWR3_RX_5;
|
|
tmp5 = ZSWR5_TX_5;
|
|
break;
|
|
case CS6:
|
|
tmp = ZSWR3_RX_6;
|
|
tmp5 = ZSWR5_TX_6;
|
|
break;
|
|
case CS7:
|
|
tmp = ZSWR3_RX_7;
|
|
tmp5 = ZSWR5_TX_7;
|
|
break;
|
|
case CS8:
|
|
default:
|
|
tmp = ZSWR3_RX_8;
|
|
tmp5 = ZSWR5_TX_8;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Output hardware flow control on the chip is horrendous: if
|
|
* carrier detect drops, the receiver is disabled. Hence we
|
|
* can only do this when the carrier is on.
|
|
*/
|
|
tmp |= ZSWR3_RX_ENABLE;
|
|
if (cflag & CCTS_OFLOW) {
|
|
if (cs->cs_zc->zc_csr & ZSRR0_DCD)
|
|
tmp |= ZSWR3_HFC;
|
|
ZS_DELAY();
|
|
}
|
|
cs->cs_preg[3] = tmp;
|
|
cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
|
|
|
|
tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
|
|
if ((cflag & PARODD) == 0)
|
|
tmp |= ZSWR4_EVENP;
|
|
if (cflag & PARENB)
|
|
tmp |= ZSWR4_PARENB;
|
|
cs->cs_preg[4] = tmp;
|
|
cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
|
|
cs->cs_preg[10] = ZSWR10_NRZ;
|
|
cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
|
|
cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
|
|
cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
|
|
|
|
/*
|
|
* If nothing is being transmitted, set up new current values,
|
|
* else mark them as pending.
|
|
*/
|
|
if (cs->cs_heldchange == 0) {
|
|
if (cs->cs_ttyp->t_state & TS_BUSY) {
|
|
cs->cs_heldtbc = cs->cs_tbc;
|
|
cs->cs_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else {
|
|
bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
|
|
zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
|
|
}
|
|
}
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Raise or lower modem control (DTR/RTS) signals. If a character is
|
|
* in transmission, the change is deferred.
|
|
*/
|
|
static void
|
|
zs_modem(cs, onoff)
|
|
struct zs_chanstate *cs;
|
|
int onoff;
|
|
{
|
|
int s, bis, and;
|
|
|
|
if (onoff) {
|
|
bis = ZSWR5_DTR | ZSWR5_RTS;
|
|
and = ~0;
|
|
} else {
|
|
bis = 0;
|
|
and = ~(ZSWR5_DTR | ZSWR5_RTS);
|
|
}
|
|
s = splzs();
|
|
cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
|
|
if (cs->cs_heldchange == 0) {
|
|
if (cs->cs_ttyp->t_state & TS_BUSY) {
|
|
cs->cs_heldtbc = cs->cs_tbc;
|
|
cs->cs_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else {
|
|
cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
|
|
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Write the given register set to the given zs channel in the proper order.
|
|
* The channel must not be transmitting at the time. The receiver will
|
|
* be disabled for the time it takes to write all the registers.
|
|
*/
|
|
static void
|
|
zs_loadchannelregs(zc, reg)
|
|
volatile struct zschan *zc;
|
|
u_char *reg;
|
|
{
|
|
int i;
|
|
|
|
zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
|
|
ZS_DELAY();
|
|
i = zc->zc_data; /* drain fifo */
|
|
ZS_DELAY();
|
|
i = zc->zc_data;
|
|
ZS_DELAY();
|
|
i = zc->zc_data;
|
|
ZS_DELAY();
|
|
ZS_WRITE(zc, 4, reg[4]);
|
|
ZS_WRITE(zc, 10, reg[10]);
|
|
ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
|
|
ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
|
|
ZS_WRITE(zc, 1, reg[1]);
|
|
ZS_WRITE(zc, 9, reg[9]);
|
|
ZS_WRITE(zc, 11, reg[11]);
|
|
ZS_WRITE(zc, 12, reg[12]);
|
|
ZS_WRITE(zc, 13, reg[13]);
|
|
ZS_WRITE(zc, 14, reg[14]);
|
|
ZS_WRITE(zc, 15, reg[15]);
|
|
ZS_WRITE(zc, 3, reg[3]);
|
|
ZS_WRITE(zc, 5, reg[5]);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Get a character from the given kgdb channel. Called at splhigh().
|
|
*/
|
|
static int
|
|
zs_kgdb_getc(arg)
|
|
void *arg;
|
|
{
|
|
register volatile struct zschan *zc = (volatile struct zschan *)arg;
|
|
u_char c;
|
|
|
|
while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
|
|
ZS_DELAY();
|
|
c = zc->zc_data;
|
|
ZS_DELAY();
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Put a character to the given kgdb channel. Called at splhigh().
|
|
*/
|
|
static void
|
|
zs_kgdb_putc(arg, c)
|
|
void *arg;
|
|
int c;
|
|
{
|
|
register volatile struct zschan *zc = (volatile struct zschan *)arg;
|
|
|
|
while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
|
|
ZS_DELAY();
|
|
zc->zc_data = c;
|
|
ZS_DELAY();
|
|
}
|
|
|
|
/*
|
|
* Set up for kgdb; called at boot time before configuration.
|
|
* KGDB interrupts will be enabled later when zs0 is configured.
|
|
*/
|
|
void
|
|
zs_kgdb_init()
|
|
{
|
|
volatile struct zsdevice *addr;
|
|
volatile struct zschan *zc;
|
|
int unit, zs;
|
|
|
|
if (major(kgdb_dev) != ZSMAJOR)
|
|
return;
|
|
unit = minor(kgdb_dev);
|
|
/*
|
|
* Unit must be 0 or 1 (zs0).
|
|
*/
|
|
if ((unsigned)unit >= ZS_KBD) {
|
|
kprintf("zs_kgdb_init: bad minor dev %d\n", unit);
|
|
return;
|
|
}
|
|
zs = unit >> 1;
|
|
if ((addr = zsaddr[zs]) == NULL)
|
|
addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
|
|
unit &= 1;
|
|
zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
|
|
zs_kgdb_savedspeed = zs_getspeed(zc);
|
|
kprintf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
|
|
zs, unit + 'a', kgdb_rate);
|
|
zs_reset(zc, 1, kgdb_rate);
|
|
kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
|
|
}
|
|
#endif /* KGDB */
|