efee5258bc
The MPFR library is a C library for multiple-precision floating-point computations with exact rounding (also called correct rounding). It is based on the GMP multiple-precision library and should replace the MPF class in further releases of GMP. GCC >= 4.2 requires MPFR.
152 lines
4.8 KiB
C
152 lines
4.8 KiB
C
/* mpfr_tanh -- hyperbolic tangent
|
|
|
|
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
int
|
|
mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
|
|
{
|
|
/****** Declaration ******/
|
|
mpfr_t x;
|
|
int inexact;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
|
|
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
|
|
("y[%#R]=%R inexact=%d", y, y, inexact));
|
|
|
|
/* Special value checking */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
|
|
{
|
|
if (MPFR_IS_NAN (xt))
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_INF (xt))
|
|
{
|
|
/* tanh(inf) = 1 && tanh(-inf) = -1 */
|
|
return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode);
|
|
}
|
|
else /* tanh (0) = 0 and xt is zero */
|
|
{
|
|
MPFR_ASSERTD (MPFR_IS_ZERO(xt));
|
|
MPFR_SET_ZERO (y);
|
|
MPFR_SET_SAME_SIGN (y, xt);
|
|
MPFR_RET (0);
|
|
}
|
|
}
|
|
|
|
/* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
|
|
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0,
|
|
rnd_mode, {});
|
|
|
|
MPFR_TMP_INIT_ABS (x, xt);
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* General case */
|
|
{
|
|
/* Declaration of the intermediary variable */
|
|
mpfr_t t, te;
|
|
mpfr_exp_t d;
|
|
|
|
/* Declaration of the size variable */
|
|
mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
|
|
mpfr_prec_t Nt; /* working precision */
|
|
long int err; /* error */
|
|
int sign = MPFR_SIGN (xt);
|
|
MPFR_ZIV_DECL (loop);
|
|
MPFR_GROUP_DECL (group);
|
|
|
|
/* First check for BIG overflow of exp(2*x):
|
|
For x > 0, exp(2*x) > 2^(2*x)
|
|
If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */
|
|
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) {
|
|
/* initialise of intermediary variables
|
|
since 'set_one' label assumes the variables have been
|
|
initialize */
|
|
MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te);
|
|
goto set_one;
|
|
}
|
|
|
|
/* Compute the precision of intermediary variable */
|
|
/* The optimal number of bits: see algorithms.tex */
|
|
Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4;
|
|
/* if x is small, there will be a cancellation in exp(2x)-1 */
|
|
if (MPFR_GET_EXP (x) < 0)
|
|
Nt += -MPFR_GET_EXP (x);
|
|
|
|
/* initialise of intermediary variable */
|
|
MPFR_GROUP_INIT_2 (group, Nt, t, te);
|
|
|
|
MPFR_ZIV_INIT (loop, Nt);
|
|
for (;;) {
|
|
/* tanh = (exp(2x)-1)/(exp(2x)+1) */
|
|
mpfr_mul_2ui (te, x, 1, MPFR_RNDN); /* 2x */
|
|
/* since x > 0, we can only have an overflow */
|
|
mpfr_exp (te, te, MPFR_RNDN); /* exp(2x) */
|
|
if (MPFR_UNLIKELY (MPFR_IS_INF (te))) {
|
|
set_one:
|
|
inexact = MPFR_FROM_SIGN_TO_INT (sign);
|
|
mpfr_set4 (y, __gmpfr_one, MPFR_RNDN, sign);
|
|
if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign)))
|
|
{
|
|
inexact = -inexact;
|
|
mpfr_nexttozero (y);
|
|
}
|
|
break;
|
|
}
|
|
d = MPFR_GET_EXP (te); /* For Error calculation */
|
|
mpfr_add_ui (t, te, 1, MPFR_RNDD); /* exp(2x) + 1*/
|
|
mpfr_sub_ui (te, te, 1, MPFR_RNDU); /* exp(2x) - 1*/
|
|
d = d - MPFR_GET_EXP (te);
|
|
mpfr_div (t, te, t, MPFR_RNDN); /* (exp(2x)-1)/(exp(2x)+1)*/
|
|
|
|
/* Calculation of the error */
|
|
d = MAX(3, d + 1);
|
|
err = Nt - (d + 1);
|
|
|
|
if (MPFR_LIKELY ((d <= Nt / 2) && MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
|
|
{
|
|
inexact = mpfr_set4 (y, t, rnd_mode, sign);
|
|
break;
|
|
}
|
|
|
|
/* if t=1, we still can round since |sinh(x)| < 1 */
|
|
if (MPFR_GET_EXP (t) == 1)
|
|
goto set_one;
|
|
|
|
/* Actualisation of the precision */
|
|
MPFR_ZIV_NEXT (loop, Nt);
|
|
MPFR_GROUP_REPREC_2 (group, Nt, t, te);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
MPFR_GROUP_CLEAR (group);
|
|
}
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
inexact = mpfr_check_range (y, inexact, rnd_mode);
|
|
|
|
return inexact;
|
|
}
|
|
|