efee5258bc
The MPFR library is a C library for multiple-precision floating-point computations with exact rounding (also called correct rounding). It is based on the GMP multiple-precision library and should replace the MPF class in further releases of GMP. GCC >= 4.2 requires MPFR.
181 lines
5.7 KiB
C
181 lines
5.7 KiB
C
/* mpfr_set_z_2exp -- set a floating-point number from a multiple-precision
|
|
integer and an exponent
|
|
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* set f to the integer z multiplied by 2^e */
|
|
int
|
|
mpfr_set_z_2exp (mpfr_ptr f, mpz_srcptr z, mpfr_exp_t e, mpfr_rnd_t rnd_mode)
|
|
{
|
|
mp_size_t fn, zn, dif, en;
|
|
int k, sign_z, inex;
|
|
mp_limb_t *fp, *zp;
|
|
mpfr_exp_t exp;
|
|
|
|
sign_z = mpz_sgn (z);
|
|
if (MPFR_UNLIKELY (sign_z == 0)) /* ignore the exponent for 0 */
|
|
{
|
|
MPFR_SET_ZERO(f);
|
|
MPFR_SET_POS(f);
|
|
MPFR_RET(0);
|
|
}
|
|
MPFR_ASSERTD (sign_z == MPFR_SIGN_POS || sign_z == MPFR_SIGN_NEG);
|
|
|
|
zn = ABS(SIZ(z)); /* limb size of z */
|
|
/* compute en = floor(e/GMP_NUMB_BITS) */
|
|
en = (e >= 0) ? e / GMP_NUMB_BITS : (e + 1) / GMP_NUMB_BITS - 1;
|
|
MPFR_ASSERTD (zn >= 1);
|
|
if (MPFR_UNLIKELY (zn + en > MPFR_EMAX_MAX / GMP_NUMB_BITS + 1))
|
|
return mpfr_overflow (f, rnd_mode, sign_z);
|
|
/* because zn + en >= MPFR_EMAX_MAX / GMP_NUMB_BITS + 2
|
|
implies (zn + en) * GMP_NUMB_BITS >= MPFR_EMAX_MAX + GMP_NUMB_BITS + 1
|
|
and exp = zn * GMP_NUMB_BITS + e - k
|
|
>= (zn + en) * GMP_NUMB_BITS - k > MPFR_EMAX_MAX */
|
|
|
|
fp = MPFR_MANT (f);
|
|
fn = MPFR_LIMB_SIZE (f);
|
|
dif = zn - fn;
|
|
zp = PTR(z);
|
|
count_leading_zeros (k, zp[zn-1]);
|
|
|
|
/* now zn + en <= MPFR_EMAX_MAX / GMP_NUMB_BITS + 1
|
|
thus (zn + en) * GMP_NUMB_BITS <= MPFR_EMAX_MAX + GMP_NUMB_BITS
|
|
and exp = zn * GMP_NUMB_BITS + e - k
|
|
<= (zn + en) * GMP_NUMB_BITS - k + GMP_NUMB_BITS - 1
|
|
<= MPFR_EMAX_MAX + 2 * GMP_NUMB_BITS - 1 */
|
|
exp = (mpfr_prec_t) zn * GMP_NUMB_BITS + e - k;
|
|
/* The exponent will be exp or exp + 1 (due to rounding) */
|
|
if (MPFR_UNLIKELY (exp > __gmpfr_emax))
|
|
return mpfr_overflow (f, rnd_mode, sign_z);
|
|
if (MPFR_UNLIKELY (exp + 1 < __gmpfr_emin))
|
|
return mpfr_underflow (f, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
|
|
sign_z);
|
|
|
|
if (MPFR_LIKELY (dif >= 0))
|
|
{
|
|
mp_limb_t rb, sb, ulp;
|
|
int sh;
|
|
|
|
/* number has to be truncated */
|
|
if (MPFR_LIKELY (k != 0))
|
|
{
|
|
mpn_lshift (fp, &zp[dif], fn, k);
|
|
if (MPFR_LIKELY (dif > 0))
|
|
fp[0] |= zp[dif - 1] >> (GMP_NUMB_BITS - k);
|
|
}
|
|
else
|
|
MPN_COPY (fp, zp + dif, fn);
|
|
|
|
/* Compute Rounding Bit and Sticky Bit */
|
|
MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (f) );
|
|
if (MPFR_LIKELY (sh != 0))
|
|
{
|
|
mp_limb_t mask = MPFR_LIMB_ONE << (sh-1);
|
|
mp_limb_t limb = fp[0];
|
|
rb = limb & mask;
|
|
sb = limb & (mask-1);
|
|
ulp = 2*mask;
|
|
fp[0] = limb & ~(ulp-1);
|
|
}
|
|
else /* sh == 0 */
|
|
{
|
|
mp_limb_t mask = MPFR_LIMB_ONE << (GMP_NUMB_BITS - 1 - k);
|
|
if (MPFR_LIKELY (dif > 0))
|
|
{
|
|
rb = zp[--dif] & mask;
|
|
sb = zp[dif] & (mask-1);
|
|
}
|
|
else
|
|
rb = sb = 0;
|
|
k = 0;
|
|
ulp = MPFR_LIMB_ONE;
|
|
}
|
|
if (MPFR_UNLIKELY (sb == 0) && MPFR_LIKELY (dif > 0))
|
|
{
|
|
sb = zp[--dif];
|
|
if (MPFR_LIKELY (k != 0))
|
|
sb &= MPFR_LIMB_MASK (GMP_NUMB_BITS - k);
|
|
if (MPFR_UNLIKELY (sb == 0) && MPFR_LIKELY (dif > 0))
|
|
do {
|
|
sb = zp[--dif];
|
|
} while (dif > 0 && sb == 0);
|
|
}
|
|
|
|
/* Rounding */
|
|
if (MPFR_LIKELY (rnd_mode == MPFR_RNDN))
|
|
{
|
|
if (rb == 0 || MPFR_UNLIKELY (sb == 0 && (fp[0] & ulp) == 0))
|
|
goto trunc;
|
|
else
|
|
goto addoneulp;
|
|
}
|
|
else /* Not Nearest */
|
|
{
|
|
if (MPFR_LIKELY (MPFR_IS_LIKE_RNDZ (rnd_mode, sign_z < 0))
|
|
|| MPFR_UNLIKELY ( (sb | rb) == 0 ))
|
|
goto trunc;
|
|
else
|
|
goto addoneulp;
|
|
}
|
|
|
|
trunc:
|
|
inex = MPFR_LIKELY ((sb | rb) != 0) ? -1 : 0;
|
|
goto end;
|
|
|
|
addoneulp:
|
|
inex = 1;
|
|
if (MPFR_UNLIKELY (mpn_add_1 (fp, fp, fn, ulp)))
|
|
{
|
|
/* Pow 2 case */
|
|
if (MPFR_UNLIKELY (exp == __gmpfr_emax))
|
|
return mpfr_overflow (f, rnd_mode, sign_z);
|
|
exp ++;
|
|
fp[fn-1] = MPFR_LIMB_HIGHBIT;
|
|
}
|
|
end:
|
|
(void) 0;
|
|
}
|
|
else /* dif < 0: Mantissa F is strictly bigger than z's one */
|
|
{
|
|
if (MPFR_LIKELY (k != 0))
|
|
mpn_lshift (fp - dif, zp, zn, k);
|
|
else
|
|
MPN_COPY (fp - dif, zp, zn);
|
|
/* fill with zeroes */
|
|
MPN_ZERO (fp, -dif);
|
|
inex = 0; /* result is exact */
|
|
}
|
|
|
|
if (MPFR_UNLIKELY (exp < __gmpfr_emin))
|
|
{
|
|
if (rnd_mode == MPFR_RNDN && inex == 0 && mpfr_powerof2_raw (f))
|
|
rnd_mode = MPFR_RNDZ;
|
|
return mpfr_underflow (f, rnd_mode, sign_z);
|
|
}
|
|
|
|
MPFR_SET_EXP (f, exp);
|
|
MPFR_SET_SIGN (f, sign_z);
|
|
MPFR_RET (inex*sign_z);
|
|
}
|