NetBSD/sys/arch/arm/ixp12x0/ixp12x0_intr.c
2012-11-12 18:00:34 +00:00

446 lines
10 KiB
C

/* $NetBSD: ixp12x0_intr.c,v 1.24 2012/11/12 18:00:37 skrll Exp $ */
/*
* Copyright (c) 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Ichiro FUKUHARA and Naoto Shimazaki.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ixp12x0_intr.c,v 1.24 2012/11/12 18:00:37 skrll Exp $");
/*
* Interrupt support for the Intel ixp12x0
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/simplelock.h>
#include <sys/termios.h>
#include <sys/bus.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <arm/ixp12x0/ixp12x0reg.h>
#include <arm/ixp12x0/ixp12x0var.h>
#include <arm/ixp12x0/ixp12x0_comreg.h>
#include <arm/ixp12x0/ixp12x0_comvar.h>
#include <arm/ixp12x0/ixp12x0_pcireg.h>
extern uint32_t ixpcom_cr; /* current cr from *_com.c */
extern uint32_t ixpcom_imask; /* tell mask to *_com.c */
/* Interrupt handler queues. */
struct intrq intrq[NIRQ];
/* Interrupts to mask at each level. */
static uint32_t imask[NIPL];
static uint32_t pci_imask[NIPL];
/* Current interrupt priority level. */
volatile int hardware_spl_level;
/* Software copy of the IRQs we have enabled. */
volatile uint32_t intr_enabled;
volatile uint32_t pci_intr_enabled;
/* Interrupts pending. */
static volatile int ipending;
void ixp12x0_intr_dispatch(struct trapframe *);
#define IXPREG(reg) *((volatile uint32_t*) (reg))
static inline uint32_t
ixp12x0_irq_read(void)
{
return IXPREG(IXP12X0_IRQ_VBASE) & IXP12X0_INTR_MASK;
}
static inline uint32_t
ixp12x0_pci_irq_read(void)
{
return IXPREG(IXPPCI_IRQ_STATUS);
}
static void
ixp12x0_enable_uart_irq(void)
{
ixpcom_imask = 0;
if (ixpcom_sc)
bus_space_write_4(ixpcom_sc->sc_iot, ixpcom_sc->sc_ioh,
IXPCOM_CR, ixpcom_cr & ~ixpcom_imask);
}
static void
ixp12x0_disable_uart_irq(void)
{
ixpcom_imask = CR_RIE | CR_XIE;
if (ixpcom_sc)
bus_space_write_4(ixpcom_sc->sc_iot, ixpcom_sc->sc_ioh,
IXPCOM_CR, ixpcom_cr & ~ixpcom_imask);
}
static void
ixp12x0_set_intrmask(uint32_t irqs, uint32_t pci_irqs)
{
if (irqs & (1U << IXP12X0_INTR_UART)) {
ixp12x0_disable_uart_irq();
} else {
ixp12x0_enable_uart_irq();
}
IXPREG(IXPPCI_IRQ_ENABLE_CLEAR) = pci_irqs;
IXPREG(IXPPCI_IRQ_ENABLE_SET) = pci_intr_enabled & ~pci_irqs;
}
static void
ixp12x0_enable_irq(int irq)
{
if (irq < SYS_NIRQ) {
intr_enabled |= (1U << irq);
switch (irq) {
case IXP12X0_INTR_UART:
ixp12x0_enable_uart_irq();
break;
case IXP12X0_INTR_PCI:
/* nothing to do */
break;
default:
panic("enable_irq:bad IRQ %d", irq);
}
} else {
pci_intr_enabled |= (1U << (irq - SYS_NIRQ));
IXPREG(IXPPCI_IRQ_ENABLE_SET) = (1U << (irq - SYS_NIRQ));
}
}
static inline void
ixp12x0_disable_irq(int irq)
{
if (irq < SYS_NIRQ) {
intr_enabled ^= ~(1U << irq);
switch (irq) {
case IXP12X0_INTR_UART:
ixp12x0_disable_uart_irq();
break;
case IXP12X0_INTR_PCI:
/* nothing to do */
break;
default:
/* nothing to do */
break;
}
} else {
pci_intr_enabled &= ~(1U << (irq - SYS_NIRQ));
IXPREG(IXPPCI_IRQ_ENABLE_CLEAR) = (1U << (irq - SYS_NIRQ));
}
}
/*
* NOTE: This routine must be called with interrupts disabled in the CPSR.
*/
static void
ixp12x0_intr_calculate_masks(void)
{
struct intrq *iq;
struct intrhand *ih;
int irq, ipl;
/* First, figure out which IPLs each IRQ has. */
for (irq = 0; irq < NIRQ; irq++) {
int levels = 0;
iq = &intrq[irq];
ixp12x0_disable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list))
levels |= (1U << ih->ih_ipl);
iq->iq_levels = levels;
}
/* Next, figure out which IRQs are used by each IPL. */
for (ipl = 0; ipl < NIPL; ipl++) {
int irqs = 0;
int pci_irqs = 0;
for (irq = 0; irq < SYS_NIRQ; irq++) {
if (intrq[irq].iq_levels & (1U << ipl))
irqs |= (1U << irq);
}
imask[ipl] = irqs;
for (irq = 0; irq < SYS_NIRQ; irq++) {
if (intrq[irq + SYS_NIRQ].iq_levels & (1U << ipl))
pci_irqs |= (1U << irq);
}
pci_imask[ipl] = pci_irqs;
}
KASSERT(imask[IPL_NONE] == 0);
KASSERT(pci_imask[IPL_NONE] == 0);
KASSERT(imask[IPL_SOFTCLOCK] == 0);
KASSERT(pci_imask[IPL_SOFTCLOCK] == 0);
KASSERT(imask[IPL_SOFTBIO] == 0);
KASSERT(pci_imask[IPL_SOFTBIO] == 0);
KASSERT(imask[IPL_SOFTNET] == 0);
KASSERT(pci_imask[IPL_SOFTNET] == 0);
KASSERT(imask[IPL_SOFTSERIAL] == 0);
KASSERT(pci_imask[IPL_SOFTSERIAL] == 0);
KASSERT(imask[IPL_VM] != 0);
KASSERT(pci_imask[IPL_VM] != 0);
/*
* splsched() must block anything that uses the scheduler.
*/
imask[IPL_SCHED] |= imask[IPL_VM];
pci_imask[IPL_SCHED] |= pci_imask[IPL_VM];
/*
* splhigh() must block "everything".
*/
imask[IPL_HIGH] |= imask[IPL_SCHED];
pci_imask[IPL_HIGH] |= pci_imask[IPL_SCHED];
/*
* Now compute which IRQs must be blocked when servicing any
* given IRQ.
*/
for (irq = 0; irq < NIRQ; irq++) {
int irqs;
int pci_irqs;
if (irq < SYS_NIRQ) {
irqs = (1U << irq);
pci_irqs = 0;
} else {
irqs = 0;
pci_irqs = (1U << (irq - SYS_NIRQ));
}
iq = &intrq[irq];
if (TAILQ_FIRST(&iq->iq_list) != NULL)
ixp12x0_enable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
irqs |= imask[ih->ih_ipl];
pci_irqs |= pci_imask[ih->ih_ipl];
}
iq->iq_mask = irqs;
iq->iq_pci_mask = pci_irqs;
}
}
inline void
splx(int new)
{
int old;
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
old = curcpl();
set_curcpl(new);
if (new != hardware_spl_level) {
hardware_spl_level = new;
ixp12x0_set_intrmask(imask[new], pci_imask[new]);
}
restore_interrupts(oldirqstate);
#ifdef __HAVE_FAST_SOFTINTS
cpu_dosoftints();
#endif
}
int
_splraise(int ipl)
{
int old;
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
old = curcpl();
set_curcpl(ipl);
restore_interrupts(oldirqstate);
return (old);
}
int
_spllower(int ipl)
{
int old = curcpl();
if (old <= ipl)
return (old);
splx(ipl);
return (old);
}
/*
* ixp12x0_intr_init:
*
* Initialize the rest of the interrupt subsystem, making it
* ready to handle interrupts from devices.
*/
void
ixp12x0_intr_init(void)
{
struct intrq *iq;
int i;
intr_enabled = 0;
pci_intr_enabled = 0;
for (i = 0; i < NIRQ; i++) {
iq = &intrq[i];
TAILQ_INIT(&iq->iq_list);
sprintf(iq->iq_name, "ipl %d", i);
evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
NULL, "ixpintr", iq->iq_name);
}
curcpu()->ci_intr_depth = 0;
curcpu()->ci_cpl = 0;
hardware_spl_level = 0;
ixp12x0_intr_calculate_masks();
/* Enable IRQs (don't yet use FIQs). */
enable_interrupts(I32_bit);
}
void *
ixp12x0_intr_establish(int irq, int ipl, int (*ih_func)(void *), void *arg)
{
struct intrq* iq;
struct intrhand* ih;
u_int oldirqstate;
#ifdef DEBUG
printf("ixp12x0_intr_establish(irq=%d, ipl=%d, ih_func=%08x, arg=%08x)\n",
irq, ipl, (uint32_t) ih_func, (uint32_t) arg);
#endif
if (irq < 0 || irq > NIRQ)
panic("ixp12x0_intr_establish: IRQ %d out of range", ipl);
if (ipl < 0 || ipl > NIPL)
panic("ixp12x0_intr_establish: IPL %d out of range", ipl);
ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
return (NULL);
ih->ih_func = ih_func;
ih->ih_arg = arg;
ih->ih_irq = irq;
ih->ih_ipl = ipl;
iq = &intrq[irq];
iq->iq_ist = IST_LEVEL;
oldirqstate = disable_interrupts(I32_bit);
TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
ixp12x0_intr_calculate_masks();
restore_interrupts(oldirqstate);
return (ih);
}
void
ixp12x0_intr_disestablish(void *cookie)
{
struct intrhand* ih = cookie;
struct intrq* iq = &intrq[ih->ih_ipl];
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
ixp12x0_intr_calculate_masks();
restore_interrupts(oldirqstate);
}
void
ixp12x0_intr_dispatch(struct trapframe *frame)
{
struct intrq* iq;
struct intrhand* ih;
struct cpu_info* const ci = curcpu();
const int ppl = ci->ci_cpl;
u_int oldirqstate;
uint32_t hwpend;
uint32_t pci_hwpend;
int irq;
uint32_t ibit;
hwpend = ixp12x0_irq_read();
pci_hwpend = ixp12x0_pci_irq_read();
hardware_spl_level = ppl;
ixp12x0_set_intrmask(imask[ppl] | hwpend, pci_imask[ppl] | pci_hwpend);
hwpend &= ~imask[ppl];
pci_hwpend &= ~pci_imask[ppl];
while (hwpend) {
irq = ffs(hwpend) - 1;
ibit = (1U << irq);
iq = &intrq[irq];
iq->iq_ev.ev_count++;
ci->ci_data.cpu_nintr++;
TAILQ_FOREACH(ih, &iq->iq_list, ih_list) {
ci->ci_cpl = ih->ih_ipl;
oldirqstate = enable_interrupts(I32_bit);
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
restore_interrupts(oldirqstate);
hwpend &= ~ibit;
}
}
while (pci_hwpend) {
irq = ffs(pci_hwpend) - 1;
ibit = (1U << irq);
iq = &intrq[irq + SYS_NIRQ];
iq->iq_ev.ev_count++;
ci->ci_data.cpu_nintr++;
TAILQ_FOREACH(ih, &iq->iq_list, ih_list) {
ci->ci_cpl = ih->ih_ipl;
oldirqstate = enable_interrupts(I32_bit);
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
restore_interrupts(oldirqstate);
}
pci_hwpend &= ~ibit;
}
ci->ci_cpl = ppl;
hardware_spl_level = ppl;
ixp12x0_set_intrmask(imask[ppl], pci_imask[ppl]);
#ifdef __HAVE_FAST_SOFTINTS
cpu_dosoftints();
#endif
}