NetBSD/sys/dev/sbus/dbri.c
dyoung c1b390d493 A pointer typedef entails trading too much flexibility to declare const
and non-const types, and the kernel uses both const and non-const
PMF qualifiers and device suspensors, so change the pmf_qual_t and
device_suspensor_t typedefs from "pointers to const" to non-pointer,
non-const types.
2010-02-24 22:37:54 +00:00

2217 lines
53 KiB
C

/* $NetBSD: dbri.c,v 1.31 2010/02/24 22:38:08 dyoung Exp $ */
/*
* Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
* Copyright (c) 1998, 1999 Brent Baccala (baccala@freesoft.org)
* Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill@netbsd.org>
* Copyright (c) 2005 Michael Lorenz <macallan@netbsd.org>
* All rights reserved.
*
* This driver is losely based on a Linux driver written by Rudolf Koenig and
* Brent Baccala who kindly gave their permission to use their code in a
* BSD-licensed driver.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.31 2010/02/24 22:38:08 dyoung Exp $");
#include "audio.h"
#if NAUDIO > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/sbus/sbusvar.h>
#include <sparc/sparc/auxreg.h>
#include <machine/autoconf.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <dev/ic/cs4215reg.h>
#include <dev/ic/cs4215var.h>
#include <dev/sbus/dbrireg.h>
#include <dev/sbus/dbrivar.h>
#include "opt_sbus_dbri.h"
#define DBRI_ROM_NAME_PREFIX "SUNW,DBRI"
#ifdef DBRI_DEBUG
# define DPRINTF aprint_normal
#else
# define DPRINTF while (0) printf
#endif
static const char *dbri_supported[] = {
"e",
"s3",
""
};
enum ms {
CHImaster,
CHIslave
};
enum io {
PIPEinput,
PIPEoutput
};
/*
* Function prototypes
*/
/* softc stuff */
static void dbri_attach_sbus(device_t, device_t, void *);
static int dbri_match_sbus(device_t, cfdata_t, void *);
static void dbri_config_interrupts(device_t);
/* interrupt handler */
static int dbri_intr(void *);
static void dbri_softint(void *);
/* supporting subroutines */
static int dbri_init(struct dbri_softc *);
static int dbri_reset(struct dbri_softc *);
static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
static void dbri_command_send(struct dbri_softc *, volatile uint32_t *);
static void dbri_process_interrupt_buffer(struct dbri_softc *);
static void dbri_process_interrupt(struct dbri_softc *, int32_t);
/* mmcodec subroutines */
static int mmcodec_init(struct dbri_softc *);
static void mmcodec_init_data(struct dbri_softc *);
static void mmcodec_pipe_init(struct dbri_softc *);
static void mmcodec_default(struct dbri_softc *);
static void mmcodec_setgain(struct dbri_softc *, int);
static int mmcodec_setcontrol(struct dbri_softc *);
/* chi subroutines */
static void chi_reset(struct dbri_softc *, enum ms, int);
/* pipe subroutines */
static void pipe_setup(struct dbri_softc *, int, int);
static void pipe_reset(struct dbri_softc *, int);
static void pipe_receive_fixed(struct dbri_softc *, int,
volatile uint32_t *);
static void pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
static int pipe_active(struct dbri_softc *, int);
/* audio(9) stuff */
static int dbri_query_encoding(void *, struct audio_encoding *);
static int dbri_set_params(void *, int, int, struct audio_params *,
struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
static int dbri_round_blocksize(void *, int, int, const audio_params_t *);
static int dbri_halt_output(void *);
static int dbri_halt_input(void *);
static int dbri_getdev(void *, struct audio_device *);
static int dbri_set_port(void *, mixer_ctrl_t *);
static int dbri_get_port(void *, mixer_ctrl_t *);
static int dbri_query_devinfo(void *, mixer_devinfo_t *);
static size_t dbri_round_buffersize(void *, int, size_t);
static int dbri_get_props(void *);
static int dbri_open(void *, int);
static void dbri_close(void *);
static void setup_ring_xmit(struct dbri_softc *, int, int, int, int,
void (*)(void *), void *);
static void setup_ring_recv(struct dbri_softc *, int, int, int, int,
void (*)(void *), void *);
static int dbri_trigger_output(void *, void *, void *, int,
void (*)(void *), void *, const struct audio_params *);
static int dbri_trigger_input(void *, void *, void *, int,
void (*)(void *), void *, const struct audio_params *);
static void *dbri_malloc(void *, int, size_t, struct malloc_type *, int);
static void dbri_free(void *, void *, struct malloc_type *);
static paddr_t dbri_mappage(void *, void *, off_t, int);
static void dbri_set_power(struct dbri_softc *, int);
static void dbri_bring_up(struct dbri_softc *);
static bool dbri_suspend(device_t, const pmf_qual_t *);
static bool dbri_resume(device_t, const pmf_qual_t *);
/* stupid support routines */
static uint32_t reverse_bytes(uint32_t, int);
struct audio_device dbri_device = {
"CS4215",
"",
"dbri"
};
struct audio_hw_if dbri_hw_if = {
dbri_open,
dbri_close,
NULL, /* drain */
dbri_query_encoding,
dbri_set_params,
dbri_round_blocksize,
NULL, /* commit_settings */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
dbri_halt_output,
dbri_halt_input,
NULL, /* speaker_ctl */
dbri_getdev,
NULL, /* setfd */
dbri_set_port,
dbri_get_port,
dbri_query_devinfo,
dbri_malloc,
dbri_free,
dbri_round_buffersize,
dbri_mappage,
dbri_get_props,
dbri_trigger_output,
dbri_trigger_input
};
CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
#define DBRI_NFORMATS 4
static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},
/* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},*/
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
48000}},
};
enum {
DBRI_OUTPUT_CLASS,
DBRI_VOL_OUTPUT,
DBRI_ENABLE_MONO,
DBRI_ENABLE_HEADPHONE,
DBRI_ENABLE_LINE,
DBRI_MONITOR_CLASS,
DBRI_VOL_MONITOR,
DBRI_INPUT_CLASS,
DBRI_INPUT_GAIN,
DBRI_INPUT_SELECT,
DBRI_RECORD_CLASS,
DBRI_ENUM_LAST
};
/*
* Autoconfig routines
*/
static int
dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
{
struct sbus_attach_args *sa = aux;
char *ver;
int i;
if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
return (0);
ver = &sa->sa_name[9];
for (i = 0; dbri_supported[i][0] != '\0'; i++)
if (strcmp(dbri_supported[i], ver) == 0)
return (1);
return (0);
}
static void
dbri_attach_sbus(device_t parent, device_t self, void *aux)
{
struct dbri_softc *sc = device_private(self);
struct sbus_attach_args *sa = aux;
bus_space_handle_t ioh;
bus_size_t size;
int error, rseg, pwr, i;
char *ver = &sa->sa_name[9];
sc->sc_dev = self;
sc->sc_iot = sa->sa_bustag;
sc->sc_dmat = sa->sa_dmatag;
sc->sc_powerstate = 1;
pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
aprint_normal(": rev %s\n", ver);
if (pwr) {
/*
* we can control DBRI power via auxio and we're initially
* powered down
*/
sc->sc_have_powerctl = 1;
sc->sc_powerstate = 0;
dbri_set_power(sc, 1);
if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
aprint_error_dev(self,
"cannot set power mgmt handler\n");
}
} else {
/* we can't control power so we're always up */
sc->sc_have_powerctl = 0;
sc->sc_powerstate = 1;
}
for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
dbri_softint, &sc->sc_desc[i]);
}
if (sa->sa_npromvaddrs)
ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
else {
if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
sa->sa_offset, sa->sa_size,
BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
aprint_error("%s @ sbus: cannot map registers\n",
device_xname(self));
return;
}
}
sc->sc_ioh = ioh;
size = sizeof(struct dbri_dma);
/* get a DMA handle */
if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
aprint_error_dev(self, "DMA map create error %d\n",
error);
return;
}
/* allocate DMA buffer */
if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
1, &rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(self, "DMA buffer alloc error %d\n",
error);
return;
}
/* map DMA buffer into CPU addressable space */
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
&sc->sc_membase,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(self, "DMA buffer map error %d\n",
error);
return;
}
/* load the buffer */
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
sc->sc_membase, size, NULL,
BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(self, "DMA buffer map load error %d\n",
error);
bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
return;
}
/* map the registers into memory */
/* kernel virtual address of DMA buffer */
sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
/* physical address of DMA buffer */
sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
sc->sc_bufsiz = size;
bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
sc);
sc->sc_locked = 0;
sc->sc_desc_used = 0;
sc->sc_refcount = 0;
sc->sc_playing = 0;
sc->sc_recording = 0;
config_interrupts(self, &dbri_config_interrupts);
return;
}
/*
* lowlevel routine to switch power for the DBRI chip
*/
static void
dbri_set_power(struct dbri_softc *sc, int state)
{
int s;
if (sc->sc_have_powerctl == 0)
return;
if (sc->sc_powerstate == state)
return;
if (state) {
DPRINTF("%s: waiting to power up... ",
device_xname(sc->sc_dev));
s = splhigh();
*AUXIO4M_REG |= (AUXIO4M_MMX);
splx(s);
delay(10000);
DPRINTF("done (%02x)\n", *AUXIO4M_REG);
} else {
DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
s = splhigh();
*AUXIO4M_REG &= ~AUXIO4M_MMX;
splx(s);
DPRINTF("done (%02x})\n", *AUXIO4M_REG);
}
sc->sc_powerstate = state;
}
/*
* power up and re-initialize the chip
*/
static void
dbri_bring_up(struct dbri_softc *sc)
{
if (sc->sc_have_powerctl == 0)
return;
if (sc->sc_powerstate == 1)
return;
/* ok, we really need to do something */
dbri_set_power(sc, 1);
/*
* re-initialize the chip but skip all the probing, don't overwrite
* any other settings either
*/
dbri_init(sc);
mmcodec_setgain(sc, 1);
mmcodec_pipe_init(sc);
mmcodec_init_data(sc);
mmcodec_setgain(sc, 0);
}
static void
dbri_config_interrupts(device_t dev)
{
struct dbri_softc *sc = device_private(dev);
dbri_init(sc);
if (mmcodec_init(sc) == -1) {
printf("%s: no codec detected, aborting\n",
device_xname(dev));
return;
}
/* Attach ourselves to the high level audio interface */
audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
/* power down until open() */
dbri_set_power(sc, 0);
return;
}
static int
dbri_intr(void *hdl)
{
struct dbri_softc *sc = hdl;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int x;
/* clear interrupt */
x = bus_space_read_4(iot, ioh, DBRI_REG1);
if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
uint32_t tmp;
if (x & DBRI_MRR)
aprint_debug_dev(sc->sc_dev,
"multiple ack error on sbus\n");
if (x & DBRI_MLE)
aprint_debug_dev(sc->sc_dev,
"multiple late error on sbus\n");
if (x & DBRI_LBG)
aprint_debug_dev(sc->sc_dev,
"lost bus grant on sbus\n");
if (x & DBRI_MBE)
aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
/*
* Some of these errors disable the chip's circuitry.
* Re-enable the circuitry and keep on going.
*/
tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
tmp &= ~(DBRI_DISABLE_MASTER);
bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
}
#if 0
if (!x & 1) /* XXX: DBRI_INTR_REQ */
return (1);
#endif
dbri_process_interrupt_buffer(sc);
return (1);
}
static void
dbri_softint(void *cookie)
{
struct dbri_desc *dd = cookie;
if (dd->callback != NULL)
dd->callback(dd->callback_args);
}
static int
dbri_init(struct dbri_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
uint32_t reg;
volatile uint32_t *cmd;
bus_addr_t dmaaddr;
int n;
dbri_reset(sc);
cmd = dbri_command_lock(sc);
/* XXX: Initialize interrupt ring buffer */
sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
sc->sc_irqp = 1;
/* Initialize pipes */
for (n = 0; n < DBRI_PIPE_MAX; n++)
sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
for (n = 1; n < DBRI_INT_BLOCKS; n++) {
sc->sc_dma->intr[n] = 0;
}
/* Disable all SBus bursts */
/* XXX 16 byte bursts cause errors, the rest works */
reg = bus_space_read_4(iot, ioh, DBRI_REG0);
/*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
reg |= (DBRI_BURST_4 | DBRI_BURST_8);
bus_space_write_4(iot, ioh, DBRI_REG0, reg);
/* setup interrupt queue */
dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
*(cmd++) = dmaaddr;
dbri_command_send(sc, cmd);
return (0);
}
static int
dbri_reset(struct dbri_softc *sc)
{
int bail = 0;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
(bail < 100000)) {
bail++;
delay(10);
}
if (bail == 100000)
aprint_error_dev(sc->sc_dev, "reset timed out\n");
return (0);
}
static volatile uint32_t *
dbri_command_lock(struct dbri_softc *sc)
{
if (sc->sc_locked)
aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
sc->sc_locked++;
return (&sc->sc_dma->command[0]);
}
static void
dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
{
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_tag_t iot = sc->sc_iot;
int maxloops = 1000000;
int x;
x = splsched();
sc->sc_locked--;
if (sc->sc_locked != 0) {
aprint_error_dev(sc->sc_dev,
"command buffer improperly locked\n");
} else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
} else {
*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
sc->sc_waitseen = 0;
bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
while ((--maxloops) > 0 &&
(bus_space_read_4(iot, ioh, DBRI_REG0)
& DBRI_COMMAND_VALID)) {
bus_space_barrier(iot, ioh, DBRI_REG0, 4,
BUS_SPACE_BARRIER_READ);
delay(1000);
}
if (maxloops == 0) {
aprint_error_dev(sc->sc_dev,
"chip never completed command buffer\n");
} else {
DPRINTF("%s: command completed\n",
device_xname(sc->sc_dev));
while ((--maxloops) > 0 && (!sc->sc_waitseen))
dbri_process_interrupt_buffer(sc);
if (maxloops == 0) {
aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
}
}
}
splx(x);
return;
}
static void
dbri_process_interrupt_buffer(struct dbri_softc *sc)
{
int32_t i;
while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
sc->sc_dma->intr[sc->sc_irqp] = 0;
sc->sc_irqp++;
if (sc->sc_irqp == DBRI_INT_BLOCKS)
sc->sc_irqp = 1;
else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
sc->sc_irqp++;
dbri_process_interrupt(sc, i);
}
return;
}
static void
dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
{
#if 0
const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
#endif
int val = DBRI_INTR_GETVAL(i);
int channel = DBRI_INTR_GETCHAN(i);
int command = DBRI_INTR_GETCMD(i);
int code = DBRI_INTR_GETCODE(i);
#if 0
int rval = DBRI_INTR_GETRVAL(i);
#endif
if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
sc->sc_waitseen++;
switch (code) {
case DBRI_INTR_XCMP: /* transmission complete */
{
int td;
struct dbri_desc *dd;
td = sc->sc_pipe[channel].desc;
dd = &sc->sc_desc[td];
if (dd->callback != NULL)
softint_schedule(dd->softint);
break;
}
case DBRI_INTR_FXDT: /* fixed data change */
DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
val);
#if 0
printf("reg: %08x\n", sc->sc_mm.status);
#endif
if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
val = reverse_bytes(val, sc->sc_pipe[channel].length);
if (sc->sc_pipe[channel].prec)
*(sc->sc_pipe[channel].prec) = val;
#ifndef DBRI_SPIN
DPRINTF("%s: wakeup %p\n", device_xname(sc->sc_dev), sc);
wakeup(sc);
#endif
break;
case DBRI_INTR_SBRI:
DPRINTF("dbri_intr: SBRI\n");
break;
case DBRI_INTR_BRDY:
{
int td;
struct dbri_desc *dd;
td = sc->sc_pipe[channel].desc;
dd = &sc->sc_desc[td];
if (dd->callback != NULL)
softint_schedule(dd->softint);
break;
}
case DBRI_INTR_UNDR:
{
volatile uint32_t *cmd;
int td = sc->sc_pipe[channel].desc;
DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
sc->sc_dma->xmit[td].status = 0;
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
sc->sc_pipe[channel].sdp |
DBRI_SDP_VALID_POINTER |
DBRI_SDP_CLEAR |
DBRI_SDP_2SAME);
*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
dbri_command_send(sc, cmd);
break;
}
case DBRI_INTR_CMDI:
DPRINTF("ok");
break;
default:
aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
code);
break;
}
return;
}
/*
* mmcodec stuff
*/
static int
mmcodec_init(struct dbri_softc *sc)
{
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_tag_t iot = sc->sc_iot;
uint32_t reg2;
int bail;
reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
if (reg2 & DBRI_PIO2) {
aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
sc->sc_mm.onboard = 1;
}
if (reg2 & DBRI_PIO0) {
aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
sc->sc_mm.onboard = 0;
}
if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
sc->sc_mm.onboard = 0;
}
if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
return -1;
}
sc->sc_version = 0xff;
mmcodec_pipe_init(sc);
mmcodec_default(sc);
sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
/*
* mmcodec_setcontrol() sometimes fails right after powerup
* so we just try again until we either get a useful response or run
* out of time
*/
bail = 0;
while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
bail++;
if (bail > 100) {
DPRINTF("%s: cs4215 probe failed at offset %d\n",
device_xname(sc->sc_dev), sc->sc_mm.offset);
return (-1);
}
delay(10000);
}
aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
/* set some sane defaults for mmcodec_init_data */
sc->sc_params.channels = 2;
sc->sc_params.precision = 16;
mmcodec_init_data(sc);
return (0);
}
static void
mmcodec_init_data(struct dbri_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
uint32_t tmp;
int data_width;
tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */
bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
/* switch CS4215 to data mode - set PIO3 to 1 */
tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
/* XXX */
tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
chi_reset(sc, CHIslave, 128);
data_width = sc->sc_params.channels * sc->sc_params.precision;
if ((data_width != 32) && (data_width != 8))
aprint_error("%s: data_width is %d\n", __func__, data_width);
pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
mmcodec_setgain(sc, 0);
tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
tmp |= DBRI_CHI_ACTIVATE;
bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
return;
}
static void
mmcodec_pipe_init(struct dbri_softc *sc)
{
pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
sc->sc_mm.status = 0;
pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
return;
}
static void
mmcodec_default(struct dbri_softc *sc)
{
struct cs4215_state *mm = &sc->sc_mm;
/*
* no action, memory resetting only
*
* data time slots 5-8
* speaker, line and headphone enable. set gain to half.
* input is line
*/
mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
sc->sc_linp = 128;
sc->sc_rinp = 128;
sc->sc_monitor = 0;
sc->sc_input = 1; /* line */
mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
/*
* control time slots 1-4
*
* 0: default I/O voltage scale
* 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
* 2: serial enable, CHI master, 128 bits per frame, clock 1
* 3: tests disabled
*/
mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
mm->c.bcontrol[3] = 0;
return;
}
static void
mmcodec_setgain(struct dbri_softc *sc, int mute)
{
if (mute) {
/* disable all outputs, max. attenuation */
sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
} else {
sc->sc_mm.d.bdata[0] = sc->sc_latt;
sc->sc_mm.d.bdata[1] = sc->sc_ratt;
}
/* input stuff */
sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
(CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
if (sc->sc_powerstate == 0)
return;
pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
/* give the chip some time to execute the command */
delay(250);
return;
}
static int
mmcodec_setcontrol(struct dbri_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
uint32_t val;
uint32_t tmp;
int bail = 0;
#if DBRI_SPIN
int i;
#endif
/*
* Temporarily mute outputs and wait 125 us to make sure that it
* happens. This avoids clicking noises.
*/
mmcodec_setgain(sc, 1);
delay(125);
bus_space_write_4(iot, ioh, DBRI_REG2, 0);
delay(125);
/* enable control mode */
val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */
/* XXX */
val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
bus_space_write_4(iot, ioh, DBRI_REG2, val);
delay(34);
/*
* in control mode, the cs4215 is the slave device, so the
* DBRI must act as the CHI master.
*
* in data mode, the cs4215 must be the CHI master to insure
* that the data stream is in sync with its codec
*/
tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
tmp &= ~DBRI_COMMAND_CHI;
bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
chi_reset(sc, CHImaster, 128);
/* control mode */
pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
/* wait for the chip to echo back CLB as zero */
sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
tmp |= DBRI_CHI_ACTIVATE;
bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
#if DBRI_SPIN
i = 1024;
while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
delay(125);
}
if (i == 0) {
DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
device_xname(sc->sc_dev), sc->sc_mm.status);
return (-1);
}
#else
while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
DPRINTF("%s: tsleep %p\n", device_xname(sc->sc_dev), sc);
tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
bail++;
}
#endif
if (bail >= 10) {
DPRINTF("%s: switching to control mode timed out (%x %x)\n",
device_xname(sc->sc_dev), sc->sc_mm.status,
bus_space_read_4(iot, ioh, DBRI_REG2));
return -1;
}
/* copy the version information before it becomes unreadable again */
sc->sc_version = sc->sc_mm.version;
/* terminate cs4215 control mode */
sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
/* two frames of control info @ 8kHz frame rate = 250us delay */
delay(250);
mmcodec_setgain(sc, 0);
return (0);
}
/*
* CHI combo
*/
static void
chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
{
volatile uint32_t *cmd;
int val;
int clockrate, divisor;
cmd = dbri_command_lock(sc);
/* set CHI anchor: pipe 16 */
val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
*(cmd++) = 0;
val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
*(cmd++) = 0;
*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
sc->sc_pipe[16].sdp = 1;
sc->sc_pipe[16].next = 16;
sc->sc_chi_pipe_in = 16;
sc->sc_chi_pipe_out = 16;
switch (ms) {
case CHIslave:
*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
break;
case CHImaster:
clockrate = bpf * 8;
divisor = 12288 / clockrate;
if (divisor > 255 || divisor * clockrate != 12288)
aprint_error_dev(sc->sc_dev,
"illegal bits-per-frame %d\n", bpf);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
break;
default:
aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
break;
}
sc->sc_chi_bpf = bpf;
/* CHI data mode */
*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
dbri_command_send(sc, cmd);
return;
}
/*
* pipe stuff
*/
static void
pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
{
DPRINTF("pipe setup: %d\n", pipe);
if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
pipe);
return;
}
if ((sdp & 0xf800) != sdp)
aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
sdp);
if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
!(sdp & DBRI_SDP_TO_SER))
sdp |= DBRI_SDP_CHANGE;
sdp |= DBRI_PIPE(pipe);
sc->sc_pipe[pipe].sdp = sdp;
sc->sc_pipe[pipe].desc = -1;
pipe_reset(sc, pipe);
return;
}
static void
pipe_reset(struct dbri_softc *sc, int pipe)
{
struct dbri_desc *dd;
int sdp;
int desc;
volatile uint32_t *cmd;
if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
pipe);
return;
}
sdp = sc->sc_pipe[pipe].sdp;
if (sdp == 0) {
aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
pipe);
return;
}
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
*(cmd++) = 0;
dbri_command_send(sc, cmd);
desc = sc->sc_pipe[pipe].desc;
dd = &sc->sc_desc[desc];
dd->busy = 0;
#if 0
if (dd->callback)
softint_schedule(dd->softint);
#endif
sc->sc_pipe[pipe].desc = -1;
return;
}
static void
pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
{
if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
pipe);
return;
}
if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
pipe);
return;
}
if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
pipe);
return;
}
sc->sc_pipe[pipe].prec = prec;
return;
}
static void
pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
{
volatile uint32_t *cmd;
if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
pipe);
return;
}
if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
pipe);
return;
}
if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
pipe);
return;
}
if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
pipe);
return;
}
if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
data = reverse_bytes(data, sc->sc_pipe[pipe].length);
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
*(cmd++) = data;
dbri_command_send(sc, cmd);
return;
}
static void
setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
void (*callback)(void *), void *callback_args)
{
volatile uint32_t *cmd;
int x, i;
int td;
int td_first, td_last;
bus_addr_t dmabuf, dmabase;
struct dbri_desc *dd = &sc->sc_desc[which];
switch (pipe) {
case 4:
/* output, offset 0 */
break;
default:
aprint_error("%s: illegal pipe number (%d)\n",
__func__, pipe);
return;
}
td = 0;
td_first = td_last = -1;
if (sc->sc_pipe[pipe].sdp == 0) {
aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
pipe);
return;
}
dmabuf = dd->dmabase;
dmabase = sc->sc_dmabase;
td = 0;
for (i = 0; i < (num - 1); i++) {
sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
| TX_EOF | TX_BINT;
sc->sc_dma->xmit[i].ba = dmabuf;
sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
sc->sc_dma->xmit[i].status = 0;
td_last = td;
dmabuf += blksz;
}
sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
sc->sc_dma->xmit[i].ba = dmabuf;
sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
sc->sc_dma->xmit[i].status = 0;
dd->callback = callback;
dd->callback_args = callback_args;
x = splsched();
/* the pipe shouldn't be active */
if (pipe_active(sc, pipe)) {
aprint_error("pipe active (CDP)\n");
/* pipe is already active */
#if 0
td_last = sc->sc_pipe[pipe].desc;
while (sc->sc_desc[td_last].next != -1)
td_last = sc->sc_desc[td_last].next;
sc->sc_desc[td_last].next = td_first;
sc->sc_dma->desc[td_last].nda =
sc->sc_dmabase + dbri_dma_off(desc, td_first);
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
dbri_command_send(sc, cmd);
#endif
} else {
/*
* pipe isn't active - issue an SDP command to start our
* chain of TDs running
*/
sc->sc_pipe[pipe].desc = which;
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
sc->sc_pipe[pipe].sdp |
DBRI_SDP_VALID_POINTER |
DBRI_SDP_EVERY |
DBRI_SDP_CLEAR);
*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
dbri_command_send(sc, cmd);
DPRINTF("%s: starting DMA\n", __func__);
}
splx(x);
return;
}
static void
setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
void (*callback)(void *), void *callback_args)
{
volatile uint32_t *cmd;
int x, i;
int td_first, td_last;
bus_addr_t dmabuf, dmabase;
struct dbri_desc *dd = &sc->sc_desc[which];
switch (pipe) {
case 6:
break;
default:
aprint_error("%s: illegal pipe number (%d)\n",
__func__, pipe);
return;
}
td_first = td_last = -1;
if (sc->sc_pipe[pipe].sdp == 0) {
aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
pipe);
return;
}
dmabuf = dd->dmabase;
dmabase = sc->sc_dmabase;
for (i = 0; i < (num - 1); i++) {
sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
sc->sc_dma->recv[i].ba = dmabuf;
sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
sc->sc_dma->recv[i].status = RX_EOF;
td_last = i;
dmabuf += blksz;
}
sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
sc->sc_dma->recv[i].ba = dmabuf;
sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
sc->sc_dma->recv[i].status = RX_EOF;
dd->callback = callback;
dd->callback_args = callback_args;
x = splsched();
/* the pipe shouldn't be active */
if (pipe_active(sc, pipe)) {
aprint_error("pipe active (CDP)\n");
/* pipe is already active */
#if 0
td_last = sc->sc_pipe[pipe].desc;
while (sc->sc_desc[td_last].next != -1)
td_last = sc->sc_desc[td_last].next;
sc->sc_desc[td_last].next = td_first;
sc->sc_dma->desc[td_last].nda =
sc->sc_dmabase + dbri_dma_off(desc, td_first);
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
dbri_command_send(sc, cmd);
#endif
} else {
/*
* pipe isn't active - issue an SDP command to start our
* chain of TDs running
*/
sc->sc_pipe[pipe].desc = which;
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
sc->sc_pipe[pipe].sdp |
DBRI_SDP_VALID_POINTER |
DBRI_SDP_EVERY |
DBRI_SDP_CLEAR);
*(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
dbri_command_send(sc, cmd);
DPRINTF("%s: starting DMA\n", __func__);
}
splx(x);
return;
}
static void
pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
int len, int cycle)
{
volatile uint32_t *cmd;
int prevpipe, nextpipe;
int val;
DPRINTF("%s: %d\n", __func__, pipe);
if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
pipe, basepipe);
return;
}
if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
pipe, basepipe);
return;
}
if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
cycle = sc->sc_chi_bpf;
if (basepipe == pipe)
prevpipe = nextpipe = pipe;
else {
if (basepipe == 16) {
if (dir == PIPEinput) {
prevpipe = sc->sc_chi_pipe_in;
} else {
prevpipe = sc->sc_chi_pipe_out;
}
} else
prevpipe = basepipe;
nextpipe = sc->sc_pipe[prevpipe].next;
while (sc->sc_pipe[nextpipe].cycle < cycle &&
sc->sc_pipe[nextpipe].next != basepipe) {
prevpipe = nextpipe;
nextpipe = sc->sc_pipe[nextpipe].next;
}
}
if (prevpipe == 16) {
if (dir == PIPEinput) {
sc->sc_chi_pipe_in = pipe;
} else {
sc->sc_chi_pipe_out = pipe;
}
} else
sc->sc_pipe[prevpipe].next = pipe;
sc->sc_pipe[pipe].next = nextpipe;
sc->sc_pipe[pipe].cycle = cycle;
sc->sc_pipe[pipe].length = len;
cmd = dbri_command_lock(sc);
switch (dir) {
case PIPEinput:
val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
val |= pipe;
*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
DBRI_TS_NEXT(nextpipe);
*(cmd++) = 0;
break;
case PIPEoutput:
val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
val |= pipe;
*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
*(cmd++) = 0;
*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
DBRI_TS_NEXT(nextpipe);
break;
default:
DPRINTF("%s: should not have happened!\n",
device_xname(sc->sc_dev));
break;
}
dbri_command_send(sc, cmd);
return;
}
static int
pipe_active(struct dbri_softc *sc, int pipe)
{
return (sc->sc_pipe[pipe].desc != -1);
}
/*
* subroutines required to interface with audio(9)
*/
static int
dbri_query_encoding(void *hdl, struct audio_encoding *ae)
{
switch (ae->index) {
case 0:
strcpy(ae->name, AudioEulinear);
ae->encoding = AUDIO_ENCODING_ULINEAR;
ae->precision = 8;
ae->flags = 0;
break;
case 1:
strcpy(ae->name, AudioEmulaw);
ae->encoding = AUDIO_ENCODING_ULAW;
ae->precision = 8;
ae->flags = 0;
break;
case 2:
strcpy(ae->name, AudioEalaw);
ae->encoding = AUDIO_ENCODING_ALAW;
ae->precision = 8;
ae->flags = 0;
break;
case 3:
strcpy(ae->name, AudioEslinear);
ae->encoding = AUDIO_ENCODING_SLINEAR;
ae->precision = 8;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 4:
strcpy(ae->name, AudioEslinear_le);
ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
ae->precision = 16;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 5:
strcpy(ae->name, AudioEulinear_le);
ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
ae->precision = 16;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 6:
strcpy(ae->name, AudioEslinear_be);
ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
ae->precision = 16;
ae->flags = 0;
break;
case 7:
strcpy(ae->name, AudioEulinear_be);
ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
ae->precision = 16;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 8:
strcpy(ae->name, AudioEslinear);
ae->encoding = AUDIO_ENCODING_SLINEAR;
ae->precision = 16;
ae->flags = 0;
break;
default:
return (EINVAL);
}
return (0);
}
static int
dbri_set_params(void *hdl, int setmode, int usemode,
struct audio_params *play, struct audio_params *rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct dbri_softc *sc = hdl;
int rate;
audio_params_t *p = NULL;
stream_filter_list_t *fil;
int mode;
/*
* This device only has one clock, so make the sample rates match.
*/
if (play->sample_rate != rec->sample_rate &&
usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
if (setmode == AUMODE_PLAY) {
rec->sample_rate = play->sample_rate;
setmode |= AUMODE_RECORD;
} else if (setmode == AUMODE_RECORD) {
play->sample_rate = rec->sample_rate;
setmode |= AUMODE_PLAY;
} else
return EINVAL;
}
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = mode == AUMODE_PLAY ? play : rec;
if (p->sample_rate < 4000 || p->sample_rate > 50000) {
DPRINTF("dbri_set_params: invalid rate %d\n",
p->sample_rate);
return EINVAL;
}
fil = mode == AUMODE_PLAY ? pfil : rfil;
DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
p->sample_rate, p->precision, p->channels);
if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
mode, p, true, fil) < 0) {
aprint_debug("dbri_set_params: auconv_set_converter failed\n");
return EINVAL;
}
if (fil->req_size > 0)
p = &fil->filters[0].param;
}
if (p == NULL) {
DPRINTF("dbri_set_params: no parameters to set\n");
return 0;
}
DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
p->sample_rate, p->precision, p->channels);
for (rate = 0; CS4215_FREQ[rate].freq; rate++)
if (CS4215_FREQ[rate].freq == p->sample_rate)
break;
if (CS4215_FREQ[rate].freq == 0)
return (EINVAL);
/* set frequency */
sc->sc_mm.c.bcontrol[1] &= ~0x38;
sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
sc->sc_mm.c.bcontrol[2] &= ~0x70;
sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
switch (p->encoding) {
case AUDIO_ENCODING_ULAW:
sc->sc_mm.c.bcontrol[1] &= ~3;
sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
break;
case AUDIO_ENCODING_ALAW:
sc->sc_mm.c.bcontrol[1] &= ~3;
sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
break;
case AUDIO_ENCODING_ULINEAR:
sc->sc_mm.c.bcontrol[1] &= ~3;
if (p->precision == 8) {
sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
} else {
sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
}
break;
case AUDIO_ENCODING_SLINEAR_BE:
case AUDIO_ENCODING_SLINEAR:
sc->sc_mm.c.bcontrol[1] &= ~3;
sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
break;
}
switch (p->channels) {
case 1:
sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
break;
case 2:
sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
break;
}
return (0);
}
static int
dbri_round_blocksize(void *hdl, int bs, int mode,
const audio_params_t *param)
{
/* DBRI DMA segment size, rounded down to 32bit alignment */
return 0x1ffc;
}
static int
dbri_halt_output(void *hdl)
{
struct dbri_softc *sc = hdl;
if (!sc->sc_playing)
return 0;
sc->sc_playing = 0;
pipe_reset(sc, 4);
return (0);
}
static int
dbri_getdev(void *hdl, struct audio_device *ret)
{
*ret = dbri_device;
return (0);
}
static int
dbri_set_port(void *hdl, mixer_ctrl_t *mc)
{
struct dbri_softc *sc = hdl;
int latt = sc->sc_latt, ratt = sc->sc_ratt;
switch (mc->dev) {
case DBRI_VOL_OUTPUT: /* master volume */
latt = (latt & 0xc0) | (63 -
min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
ratt = (ratt & 0xc0) | (63 -
min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
break;
case DBRI_ENABLE_MONO: /* built-in speaker */
if (mc->un.ord == 1) {
ratt |= CS4215_SE;
} else
ratt &= ~CS4215_SE;
break;
case DBRI_ENABLE_HEADPHONE: /* headphones output */
if (mc->un.ord == 1) {
latt |= CS4215_HE;
} else
latt &= ~CS4215_HE;
break;
case DBRI_ENABLE_LINE: /* line out */
if (mc->un.ord == 1) {
latt |= CS4215_LE;
} else
latt &= ~CS4215_LE;
break;
case DBRI_VOL_MONITOR:
if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
sc->sc_monitor)
return 0;
sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
break;
case DBRI_INPUT_GAIN:
sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
break;
case DBRI_INPUT_SELECT:
if (mc->un.mask == sc->sc_input)
return 0;
sc->sc_input = mc->un.mask;
break;
}
sc->sc_latt = latt;
sc->sc_ratt = ratt;
mmcodec_setgain(sc, 0);
return (0);
}
static int
dbri_get_port(void *hdl, mixer_ctrl_t *mc)
{
struct dbri_softc *sc = hdl;
switch (mc->dev) {
case DBRI_VOL_OUTPUT: /* master volume */
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
(63 - (sc->sc_latt & 0x3f)) << 2;
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
(63 - (sc->sc_ratt & 0x3f)) << 2;
return (0);
case DBRI_ENABLE_MONO: /* built-in speaker */
mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
return 0;
case DBRI_ENABLE_HEADPHONE: /* headphones output */
mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
return 0;
case DBRI_ENABLE_LINE: /* line out */
mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
return 0;
case DBRI_VOL_MONITOR:
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
return 0;
case DBRI_INPUT_GAIN:
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
return 0;
case DBRI_INPUT_SELECT:
mc->un.mask = sc->sc_input;
return 0;
}
return (EINVAL);
}
static int
dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
{
switch (di->index) {
case DBRI_MONITOR_CLASS:
di->mixer_class = DBRI_MONITOR_CLASS;
strcpy(di->label.name, AudioCmonitor);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case DBRI_OUTPUT_CLASS:
di->mixer_class = DBRI_OUTPUT_CLASS;
strcpy(di->label.name, AudioCoutputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case DBRI_INPUT_CLASS:
di->mixer_class = DBRI_INPUT_CLASS;
strcpy(di->label.name, AudioCinputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case DBRI_VOL_OUTPUT: /* master volume */
di->mixer_class = DBRI_OUTPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNmaster);
di->type = AUDIO_MIXER_VALUE;
di->un.v.num_channels = 2;
di->un.v.delta = 16;
strcpy(di->un.v.units.name, AudioNvolume);
return (0);
case DBRI_INPUT_GAIN: /* input gain */
di->mixer_class = DBRI_INPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNrecord);
di->type = AUDIO_MIXER_VALUE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return (0);
case DBRI_VOL_MONITOR: /* monitor volume */
di->mixer_class = DBRI_MONITOR_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNmonitor);
di->type = AUDIO_MIXER_VALUE;
di->un.v.num_channels = 1;
strcpy(di->un.v.units.name, AudioNvolume);
return (0);
case DBRI_ENABLE_MONO: /* built-in speaker */
di->mixer_class = DBRI_OUTPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNmono);
di->type = AUDIO_MIXER_ENUM;
di->un.e.num_mem = 2;
strcpy(di->un.e.member[0].label.name, AudioNoff);
di->un.e.member[0].ord = 0;
strcpy(di->un.e.member[1].label.name, AudioNon);
di->un.e.member[1].ord = 1;
return (0);
case DBRI_ENABLE_HEADPHONE: /* headphones output */
di->mixer_class = DBRI_OUTPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNheadphone);
di->type = AUDIO_MIXER_ENUM;
di->un.e.num_mem = 2;
strcpy(di->un.e.member[0].label.name, AudioNoff);
di->un.e.member[0].ord = 0;
strcpy(di->un.e.member[1].label.name, AudioNon);
di->un.e.member[1].ord = 1;
return (0);
case DBRI_ENABLE_LINE: /* line out */
di->mixer_class = DBRI_OUTPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNline);
di->type = AUDIO_MIXER_ENUM;
di->un.e.num_mem = 2;
strcpy(di->un.e.member[0].label.name, AudioNoff);
di->un.e.member[0].ord = 0;
strcpy(di->un.e.member[1].label.name, AudioNon);
di->un.e.member[1].ord = 1;
return (0);
case DBRI_INPUT_SELECT:
di->mixer_class = DBRI_INPUT_CLASS;
strcpy(di->label.name, AudioNsource);
di->type = AUDIO_MIXER_SET;
di->prev = di->next = AUDIO_MIXER_LAST;
di->un.s.num_mem = 2;
strcpy(di->un.s.member[0].label.name, AudioNline);
di->un.s.member[0].mask = 1 << 0;
strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
di->un.s.member[1].mask = 1 << 1;
return 0;
}
return (ENXIO);
}
static size_t
dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
{
#ifdef DBRI_BIG_BUFFER
return 16*0x1ffc; /* use ~128KB buffer */
#else
return bufsize;
#endif
}
static int
dbri_get_props(void *hdl)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
}
static int
dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
void (*intr)(void *), void *intrarg,
const struct audio_params *param)
{
struct dbri_softc *sc = hdl;
unsigned long count, num;
if (sc->sc_playing)
return 0;
count = (unsigned long)(((char *)end - (char *)start));
num = count / blksize;
DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
(unsigned long)intr,
(unsigned long)intrarg, blksize, count, num);
sc->sc_params = *param;
if (sc->sc_recording == 0) {
/* do not muck with the codec when it's already in use */
if (mmcodec_setcontrol(sc) != 0)
return -1;
mmcodec_init_data(sc);
}
/*
* always use DMA descriptor 0 for output
* no need to allocate them dynamically since we only ever have
* exactly one input stream and exactly one output stream
*/
setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
sc->sc_playing = 1;
return 0;
}
static int
dbri_halt_input(void *cookie)
{
struct dbri_softc *sc = cookie;
if (!sc->sc_recording)
return 0;
sc->sc_recording = 0;
pipe_reset(sc, 6);
return 0;
}
static int
dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
void (*intr)(void *), void *intrarg,
const struct audio_params *param)
{
struct dbri_softc *sc = hdl;
unsigned long count, num;
if (sc->sc_recording)
return 0;
count = (unsigned long)(((char *)end - (char *)start));
num = count / blksize;
DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
(unsigned long)intr,
(unsigned long)intrarg, blksize, count, num);
sc->sc_params = *param;
if (sc->sc_playing == 0) {
/*
* we don't support different parameters for playing and
* recording anyway so don't bother whacking the codec if
* it's already set up
*/
mmcodec_setcontrol(sc);
mmcodec_init_data(sc);
}
sc->sc_recording = 1;
setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
return 0;
}
static uint32_t
reverse_bytes(uint32_t b, int len)
{
switch (len) {
case 32:
b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
case 16:
b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
case 8:
b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
case 4:
b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
case 2:
b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
case 1:
case 0:
break;
default:
DPRINTF("reverse_bytes: unsupported length\n");
};
return (b);
}
static void *
dbri_malloc(void *v, int dir, size_t s, struct malloc_type *mt, int flags)
{
struct dbri_softc *sc = v;
struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
int rseg;
if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
&dd->dmamap) == 0) {
if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
1, &rseg, BUS_DMA_NOWAIT) == 0) {
if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
&dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
if (dd->buf != NULL) {
if (bus_dmamap_load(sc->sc_dmat,
dd->dmamap, dd->buf, s, NULL,
BUS_DMA_NOWAIT) == 0) {
dd->len = s;
dd->busy = 0;
dd->callback = NULL;
dd->dmabase =
dd->dmamap->dm_segs[0].ds_addr;
DPRINTF("dbri_malloc: using buffer %d %08x\n",
sc->sc_desc_used, (uint32_t)dd->buf);
sc->sc_desc_used++;
return dd->buf;
} else
aprint_error("dbri_malloc: load failed\n");
} else
aprint_error("dbri_malloc: map returned NULL\n");
} else
aprint_error("dbri_malloc: map failed\n");
bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
} else
aprint_error("dbri_malloc: malloc() failed\n");
bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
} else
aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
return NULL;
}
static void
dbri_free(void *v, void *p, struct malloc_type *mt)
{
struct dbri_softc *sc = v;
struct dbri_desc *dd;
int i;
for (i = 0; i < sc->sc_desc_used; i++) {
dd = &sc->sc_desc[i];
if (dd->buf == p)
break;
}
if (i >= sc->sc_desc_used)
return;
bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
}
static paddr_t
dbri_mappage(void *v, void *mem, off_t off, int prot)
{
struct dbri_softc *sc = v;
int current;
if (off < 0)
return -1;
current = 0;
while ((current < sc->sc_desc_used) &&
(sc->sc_desc[current].buf != mem))
current++;
if (current < sc->sc_desc_used) {
return bus_dmamem_mmap(sc->sc_dmat,
&sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
}
return -1;
}
static int
dbri_open(void *cookie, int flags)
{
struct dbri_softc *sc = cookie;
DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
if (sc->sc_refcount == 0)
dbri_bring_up(sc);
sc->sc_refcount++;
return 0;
}
static void
dbri_close(void *cookie)
{
struct dbri_softc *sc = cookie;
DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
sc->sc_refcount--;
KASSERT(sc->sc_refcount >= 0);
if (sc->sc_refcount > 0)
return;
dbri_set_power(sc, 0);
sc->sc_playing = 0;
sc->sc_recording = 0;
}
static bool
dbri_suspend(device_t self, const pmf_qual_t *qual)
{
struct dbri_softc *sc = device_private(self);
dbri_set_power(sc, 0);
return true;
}
static bool
dbri_resume(device_t self, const pmf_qual_t *qual)
{
struct dbri_softc *sc = device_private(self);
if (sc->sc_powerstate != 0)
return true;
aprint_verbose("resume: %d\n", sc->sc_refcount);
if (sc->sc_playing) {
volatile uint32_t *cmd;
int s;
dbri_bring_up(sc);
s = splsched();
cmd = dbri_command_lock(sc);
*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
0, sc->sc_pipe[4].sdp |
DBRI_SDP_VALID_POINTER |
DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
*(cmd++) = sc->sc_dmabase +
dbri_dma_off(xmit, 0);
dbri_command_send(sc, cmd);
splx(s);
}
return true;
}
#endif /* NAUDIO > 0 */