NetBSD/sys/arch/i386/isa/npx.c
mrg d2397ac5f7 completely remove Mach VM support. all that is left is the all the
header files as UVM still uses (most of) these.
1999-03-24 05:50:49 +00:00

556 lines
15 KiB
C

/* $NetBSD: npx.c,v 1.69 1999/03/24 05:51:02 mrg Exp $ */
#if 0
#define IPRINTF(x) printf x
#else
#define IPRINTF(x)
#endif
/*-
* Copyright (c) 1994, 1995, 1998 Charles M. Hannum. All rights reserved.
* Copyright (c) 1990 William Jolitz.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)npx.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <uvm/uvm_extern.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/pio.h>
#include <machine/cpufunc.h>
#include <machine/pcb.h>
#include <machine/trap.h>
#include <machine/specialreg.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <i386/isa/icu.h>
/*
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
*
* We do lazy initialization and switching using the TS bit in cr0 and the
* MDP_USEDFPU bit in mdproc.
*
* DNA exceptions are handled like this:
*
* 1) If there is no NPX, return and go to the emulator.
* 2) If someone else has used the NPX, save its state into that process's PCB.
* 3a) If MDP_USEDFPU is not set, set it and initialize the NPX.
* 3b) Otherwise, reload the process's previous NPX state.
*
* When a process is created or exec()s, its saved cr0 image has the TS bit
* set and the MDP_USEDFPU bit clear. The MDP_USEDFPU bit is set when the
* process first gets a DNA and the NPX is initialized. The TS bit is turned
* off when the NPX is used, and turned on again later when the process's NPX
* state is saved.
*/
#define fldcw(addr) __asm("fldcw %0" : : "m" (*addr))
#define fnclex() __asm("fnclex")
#define fninit() __asm("fninit")
#define fnsave(addr) __asm("fnsave %0" : "=m" (*addr))
#define fnstcw(addr) __asm("fnstcw %0" : "=m" (*addr))
#define fnstsw(addr) __asm("fnstsw %0" : "=m" (*addr))
#define fp_divide_by_0() __asm("fldz; fld1; fdiv %st,%st(1); fwait")
#define frstor(addr) __asm("frstor %0" : : "m" (*addr))
#define fwait() __asm("fwait")
#define read_eflags() ({register u_long ef; \
__asm("pushfl; popl %0" : "=r" (ef)); \
ef;})
#define write_eflags(x) ({register u_long ef = (x); \
__asm("pushl %0; popfl" : : "r" (ef));})
#define clts() __asm("clts")
#define stts() lcr0(rcr0() | CR0_TS)
int npxdna __P((struct proc *));
void npxexit __P((void));
int npxintr __P((void *));
static int npxprobe1 __P((struct isa_attach_args *));
static void npxsave1 __P((void));
struct npx_softc {
struct device sc_dev;
void *sc_ih;
};
int npxprobe __P((struct device *, struct cfdata *, void *));
void npxattach __P((struct device *, struct device *, void *));
struct cfattach npx_ca = {
sizeof(struct npx_softc), npxprobe, npxattach
};
enum npx_type {
NPX_NONE = 0,
NPX_INTERRUPT,
NPX_EXCEPTION,
NPX_BROKEN,
};
struct proc *npxproc;
static enum npx_type npx_type;
static int npx_nointr;
volatile u_int npx_intrs_while_probing;
volatile u_int npx_traps_while_probing;
static inline int
npxprobe1(ia)
struct isa_attach_args *ia;
{
int control;
int status;
ia->ia_iosize = 16;
ia->ia_msize = 0;
/*
* Finish resetting the coprocessor, if any. If there is an error
* pending, then we may get a bogus IRQ13, but probeintr() will handle
* it OK. Bogus halts have never been observed, but we enabled
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
*/
fninit();
delay(1000); /* wait for any IRQ13 (fwait might hang) */
/*
* Check for a status of mostly zero.
*/
status = 0x5a5a;
fnstsw(&status);
if ((status & 0xb8ff) == 0) {
/*
* Good, now check for a proper control word.
*/
control = 0x5a5a;
fnstcw(&control);
if ((control & 0x1f3f) == 0x033f) {
/*
* We have an npx, now divide by 0 to see if exception
* 16 works.
*/
control &= ~(1 << 2); /* enable divide by 0 trap */
fldcw(&control);
npx_traps_while_probing = npx_intrs_while_probing = 0;
fp_divide_by_0();
if (npx_traps_while_probing != 0) {
/*
* Good, exception 16 works.
*/
npx_type = NPX_EXCEPTION;
ia->ia_irq = IRQUNK; /* zap the interrupt */
} else if (npx_intrs_while_probing != 0) {
/*
* Bad, we are stuck with IRQ13.
*/
npx_type = NPX_INTERRUPT;
} else {
/*
* Worse, even IRQ13 is broken. Use emulator.
*/
npx_type = NPX_BROKEN;
ia->ia_irq = IRQUNK;
}
return 1;
}
}
/*
* Probe failed. There is no usable FPU.
*/
npx_type = NPX_NONE;
return 0;
}
/*
* Probe routine. Initialize cr0 to give correct behaviour for [f]wait
* whether the device exists or not (XXX should be elsewhere). Set flags
* to tell npxattach() what to do. Modify device struct if npx doesn't
* need to use interrupts. Return 1 if device exists.
*/
int
npxprobe(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct isa_attach_args *ia = aux;
int irq;
int result;
u_long save_eflags;
unsigned save_imen;
struct gate_descriptor save_idt_npxintr;
struct gate_descriptor save_idt_npxtrap;
/*
* This routine is now just a wrapper for npxprobe1(), to install
* special npx interrupt and trap handlers, to enable npx interrupts
* and to disable other interrupts. Someday isa_configure() will
* install suitable handlers and run with interrupts enabled so we
* won't need to do so much here.
*/
irq = NRSVIDT + ia->ia_irq;
save_eflags = read_eflags();
disable_intr();
save_idt_npxintr = idt[irq].gd;
save_idt_npxtrap = idt[16].gd;
setgate(&idt[irq].gd, probeintr, 0, SDT_SYS386IGT, SEL_KPL);
setgate(&idt[16].gd, probetrap, 0, SDT_SYS386TGT, SEL_KPL);
save_imen = imen;
imen = ~((1 << IRQ_SLAVE) | (1 << ia->ia_irq));
SET_ICUS();
/*
* Partially reset the coprocessor, if any. Some BIOS's don't reset
* it after a warm boot.
*/
outb(0xf1, 0); /* full reset on some systems, NOP on others */
delay(1000);
outb(0xf0, 0); /* clear BUSY# latch */
/*
* We set CR0 in locore to trap all ESC and WAIT instructions.
* We have to turn off the CR0_EM bit temporarily while probing.
*/
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
enable_intr();
result = npxprobe1(ia);
disable_intr();
lcr0(rcr0() | (CR0_EM|CR0_TS));
imen = save_imen;
SET_ICUS();
idt[irq].gd = save_idt_npxintr;
idt[16].gd = save_idt_npxtrap;
write_eflags(save_eflags);
return (result);
}
/*
* Attach routine - announce which it is, and wire into system
*/
void
npxattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct npx_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
switch (npx_type) {
case NPX_INTERRUPT:
printf("\n");
lcr0(rcr0() & ~CR0_NE);
sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq,
IST_EDGE, IPL_NONE, npxintr, 0);
break;
case NPX_EXCEPTION:
printf(": using exception 16\n");
break;
case NPX_BROKEN:
printf(": error reporting broken; not using\n");
npx_type = NPX_NONE;
return;
case NPX_NONE:
return;
}
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
fninit();
if (npx586bug1(4195835, 3145727) != 0)
printf("WARNING: Pentium FDIV bug detected!\n");
lcr0(rcr0() | (CR0_TS));
}
/*
* Record the FPU state and reinitialize it all except for the control word.
* Then generate a SIGFPE.
*
* Reinitializing the state allows naive SIGFPE handlers to longjmp without
* doing any fixups.
*
* XXX there is currently no way to pass the full error state to signal
* handlers, and if this is a nested interrupt there is no way to pass even
* a status code! So there is no way to have a non-naive SIGFPE handler. At
* best a handler could do an fninit followed by an fldcw of a static value.
* fnclex would be of little use because it would leave junk on the FPU stack.
* Returning from the handler would be even less safe than usual because
* IRQ13 exception handling makes exceptions even less precise than usual.
*/
int
npxintr(arg)
void *arg;
{
register struct proc *p = npxproc;
register struct save87 *addr;
struct intrframe *frame = arg;
int code;
uvmexp.traps++;
IPRINTF(("Intr"));
if (p == 0 || npx_type == NPX_NONE) {
printf("npxintr: p = %p, curproc = %p, npx_type = %d\n",
p, curproc, npx_type);
panic("npxintr: came from nowhere");
}
/*
* Clear the interrupt latch.
*/
outb(0xf0, 0);
/*
* If we're saving, ignore the interrupt. The FPU will generate
* another one when we restore the state later.
*/
if (npx_nointr != 0)
return (1);
#ifdef DIAGNOSTIC
/*
* At this point, npxproc should be curproc. If it wasn't, the TS bit
* should be set, and we should have gotten a DNA exception.
*/
if (p != curproc)
panic("npxintr: wrong process");
#endif
/*
* Find the address of npxproc's saved FPU state. (Given the invariant
* above, this is always the one in curpcb.)
*/
addr = &p->p_addr->u_pcb.pcb_savefpu;
/*
* Save state. This does an implied fninit. It had better not halt
* the cpu or we'll hang.
*/
fnsave(addr);
fwait();
/*
* Restore control word (was clobbered by fnsave).
*/
fldcw(&addr->sv_env.en_cw);
fwait();
/*
* Remember the exception status word and tag word. The current
* (almost fninit'ed) fpu state is in the fpu and the exception
* state just saved will soon be junk. However, the implied fninit
* doesn't change the error pointers or register contents, and we
* preserved the control word and will copy the status and tag
* words, so the complete exception state can be recovered.
*/
addr->sv_ex_sw = addr->sv_env.en_sw;
addr->sv_ex_tw = addr->sv_env.en_tw;
/*
* Pass exception to process.
*/
if (USERMODE(frame->if_cs, frame->if_eflags)) {
/*
* Interrupt is essentially a trap, so we can afford to call
* the SIGFPE handler (if any) as soon as the interrupt
* returns.
*
* XXX little or nothing is gained from this, and plenty is
* lost - the interrupt frame has to contain the trap frame
* (this is otherwise only necessary for the rescheduling trap
* in doreti, and the frame for that could easily be set up
* just before it is used).
*/
p->p_md.md_regs = (struct trapframe *)&frame->if_es;
#ifdef notyet
/*
* Encode the appropriate code for detailed information on
* this exception.
*/
code = XXX_ENCODE(addr->sv_ex_sw);
#else
code = 0; /* XXX */
#endif
trapsignal(p, SIGFPE, code);
} else {
/*
* This is a nested interrupt. This should only happen when
* an IRQ13 occurs at the same time as a higher-priority
* interrupt.
*
* XXX
* Currently, we treat this like an asynchronous interrupt, but
* this has disadvantages.
*/
psignal(p, SIGFPE);
}
return (1);
}
/*
* Wrapper for the fnsave instruction. We set the TS bit in the saved CR0 for
* this process, so that it will get a DNA exception on the FPU instruction and
* force a reload. This routine is always called with npx_nointr set, so that
* any pending exception will be thrown away. (It will be caught again if/when
* the FPU state is restored.)
*
* This routine is always called at spl0. If it might called with the NPX
* interrupt masked, it would be necessary to forcibly unmask the NPX interrupt
* so that it could succeed.
*/
static inline void
npxsave1()
{
struct proc *p = npxproc;
fnsave(&p->p_addr->u_pcb.pcb_savefpu);
p->p_addr->u_pcb.pcb_cr0 |= CR0_TS;
fwait();
}
/*
* Implement device not available (DNA) exception
*
* If the we were the last process to use the FPU, we can simply return.
* Otherwise, we save the previous state, if necessary, and restore our last
* saved state.
*/
int
npxdna(p)
struct proc *p;
{
if (npx_type == NPX_NONE) {
IPRINTF(("Emul"));
return (0);
}
#ifdef DIAGNOSTIC
if (cpl != 0 || npx_nointr != 0)
panic("npxdna: masked");
#endif
p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS;
clts();
/*
* Initialize the FPU state to clear any exceptions. If someone else
* was using the FPU, save their state (which does an implicit
* initialization).
*/
npx_nointr = 1;
if (npxproc != 0 && npxproc != p) {
IPRINTF(("Save"));
npxsave1();
} else {
IPRINTF(("Init"));
fninit();
fwait();
}
npx_nointr = 0;
npxproc = p;
if ((p->p_md.md_flags & MDP_USEDFPU) == 0) {
fldcw(&p->p_addr->u_pcb.pcb_savefpu.sv_env.en_cw);
p->p_md.md_flags |= MDP_USEDFPU;
} else {
/*
* The following frstor may cause an IRQ13 when the state being
* restored has a pending error. The error will appear to have
* been triggered by the current (npx) user instruction even
* when that instruction is a no-wait instruction that should
* not trigger an error (e.g., fnclex). On at least one 486
* system all of the no-wait instructions are broken the same
* as frstor, so our treatment does not amplify the breakage.
* On at least one 386/Cyrix 387 system, fnclex works correctly
* while frstor and fnsave are broken, so our treatment breaks
* fnclex if it is the first FPU instruction after a context
* switch.
*/
frstor(&p->p_addr->u_pcb.pcb_savefpu);
}
return (1);
}
/*
* Drop the current FPU state on the floor.
*/
void
npxdrop()
{
struct proc *p = npxproc;
npxproc = 0;
stts();
p->p_addr->u_pcb.pcb_cr0 |= CR0_TS;
}
/*
* Save npxproc's FPU state.
*
* The FNSAVE instruction clears the FPU state. Rather than reloading the FPU
* immediately, we clear npxproc and turn on CR0_TS to force a DNA and a reload
* of the FPU state the next time we try to use it. This routine is only
* called when forking or core dumping, so the lazy reload at worst forces us
* to trap once per fork(), and at best saves us a reload once per fork().
*/
void
npxsave()
{
#ifdef DIAGNOSTIC
if (cpl != 0 || npx_nointr != 0)
panic("npxsave: masked");
#endif
IPRINTF(("Fork"));
clts();
npx_nointr = 1;
npxsave1();
npx_nointr = 0;
npxproc = 0;
stts();
}