NetBSD/sys/dev/raidframe/rf_map.c

881 lines
28 KiB
C

/* $NetBSD: rf_map.c,v 1.50 2019/05/28 08:59:35 msaitoh Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/**************************************************************************
*
* map.c -- main code for mapping RAID addresses to physical disk addresses
*
**************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.50 2019/05/28 08:59:35 msaitoh Exp $");
#include <dev/raidframe/raidframevar.h>
#include "rf_threadstuff.h"
#include "rf_raid.h"
#include "rf_general.h"
#include "rf_map.h"
#include "rf_shutdown.h"
static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
/***************************************************************************
*
* MapAccess -- main 1st order mapping routine. Maps an access in the
* RAID address space to the corresponding set of physical disk
* addresses. The result is returned as a list of AccessStripeMap
* structures, one per stripe accessed. Each ASM structure contains a
* pointer to a list of PhysDiskAddr structures, which describe the
* physical locations touched by the user access. Note that this
* routine returns only static mapping information, i.e. the list of
* physical addresses returned does not necessarily identify the set
* of physical locations that will actually be read or written. The
* routine also maps the parity. The physical disk location returned
* always indicates the entire parity unit, even when only a subset of
* it is being accessed. This is because an access that is not stripe
* unit aligned but that spans a stripe unit boundary may require
* access two distinct portions of the parity unit, and we can't yet
* tell which portion(s) we'll actually need. We leave it up to the
* algorithm selection code to decide what subset of the parity unit
* to access. Note that addresses in the RAID address space must
* always be maintained as longs, instead of ints.
*
* This routine returns NULL if numBlocks is 0
*
* raidAddress - starting address in RAID address space
* numBlocks - number of blocks in RAID address space to access
* buffer - buffer to supply/receive data
* remap - 1 => remap address to spare space
***************************************************************************/
RF_AccessStripeMapHeader_t *
rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
RF_SectorCount_t numBlocks, void *buffer, int remap)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_AccessStripeMapHeader_t *asm_hdr = NULL;
RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
int faultsTolerated = layoutPtr->map->faultsTolerated;
/* we'll change raidAddress along the way */
RF_RaidAddr_t startAddress = raidAddress;
RF_RaidAddr_t endAddress = raidAddress + numBlocks;
RF_RaidDisk_t *disks = raidPtr->Disks;
RF_PhysDiskAddr_t *pda_p;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
RF_PhysDiskAddr_t *pda_q;
#endif
RF_StripeCount_t numStripes = 0;
RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
nextStripeUnitAddress;
RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
RF_StripeCount_t totStripes;
RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
RF_AccessStripeMap_t *asmList, *t_asm;
RF_PhysDiskAddr_t *pdaList, *t_pda;
/* allocate all the ASMs and PDAs up front */
lastRaidAddr = raidAddress + numBlocks - 1;
stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
totStripes = lastSID - stripeID + 1;
SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
asmList = rf_AllocASMList(totStripes);
/* may also need pda(s) per stripe for parity */
pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
faultsTolerated * totStripes);
if (raidAddress + numBlocks > raidPtr->totalSectors) {
RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
(int) raidAddress);
return (NULL);
}
#if RF_DEBUG_MAP
if (rf_mapDebug)
rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
#endif
for (; raidAddress < endAddress;) {
/* make the next stripe structure */
RF_ASSERT(asmList);
t_asm = asmList;
asmList = asmList->next;
memset(t_asm, 0, sizeof(*t_asm));
if (!asm_p)
asm_list = asm_p = t_asm;
else {
asm_p->next = t_asm;
asm_p = asm_p->next;
}
numStripes++;
/* map SUs from current location to the end of the stripe */
asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
raidAddress) */ stripeID++;
stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
asm_p->raidAddress = raidAddress;
asm_p->endRaidAddress = stripeEndAddress;
/* map each stripe unit in the stripe */
pda_p = NULL;
/* Raid addr of start of portion of access that is
within this stripe */
startAddrWithinStripe = raidAddress;
for (; raidAddress < stripeEndAddress;) {
RF_ASSERT(pdaList);
t_pda = pdaList;
pdaList = pdaList->next;
memset(t_pda, 0, sizeof(*t_pda));
if (!pda_p)
asm_p->physInfo = pda_p = t_pda;
else {
pda_p->next = t_pda;
pda_p = pda_p->next;
}
pda_p->type = RF_PDA_TYPE_DATA;
(layoutPtr->map->MapSector) (raidPtr, raidAddress,
&(pda_p->col),
&(pda_p->startSector),
remap);
/* mark any failures we find. failedPDA is
* don't-care if there is more than one
* failure */
/* the RAID address corresponding to this
physical diskaddress */
pda_p->raidAddress = raidAddress;
nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
RF_ASSERT(pda_p->numSector != 0);
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
asm_p->totalSectorsAccessed += pda_p->numSector;
asm_p->numStripeUnitsAccessed++;
raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
}
/* Map the parity. At this stage, the startSector and
* numSector fields for the parity unit are always set
* to indicate the entire parity unit. We may modify
* this after mapping the data portion. */
switch (faultsTolerated) {
case 0:
break;
case 1: /* single fault tolerant */
RF_ASSERT(pdaList);
t_pda = pdaList;
pdaList = pdaList->next;
memset(t_pda, 0, sizeof(*t_pda));
pda_p = asm_p->parityInfo = t_pda;
pda_p->type = RF_PDA_TYPE_PARITY;
(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
&(pda_p->col), &(pda_p->startSector), remap);
pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
/* raidAddr may be needed to find unit to redirect to */
pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
break;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
case 2: /* two fault tolerant */
RF_ASSERT(pdaList && pdaList->next);
t_pda = pdaList;
pdaList = pdaList->next;
memset(t_pda, 0, sizeof(*t_pda));
pda_p = asm_p->parityInfo = t_pda;
pda_p->type = RF_PDA_TYPE_PARITY;
t_pda = pdaList;
pdaList = pdaList->next;
memset(t_pda, 0, sizeof(*t_pda));
pda_q = asm_p->qInfo = t_pda;
pda_q->type = RF_PDA_TYPE_Q;
(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
&(pda_p->col), &(pda_p->startSector), remap);
(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
&(pda_q->col), &(pda_q->startSector), remap);
pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
/* raidAddr may be needed to find unit to redirect to */
pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
/* failure mode stuff */
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
break;
#endif
}
}
RF_ASSERT(asmList == NULL && pdaList == NULL);
/* make the header structure */
asm_hdr = rf_AllocAccessStripeMapHeader();
RF_ASSERT(numStripes == totStripes);
asm_hdr->numStripes = numStripes;
asm_hdr->stripeMap = asm_list;
#if RF_DEBUG_MAP
if (rf_mapDebug)
rf_PrintAccessStripeMap(asm_hdr);
#endif
return (asm_hdr);
}
/***************************************************************************
* This routine walks through an ASM list and marks the PDAs that have
* failed. It's called only when a disk failure causes an in-flight
* DAG to fail. The parity may consist of two components, but we want
* to use only one failedPDA pointer. Thus we set failedPDA to point
* to the first parity component, and rely on the rest of the code to
* do the right thing with this.
***************************************************************************/
void
rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
RF_AccessStripeMapHeader_t *asm_h)
{
RF_RaidDisk_t *disks = raidPtr->Disks;
RF_AccessStripeMap_t *asmap;
RF_PhysDiskAddr_t *pda;
for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
asmap->numDataFailed = 0;
asmap->numParityFailed = 0;
asmap->numQFailed = 0;
asmap->numFailedPDAs = 0;
memset(asmap->failedPDAs, 0,
RF_MAX_FAILED_PDA * sizeof(*asmap->failedPDAs));
for (pda = asmap->physInfo; pda; pda = pda->next) {
if (RF_DEAD_DISK(disks[pda->col].status)) {
asmap->numDataFailed++;
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
asmap->numFailedPDAs++;
}
}
pda = asmap->parityInfo;
if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
asmap->numParityFailed++;
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
asmap->numFailedPDAs++;
}
pda = asmap->qInfo;
if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
asmap->numQFailed++;
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
asmap->numFailedPDAs++;
}
}
}
/***************************************************************************
*
* routines to allocate and free list elements. All allocation
* routines zero the structure before returning it.
*
* FreePhysDiskAddr is static. It should never be called directly,
* because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
* list.
*
***************************************************************************/
#define RF_MAX_FREE_ASMHDR 128
#define RF_MIN_FREE_ASMHDR 32
#define RF_MAX_FREE_ASM 192
#define RF_MIN_FREE_ASM 64
#define RF_MAX_FREE_PDA 192
#define RF_MIN_FREE_PDA 64
#define RF_MAX_FREE_ASMHLE 64
#define RF_MIN_FREE_ASMHLE 16
#define RF_MAX_FREE_FSS 128
#define RF_MIN_FREE_FSS 32
#define RF_MAX_FREE_VFPLE 128
#define RF_MIN_FREE_VFPLE 32
#define RF_MAX_FREE_VPLE 128
#define RF_MIN_FREE_VPLE 32
/* called at shutdown time. So far, all that is necessary is to
release all the free lists */
static void rf_ShutdownMapModule(void *);
static void
rf_ShutdownMapModule(void *ignored)
{
pool_destroy(&rf_pools.asm_hdr);
pool_destroy(&rf_pools.asmap);
pool_destroy(&rf_pools.asmhle);
pool_destroy(&rf_pools.pda);
pool_destroy(&rf_pools.fss);
pool_destroy(&rf_pools.vfple);
pool_destroy(&rf_pools.vple);
}
int
rf_ConfigureMapModule(RF_ShutdownList_t **listp)
{
rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
"rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t),
"rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
"rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t),
"rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t),
"rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
"rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
rf_pool_init(&rf_pools.vple, sizeof(RF_VoidPointerListElem_t),
"rf_vple_pl", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
return (0);
}
RF_AccessStripeMapHeader_t *
rf_AllocAccessStripeMapHeader(void)
{
return pool_get(&rf_pools.asm_hdr, PR_WAITOK | PR_ZERO);
}
void
rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
{
pool_put(&rf_pools.asm_hdr, p);
}
RF_VoidFunctionPointerListElem_t *
rf_AllocVFPListElem(void)
{
return pool_get(&rf_pools.vfple, PR_WAITOK | PR_ZERO);
}
void
rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p)
{
pool_put(&rf_pools.vfple, p);
}
RF_VoidPointerListElem_t *
rf_AllocVPListElem(void)
{
return pool_get(&rf_pools.vple, PR_WAITOK | PR_ZERO);
}
void
rf_FreeVPListElem(RF_VoidPointerListElem_t *p)
{
pool_put(&rf_pools.vple, p);
}
RF_ASMHeaderListElem_t *
rf_AllocASMHeaderListElem(void)
{
return pool_get(&rf_pools.asmhle, PR_WAITOK | PR_ZERO);
}
void
rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p)
{
pool_put(&rf_pools.asmhle, p);
}
RF_FailedStripe_t *
rf_AllocFailedStripeStruct(void)
{
return pool_get(&rf_pools.fss, PR_WAITOK | PR_ZERO);
}
void
rf_FreeFailedStripeStruct(RF_FailedStripe_t *p)
{
pool_put(&rf_pools.fss, p);
}
RF_PhysDiskAddr_t *
rf_AllocPhysDiskAddr(void)
{
return pool_get(&rf_pools.pda, PR_WAITOK | PR_ZERO);
}
/* allocates a list of PDAs, locking the free list only once when we
* have to call calloc, we do it one component at a time to simplify
* the process of freeing the list at program shutdown. This should
* not be much of a performance hit, because it should be very
* infrequently executed. */
RF_PhysDiskAddr_t *
rf_AllocPDAList(int count)
{
RF_PhysDiskAddr_t *p, *prev;
int i;
p = NULL;
prev = NULL;
for (i = 0; i < count; i++) {
p = pool_get(&rf_pools.pda, PR_WAITOK);
p->next = prev;
prev = p;
}
return (p);
}
void
rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
{
pool_put(&rf_pools.pda, p);
}
static void
rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
{
RF_PhysDiskAddr_t *p, *tmp;
p=pda_list;
while (p) {
tmp = p->next;
pool_put(&rf_pools.pda, p);
p = tmp;
}
}
/* this is essentially identical to AllocPDAList. I should combine
* the two. when we have to call calloc, we do it one component at a
* time to simplify the process of freeing the list at program
* shutdown. This should not be much of a performance hit, because it
* should be very infrequently executed. */
RF_AccessStripeMap_t *
rf_AllocASMList(int count)
{
RF_AccessStripeMap_t *p, *prev;
int i;
p = NULL;
prev = NULL;
for (i = 0; i < count; i++) {
p = pool_get(&rf_pools.asmap, PR_WAITOK);
p->next = prev;
prev = p;
}
return (p);
}
static void
rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
{
RF_AccessStripeMap_t *p, *tmp;
p=asm_list;
while (p) {
tmp = p->next;
pool_put(&rf_pools.asmap, p);
p = tmp;
}
}
void
rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
{
RF_AccessStripeMap_t *p;
RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
int count = 0, t;
for (p = hdr->stripeMap; p; p = p->next) {
/* link the 3 pda lists into the accumulating pda list */
if (!pdaList)
pdaList = p->qInfo;
else
pdaEnd->next = p->qInfo;
for (trailer = NULL, pdp = p->qInfo; pdp;) {
trailer = pdp;
pdp = pdp->next;
count++;
}
if (trailer)
pdaEnd = trailer;
if (!pdaList)
pdaList = p->parityInfo;
else
pdaEnd->next = p->parityInfo;
for (trailer = NULL, pdp = p->parityInfo; pdp;) {
trailer = pdp;
pdp = pdp->next;
count++;
}
if (trailer)
pdaEnd = trailer;
if (!pdaList)
pdaList = p->physInfo;
else
pdaEnd->next = p->physInfo;
for (trailer = NULL, pdp = p->physInfo; pdp;) {
trailer = pdp;
pdp = pdp->next;
count++;
}
if (trailer)
pdaEnd = trailer;
}
/* debug only */
for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
t++;
RF_ASSERT(t == count);
if (pdaList)
rf_FreePDAList(pdaList);
rf_FreeASMList(hdr->stripeMap);
rf_FreeAccessStripeMapHeader(hdr);
}
/* We can't use the large write optimization if there are any failures
* in the stripe. In the declustered layout, there is no way to
* immediately determine what disks constitute a stripe, so we
* actually have to hunt through the stripe looking for failures. The
* reason we map the parity instead of just using asm->parityInfo->col
* is because the latter may have been already redirected to a spare
* drive, which would mess up the computation of the stripe offset.
*
* ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
int
rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
{
RF_RowCol_t tcol, pcol, *diskids, i;
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_StripeCount_t stripeOffset;
int numFailures;
RF_RaidAddr_t sosAddr;
RF_SectorNum_t diskOffset, poffset;
/* quick out in the fault-free case. */
rf_lock_mutex2(raidPtr->mutex);
numFailures = raidPtr->numFailures;
rf_unlock_mutex2(raidPtr->mutex);
if (numFailures == 0)
return (0);
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
asmap->raidAddress);
(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
&diskids);
(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
&pcol, &poffset, 0); /* get pcol */
/* this need not be true if we've redirected the access to a
* spare in another row RF_ASSERT(row == testrow); */
stripeOffset = 0;
for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
if (diskids[i] != pcol) {
if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
if (raidPtr->status != rf_rs_reconstructing)
return (1);
RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
layoutPtr->map->MapSector(raidPtr,
sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
&tcol, &diskOffset, 0);
RF_ASSERT(tcol == diskids[i]);
if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
return (1);
asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
return (0);
}
stripeOffset++;
}
}
return (0);
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
/*
return the number of failed data units in the stripe.
*/
int
rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
{
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_RowCol_t tcol, i;
RF_SectorNum_t diskOffset;
RF_RaidAddr_t sosAddr;
int numFailures;
/* quick out in the fault-free case. */
rf_lock_mutex2(raidPtr->mutex);
numFailures = raidPtr->numFailures;
rf_unlock_mutex2(raidPtr->mutex);
if (numFailures == 0)
return (0);
numFailures = 0;
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
asmap->raidAddress);
for (i = 0; i < layoutPtr->numDataCol; i++) {
(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
&tcol, &diskOffset, 0);
if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
numFailures++;
}
return numFailures;
}
#endif
/****************************************************************************
*
* debug routines
*
***************************************************************************/
#if RF_DEBUG_MAP
void
rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
{
rf_PrintFullAccessStripeMap(asm_h, 0);
}
#endif
/* prbuf - flag to print buffer pointers */
void
rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
{
int i;
RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
RF_PhysDiskAddr_t *p;
printf("%d stripes total\n", (int) asm_h->numStripes);
for (; asmap; asmap = asmap->next) {
/* printf("Num failures: %d\n",asmap->numDataFailed); */
/* printf("Num sectors:
* %d\n",(int)asmap->totalSectorsAccessed); */
printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
(int) asmap->stripeID,
(int) asmap->totalSectorsAccessed,
(int) asmap->numDataFailed,
(int) asmap->numParityFailed);
if (asmap->parityInfo) {
printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
(int) asmap->parityInfo->startSector,
(int) (asmap->parityInfo->startSector +
asmap->parityInfo->numSector - 1));
if (prbuf)
printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
if (asmap->parityInfo->next) {
printf(", c%d s%d-%d", asmap->parityInfo->next->col,
(int) asmap->parityInfo->next->startSector,
(int) (asmap->parityInfo->next->startSector +
asmap->parityInfo->next->numSector - 1));
if (prbuf)
printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
RF_ASSERT(asmap->parityInfo->next->next == NULL);
}
printf("]\n\t");
}
for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
(int) (p->startSector + p->numSector - 1));
if (prbuf)
printf("b0x%lx ", (unsigned long) p->bufPtr);
if (i && !(i & 1))
printf("\n\t");
}
printf("\n");
p = asm_h->stripeMap->failedPDAs[0];
if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
printf("[multiple failures]\n");
else
if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
(int) p->startSector, (int) (p->startSector + p->numSector - 1));
}
}
#if RF_MAP_DEBUG
void
rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
RF_SectorCount_t numBlocks)
{
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
printf("%d (0x%x), ", (int) ra, (int) ra);
}
printf("\n");
printf("Offset into stripe unit: %d (0x%x)\n",
(int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
(int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
}
#endif
/* given a parity descriptor and the starting address within a stripe,
* range restrict the parity descriptor to touch only the correct
* stuff. */
void
rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
RF_StripeNum_t startAddrWithinStripe,
RF_SectorNum_t endAddress,
RF_RaidLayout_t *layoutPtr,
RF_AccessStripeMap_t *asm_p)
{
RF_PhysDiskAddr_t *new_pda;
/* when we're accessing only a portion of one stripe unit, we
* want the parity descriptor to identify only the chunk of
* parity associated with the data. When the access spans
* exactly one stripe unit boundary and is less than a stripe
* unit in size, it uses two disjoint regions of the parity
* unit. When an access spans more than one stripe unit
* boundary, it uses all of the parity unit.
*
* To better handle the case where stripe units are small, we
* may eventually want to change the 2nd case so that if the
* SU size is below some threshold, we just read/write the
* whole thing instead of breaking it up into two accesses. */
if (asm_p->numStripeUnitsAccessed == 1) {
int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
toAdjust->startSector += x;
toAdjust->raidAddress += x;
toAdjust->numSector = asm_p->physInfo->numSector;
RF_ASSERT(toAdjust->numSector != 0);
} else
if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
/* create a second pda and copy the parity map info
* into it */
RF_ASSERT(toAdjust->next == NULL);
/* the following will get freed in rf_FreeAccessStripeMap() via
rf_FreePDAList() */
new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
*new_pda = *toAdjust; /* structure assignment */
new_pda->next = NULL;
/* adjust the start sector & number of blocks for the
* first parity pda */
toAdjust->startSector += x;
toAdjust->raidAddress += x;
toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
RF_ASSERT(toAdjust->numSector != 0);
/* adjust the second pda */
new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
/* new_pda->raidAddress =
* rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
* toAdjust->raidAddress); */
RF_ASSERT(new_pda->numSector != 0);
}
}
/* Check if a disk has been spared or failed. If spared, redirect the
* I/O. If it has been failed, record it in the asm pointer. Fifth
* arg is whether data or parity. */
void
rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
int parity)
{
RF_DiskStatus_t dstatus;
RF_RowCol_t fcol;
dstatus = disks[pda_p->col].status;
if (dstatus == rf_ds_spared) {
/* if the disk has been spared, redirect access to the spare */
fcol = pda_p->col;
pda_p->col = disks[fcol].spareCol;
} else
if (dstatus == rf_ds_dist_spared) {
/* ditto if disk has been spared to dist spare space */
#if RF_DEBUG_MAP
RF_RowCol_t oc = pda_p->col;
RF_SectorNum_t oo = pda_p->startSector;
#endif
if (pda_p->type == RF_PDA_TYPE_DATA)
raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
else
raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
#if RF_DEBUG_MAP
if (rf_mapDebug) {
printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
pda_p->col, (int) pda_p->startSector);
}
#endif
} else
if (RF_DEAD_DISK(dstatus)) {
/* if the disk is inaccessible, mark the
* failure */
if (parity)
asm_p->numParityFailed++;
else {
asm_p->numDataFailed++;
}
asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
asm_p->numFailedPDAs++;
#if 0
switch (asm_p->numParityFailed + asm_p->numDataFailed) {
case 1:
asm_p->failedPDAs[0] = pda_p;
break;
case 2:
asm_p->failedPDAs[1] = pda_p;
default:
break;
}
#endif
}
/* the redirected access should never span a stripe unit boundary */
RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
RF_ASSERT(pda_p->col != -1);
}