881 lines
28 KiB
C
881 lines
28 KiB
C
/* $NetBSD: rf_map.c,v 1.50 2019/05/28 08:59:35 msaitoh Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/**************************************************************************
|
|
*
|
|
* map.c -- main code for mapping RAID addresses to physical disk addresses
|
|
*
|
|
**************************************************************************/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.50 2019/05/28 08:59:35 msaitoh Exp $");
|
|
|
|
#include <dev/raidframe/raidframevar.h>
|
|
|
|
#include "rf_threadstuff.h"
|
|
#include "rf_raid.h"
|
|
#include "rf_general.h"
|
|
#include "rf_map.h"
|
|
#include "rf_shutdown.h"
|
|
|
|
static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
|
|
static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
|
|
|
|
/***************************************************************************
|
|
*
|
|
* MapAccess -- main 1st order mapping routine. Maps an access in the
|
|
* RAID address space to the corresponding set of physical disk
|
|
* addresses. The result is returned as a list of AccessStripeMap
|
|
* structures, one per stripe accessed. Each ASM structure contains a
|
|
* pointer to a list of PhysDiskAddr structures, which describe the
|
|
* physical locations touched by the user access. Note that this
|
|
* routine returns only static mapping information, i.e. the list of
|
|
* physical addresses returned does not necessarily identify the set
|
|
* of physical locations that will actually be read or written. The
|
|
* routine also maps the parity. The physical disk location returned
|
|
* always indicates the entire parity unit, even when only a subset of
|
|
* it is being accessed. This is because an access that is not stripe
|
|
* unit aligned but that spans a stripe unit boundary may require
|
|
* access two distinct portions of the parity unit, and we can't yet
|
|
* tell which portion(s) we'll actually need. We leave it up to the
|
|
* algorithm selection code to decide what subset of the parity unit
|
|
* to access. Note that addresses in the RAID address space must
|
|
* always be maintained as longs, instead of ints.
|
|
*
|
|
* This routine returns NULL if numBlocks is 0
|
|
*
|
|
* raidAddress - starting address in RAID address space
|
|
* numBlocks - number of blocks in RAID address space to access
|
|
* buffer - buffer to supply/receive data
|
|
* remap - 1 => remap address to spare space
|
|
***************************************************************************/
|
|
|
|
RF_AccessStripeMapHeader_t *
|
|
rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
|
|
RF_SectorCount_t numBlocks, void *buffer, int remap)
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_AccessStripeMapHeader_t *asm_hdr = NULL;
|
|
RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
|
|
int faultsTolerated = layoutPtr->map->faultsTolerated;
|
|
/* we'll change raidAddress along the way */
|
|
RF_RaidAddr_t startAddress = raidAddress;
|
|
RF_RaidAddr_t endAddress = raidAddress + numBlocks;
|
|
RF_RaidDisk_t *disks = raidPtr->Disks;
|
|
RF_PhysDiskAddr_t *pda_p;
|
|
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
|
|
RF_PhysDiskAddr_t *pda_q;
|
|
#endif
|
|
RF_StripeCount_t numStripes = 0;
|
|
RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
|
|
nextStripeUnitAddress;
|
|
RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
|
|
RF_StripeCount_t totStripes;
|
|
RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
|
|
RF_AccessStripeMap_t *asmList, *t_asm;
|
|
RF_PhysDiskAddr_t *pdaList, *t_pda;
|
|
|
|
/* allocate all the ASMs and PDAs up front */
|
|
lastRaidAddr = raidAddress + numBlocks - 1;
|
|
stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
|
|
lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
|
|
totStripes = lastSID - stripeID + 1;
|
|
SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
|
|
lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
|
|
|
|
asmList = rf_AllocASMList(totStripes);
|
|
|
|
/* may also need pda(s) per stripe for parity */
|
|
pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
|
|
faultsTolerated * totStripes);
|
|
|
|
|
|
if (raidAddress + numBlocks > raidPtr->totalSectors) {
|
|
RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
|
|
(int) raidAddress);
|
|
return (NULL);
|
|
}
|
|
#if RF_DEBUG_MAP
|
|
if (rf_mapDebug)
|
|
rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
|
|
#endif
|
|
for (; raidAddress < endAddress;) {
|
|
/* make the next stripe structure */
|
|
RF_ASSERT(asmList);
|
|
t_asm = asmList;
|
|
asmList = asmList->next;
|
|
memset(t_asm, 0, sizeof(*t_asm));
|
|
if (!asm_p)
|
|
asm_list = asm_p = t_asm;
|
|
else {
|
|
asm_p->next = t_asm;
|
|
asm_p = asm_p->next;
|
|
}
|
|
numStripes++;
|
|
|
|
/* map SUs from current location to the end of the stripe */
|
|
asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
|
|
raidAddress) */ stripeID++;
|
|
stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
|
|
stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
|
|
asm_p->raidAddress = raidAddress;
|
|
asm_p->endRaidAddress = stripeEndAddress;
|
|
|
|
/* map each stripe unit in the stripe */
|
|
pda_p = NULL;
|
|
|
|
/* Raid addr of start of portion of access that is
|
|
within this stripe */
|
|
startAddrWithinStripe = raidAddress;
|
|
|
|
for (; raidAddress < stripeEndAddress;) {
|
|
RF_ASSERT(pdaList);
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
memset(t_pda, 0, sizeof(*t_pda));
|
|
if (!pda_p)
|
|
asm_p->physInfo = pda_p = t_pda;
|
|
else {
|
|
pda_p->next = t_pda;
|
|
pda_p = pda_p->next;
|
|
}
|
|
|
|
pda_p->type = RF_PDA_TYPE_DATA;
|
|
(layoutPtr->map->MapSector) (raidPtr, raidAddress,
|
|
&(pda_p->col),
|
|
&(pda_p->startSector),
|
|
remap);
|
|
|
|
/* mark any failures we find. failedPDA is
|
|
* don't-care if there is more than one
|
|
* failure */
|
|
|
|
/* the RAID address corresponding to this
|
|
physical diskaddress */
|
|
pda_p->raidAddress = raidAddress;
|
|
nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
|
|
pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
|
|
RF_ASSERT(pda_p->numSector != 0);
|
|
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
|
|
pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
|
|
asm_p->totalSectorsAccessed += pda_p->numSector;
|
|
asm_p->numStripeUnitsAccessed++;
|
|
|
|
raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
|
|
}
|
|
|
|
/* Map the parity. At this stage, the startSector and
|
|
* numSector fields for the parity unit are always set
|
|
* to indicate the entire parity unit. We may modify
|
|
* this after mapping the data portion. */
|
|
switch (faultsTolerated) {
|
|
case 0:
|
|
break;
|
|
case 1: /* single fault tolerant */
|
|
RF_ASSERT(pdaList);
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
memset(t_pda, 0, sizeof(*t_pda));
|
|
pda_p = asm_p->parityInfo = t_pda;
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
|
|
&(pda_p->col), &(pda_p->startSector), remap);
|
|
pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
|
|
/* raidAddr may be needed to find unit to redirect to */
|
|
pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
|
|
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
|
|
rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
|
|
|
|
break;
|
|
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
|
|
case 2: /* two fault tolerant */
|
|
RF_ASSERT(pdaList && pdaList->next);
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
memset(t_pda, 0, sizeof(*t_pda));
|
|
pda_p = asm_p->parityInfo = t_pda;
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
t_pda = pdaList;
|
|
pdaList = pdaList->next;
|
|
memset(t_pda, 0, sizeof(*t_pda));
|
|
pda_q = asm_p->qInfo = t_pda;
|
|
pda_q->type = RF_PDA_TYPE_Q;
|
|
(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
|
|
&(pda_p->col), &(pda_p->startSector), remap);
|
|
(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
|
|
&(pda_q->col), &(pda_q->startSector), remap);
|
|
pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
|
|
/* raidAddr may be needed to find unit to redirect to */
|
|
pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
|
|
pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
|
|
/* failure mode stuff */
|
|
rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
|
|
rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
|
|
rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
|
|
rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
RF_ASSERT(asmList == NULL && pdaList == NULL);
|
|
/* make the header structure */
|
|
asm_hdr = rf_AllocAccessStripeMapHeader();
|
|
RF_ASSERT(numStripes == totStripes);
|
|
asm_hdr->numStripes = numStripes;
|
|
asm_hdr->stripeMap = asm_list;
|
|
|
|
#if RF_DEBUG_MAP
|
|
if (rf_mapDebug)
|
|
rf_PrintAccessStripeMap(asm_hdr);
|
|
#endif
|
|
return (asm_hdr);
|
|
}
|
|
|
|
/***************************************************************************
|
|
* This routine walks through an ASM list and marks the PDAs that have
|
|
* failed. It's called only when a disk failure causes an in-flight
|
|
* DAG to fail. The parity may consist of two components, but we want
|
|
* to use only one failedPDA pointer. Thus we set failedPDA to point
|
|
* to the first parity component, and rely on the rest of the code to
|
|
* do the right thing with this.
|
|
***************************************************************************/
|
|
|
|
void
|
|
rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
|
|
RF_AccessStripeMapHeader_t *asm_h)
|
|
{
|
|
RF_RaidDisk_t *disks = raidPtr->Disks;
|
|
RF_AccessStripeMap_t *asmap;
|
|
RF_PhysDiskAddr_t *pda;
|
|
|
|
for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
|
|
asmap->numDataFailed = 0;
|
|
asmap->numParityFailed = 0;
|
|
asmap->numQFailed = 0;
|
|
asmap->numFailedPDAs = 0;
|
|
memset(asmap->failedPDAs, 0,
|
|
RF_MAX_FAILED_PDA * sizeof(*asmap->failedPDAs));
|
|
for (pda = asmap->physInfo; pda; pda = pda->next) {
|
|
if (RF_DEAD_DISK(disks[pda->col].status)) {
|
|
asmap->numDataFailed++;
|
|
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
|
|
asmap->numFailedPDAs++;
|
|
}
|
|
}
|
|
pda = asmap->parityInfo;
|
|
if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
|
|
asmap->numParityFailed++;
|
|
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
|
|
asmap->numFailedPDAs++;
|
|
}
|
|
pda = asmap->qInfo;
|
|
if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
|
|
asmap->numQFailed++;
|
|
asmap->failedPDAs[asmap->numFailedPDAs] = pda;
|
|
asmap->numFailedPDAs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************************************
|
|
*
|
|
* routines to allocate and free list elements. All allocation
|
|
* routines zero the structure before returning it.
|
|
*
|
|
* FreePhysDiskAddr is static. It should never be called directly,
|
|
* because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
|
|
* list.
|
|
*
|
|
***************************************************************************/
|
|
|
|
#define RF_MAX_FREE_ASMHDR 128
|
|
#define RF_MIN_FREE_ASMHDR 32
|
|
|
|
#define RF_MAX_FREE_ASM 192
|
|
#define RF_MIN_FREE_ASM 64
|
|
|
|
#define RF_MAX_FREE_PDA 192
|
|
#define RF_MIN_FREE_PDA 64
|
|
|
|
#define RF_MAX_FREE_ASMHLE 64
|
|
#define RF_MIN_FREE_ASMHLE 16
|
|
|
|
#define RF_MAX_FREE_FSS 128
|
|
#define RF_MIN_FREE_FSS 32
|
|
|
|
#define RF_MAX_FREE_VFPLE 128
|
|
#define RF_MIN_FREE_VFPLE 32
|
|
|
|
#define RF_MAX_FREE_VPLE 128
|
|
#define RF_MIN_FREE_VPLE 32
|
|
|
|
|
|
/* called at shutdown time. So far, all that is necessary is to
|
|
release all the free lists */
|
|
static void rf_ShutdownMapModule(void *);
|
|
static void
|
|
rf_ShutdownMapModule(void *ignored)
|
|
{
|
|
pool_destroy(&rf_pools.asm_hdr);
|
|
pool_destroy(&rf_pools.asmap);
|
|
pool_destroy(&rf_pools.asmhle);
|
|
pool_destroy(&rf_pools.pda);
|
|
pool_destroy(&rf_pools.fss);
|
|
pool_destroy(&rf_pools.vfple);
|
|
pool_destroy(&rf_pools.vple);
|
|
}
|
|
|
|
int
|
|
rf_ConfigureMapModule(RF_ShutdownList_t **listp)
|
|
{
|
|
|
|
rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
|
|
"rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
|
|
rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t),
|
|
"rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
|
|
rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
|
|
"rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
|
|
rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t),
|
|
"rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
|
|
rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t),
|
|
"rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
|
|
rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
|
|
"rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
|
|
rf_pool_init(&rf_pools.vple, sizeof(RF_VoidPointerListElem_t),
|
|
"rf_vple_pl", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
|
|
rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
RF_AccessStripeMapHeader_t *
|
|
rf_AllocAccessStripeMapHeader(void)
|
|
{
|
|
return pool_get(&rf_pools.asm_hdr, PR_WAITOK | PR_ZERO);
|
|
}
|
|
|
|
void
|
|
rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
|
|
{
|
|
pool_put(&rf_pools.asm_hdr, p);
|
|
}
|
|
|
|
|
|
RF_VoidFunctionPointerListElem_t *
|
|
rf_AllocVFPListElem(void)
|
|
{
|
|
return pool_get(&rf_pools.vfple, PR_WAITOK | PR_ZERO);
|
|
}
|
|
|
|
void
|
|
rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p)
|
|
{
|
|
|
|
pool_put(&rf_pools.vfple, p);
|
|
}
|
|
|
|
|
|
RF_VoidPointerListElem_t *
|
|
rf_AllocVPListElem(void)
|
|
{
|
|
return pool_get(&rf_pools.vple, PR_WAITOK | PR_ZERO);
|
|
}
|
|
|
|
void
|
|
rf_FreeVPListElem(RF_VoidPointerListElem_t *p)
|
|
{
|
|
|
|
pool_put(&rf_pools.vple, p);
|
|
}
|
|
|
|
RF_ASMHeaderListElem_t *
|
|
rf_AllocASMHeaderListElem(void)
|
|
{
|
|
return pool_get(&rf_pools.asmhle, PR_WAITOK | PR_ZERO);
|
|
}
|
|
|
|
void
|
|
rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p)
|
|
{
|
|
|
|
pool_put(&rf_pools.asmhle, p);
|
|
}
|
|
|
|
RF_FailedStripe_t *
|
|
rf_AllocFailedStripeStruct(void)
|
|
{
|
|
return pool_get(&rf_pools.fss, PR_WAITOK | PR_ZERO);
|
|
}
|
|
|
|
void
|
|
rf_FreeFailedStripeStruct(RF_FailedStripe_t *p)
|
|
{
|
|
pool_put(&rf_pools.fss, p);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
RF_PhysDiskAddr_t *
|
|
rf_AllocPhysDiskAddr(void)
|
|
{
|
|
return pool_get(&rf_pools.pda, PR_WAITOK | PR_ZERO);
|
|
}
|
|
/* allocates a list of PDAs, locking the free list only once when we
|
|
* have to call calloc, we do it one component at a time to simplify
|
|
* the process of freeing the list at program shutdown. This should
|
|
* not be much of a performance hit, because it should be very
|
|
* infrequently executed. */
|
|
RF_PhysDiskAddr_t *
|
|
rf_AllocPDAList(int count)
|
|
{
|
|
RF_PhysDiskAddr_t *p, *prev;
|
|
int i;
|
|
|
|
p = NULL;
|
|
prev = NULL;
|
|
for (i = 0; i < count; i++) {
|
|
p = pool_get(&rf_pools.pda, PR_WAITOK);
|
|
p->next = prev;
|
|
prev = p;
|
|
}
|
|
|
|
return (p);
|
|
}
|
|
|
|
void
|
|
rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
|
|
{
|
|
pool_put(&rf_pools.pda, p);
|
|
}
|
|
|
|
static void
|
|
rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
|
|
{
|
|
RF_PhysDiskAddr_t *p, *tmp;
|
|
|
|
p=pda_list;
|
|
while (p) {
|
|
tmp = p->next;
|
|
pool_put(&rf_pools.pda, p);
|
|
p = tmp;
|
|
}
|
|
}
|
|
|
|
/* this is essentially identical to AllocPDAList. I should combine
|
|
* the two. when we have to call calloc, we do it one component at a
|
|
* time to simplify the process of freeing the list at program
|
|
* shutdown. This should not be much of a performance hit, because it
|
|
* should be very infrequently executed. */
|
|
RF_AccessStripeMap_t *
|
|
rf_AllocASMList(int count)
|
|
{
|
|
RF_AccessStripeMap_t *p, *prev;
|
|
int i;
|
|
|
|
p = NULL;
|
|
prev = NULL;
|
|
for (i = 0; i < count; i++) {
|
|
p = pool_get(&rf_pools.asmap, PR_WAITOK);
|
|
p->next = prev;
|
|
prev = p;
|
|
}
|
|
return (p);
|
|
}
|
|
|
|
static void
|
|
rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
|
|
{
|
|
RF_AccessStripeMap_t *p, *tmp;
|
|
|
|
p=asm_list;
|
|
while (p) {
|
|
tmp = p->next;
|
|
pool_put(&rf_pools.asmap, p);
|
|
p = tmp;
|
|
}
|
|
}
|
|
|
|
void
|
|
rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
|
|
{
|
|
RF_AccessStripeMap_t *p;
|
|
RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
|
|
int count = 0, t;
|
|
|
|
for (p = hdr->stripeMap; p; p = p->next) {
|
|
|
|
/* link the 3 pda lists into the accumulating pda list */
|
|
|
|
if (!pdaList)
|
|
pdaList = p->qInfo;
|
|
else
|
|
pdaEnd->next = p->qInfo;
|
|
for (trailer = NULL, pdp = p->qInfo; pdp;) {
|
|
trailer = pdp;
|
|
pdp = pdp->next;
|
|
count++;
|
|
}
|
|
if (trailer)
|
|
pdaEnd = trailer;
|
|
|
|
if (!pdaList)
|
|
pdaList = p->parityInfo;
|
|
else
|
|
pdaEnd->next = p->parityInfo;
|
|
for (trailer = NULL, pdp = p->parityInfo; pdp;) {
|
|
trailer = pdp;
|
|
pdp = pdp->next;
|
|
count++;
|
|
}
|
|
if (trailer)
|
|
pdaEnd = trailer;
|
|
|
|
if (!pdaList)
|
|
pdaList = p->physInfo;
|
|
else
|
|
pdaEnd->next = p->physInfo;
|
|
for (trailer = NULL, pdp = p->physInfo; pdp;) {
|
|
trailer = pdp;
|
|
pdp = pdp->next;
|
|
count++;
|
|
}
|
|
if (trailer)
|
|
pdaEnd = trailer;
|
|
}
|
|
|
|
/* debug only */
|
|
for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
|
|
t++;
|
|
RF_ASSERT(t == count);
|
|
|
|
if (pdaList)
|
|
rf_FreePDAList(pdaList);
|
|
rf_FreeASMList(hdr->stripeMap);
|
|
rf_FreeAccessStripeMapHeader(hdr);
|
|
}
|
|
/* We can't use the large write optimization if there are any failures
|
|
* in the stripe. In the declustered layout, there is no way to
|
|
* immediately determine what disks constitute a stripe, so we
|
|
* actually have to hunt through the stripe looking for failures. The
|
|
* reason we map the parity instead of just using asm->parityInfo->col
|
|
* is because the latter may have been already redirected to a spare
|
|
* drive, which would mess up the computation of the stripe offset.
|
|
*
|
|
* ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
|
|
int
|
|
rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
|
|
{
|
|
RF_RowCol_t tcol, pcol, *diskids, i;
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_StripeCount_t stripeOffset;
|
|
int numFailures;
|
|
RF_RaidAddr_t sosAddr;
|
|
RF_SectorNum_t diskOffset, poffset;
|
|
|
|
/* quick out in the fault-free case. */
|
|
rf_lock_mutex2(raidPtr->mutex);
|
|
numFailures = raidPtr->numFailures;
|
|
rf_unlock_mutex2(raidPtr->mutex);
|
|
if (numFailures == 0)
|
|
return (0);
|
|
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
|
|
asmap->raidAddress);
|
|
(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
|
|
&diskids);
|
|
(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
|
|
&pcol, &poffset, 0); /* get pcol */
|
|
|
|
/* this need not be true if we've redirected the access to a
|
|
* spare in another row RF_ASSERT(row == testrow); */
|
|
stripeOffset = 0;
|
|
for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
|
|
if (diskids[i] != pcol) {
|
|
if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
|
|
if (raidPtr->status != rf_rs_reconstructing)
|
|
return (1);
|
|
RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
|
|
layoutPtr->map->MapSector(raidPtr,
|
|
sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
|
|
&tcol, &diskOffset, 0);
|
|
RF_ASSERT(tcol == diskids[i]);
|
|
if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
|
|
return (1);
|
|
asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
|
|
return (0);
|
|
}
|
|
stripeOffset++;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
|
|
/*
|
|
return the number of failed data units in the stripe.
|
|
*/
|
|
|
|
int
|
|
rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_RowCol_t tcol, i;
|
|
RF_SectorNum_t diskOffset;
|
|
RF_RaidAddr_t sosAddr;
|
|
int numFailures;
|
|
|
|
/* quick out in the fault-free case. */
|
|
rf_lock_mutex2(raidPtr->mutex);
|
|
numFailures = raidPtr->numFailures;
|
|
rf_unlock_mutex2(raidPtr->mutex);
|
|
if (numFailures == 0)
|
|
return (0);
|
|
numFailures = 0;
|
|
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
|
|
asmap->raidAddress);
|
|
for (i = 0; i < layoutPtr->numDataCol; i++) {
|
|
(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
|
|
&tcol, &diskOffset, 0);
|
|
if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
|
|
numFailures++;
|
|
}
|
|
|
|
return numFailures;
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
*
|
|
* debug routines
|
|
*
|
|
***************************************************************************/
|
|
#if RF_DEBUG_MAP
|
|
void
|
|
rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
|
|
{
|
|
rf_PrintFullAccessStripeMap(asm_h, 0);
|
|
}
|
|
#endif
|
|
|
|
/* prbuf - flag to print buffer pointers */
|
|
void
|
|
rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
|
|
{
|
|
int i;
|
|
RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
|
|
RF_PhysDiskAddr_t *p;
|
|
printf("%d stripes total\n", (int) asm_h->numStripes);
|
|
for (; asmap; asmap = asmap->next) {
|
|
/* printf("Num failures: %d\n",asmap->numDataFailed); */
|
|
/* printf("Num sectors:
|
|
* %d\n",(int)asmap->totalSectorsAccessed); */
|
|
printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
|
|
(int) asmap->stripeID,
|
|
(int) asmap->totalSectorsAccessed,
|
|
(int) asmap->numDataFailed,
|
|
(int) asmap->numParityFailed);
|
|
if (asmap->parityInfo) {
|
|
printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
|
|
(int) asmap->parityInfo->startSector,
|
|
(int) (asmap->parityInfo->startSector +
|
|
asmap->parityInfo->numSector - 1));
|
|
if (prbuf)
|
|
printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
|
|
if (asmap->parityInfo->next) {
|
|
printf(", c%d s%d-%d", asmap->parityInfo->next->col,
|
|
(int) asmap->parityInfo->next->startSector,
|
|
(int) (asmap->parityInfo->next->startSector +
|
|
asmap->parityInfo->next->numSector - 1));
|
|
if (prbuf)
|
|
printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
|
|
RF_ASSERT(asmap->parityInfo->next->next == NULL);
|
|
}
|
|
printf("]\n\t");
|
|
}
|
|
for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
|
|
printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
|
|
(int) (p->startSector + p->numSector - 1));
|
|
if (prbuf)
|
|
printf("b0x%lx ", (unsigned long) p->bufPtr);
|
|
if (i && !(i & 1))
|
|
printf("\n\t");
|
|
}
|
|
printf("\n");
|
|
p = asm_h->stripeMap->failedPDAs[0];
|
|
if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
|
|
printf("[multiple failures]\n");
|
|
else
|
|
if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
|
|
printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
|
|
(int) p->startSector, (int) (p->startSector + p->numSector - 1));
|
|
}
|
|
}
|
|
|
|
#if RF_MAP_DEBUG
|
|
void
|
|
rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
|
|
RF_SectorCount_t numBlocks)
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
|
|
|
|
printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
|
|
for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
|
|
printf("%d (0x%x), ", (int) ra, (int) ra);
|
|
}
|
|
printf("\n");
|
|
printf("Offset into stripe unit: %d (0x%x)\n",
|
|
(int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
|
|
(int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
|
|
}
|
|
#endif
|
|
/* given a parity descriptor and the starting address within a stripe,
|
|
* range restrict the parity descriptor to touch only the correct
|
|
* stuff. */
|
|
void
|
|
rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
|
|
RF_StripeNum_t startAddrWithinStripe,
|
|
RF_SectorNum_t endAddress,
|
|
RF_RaidLayout_t *layoutPtr,
|
|
RF_AccessStripeMap_t *asm_p)
|
|
{
|
|
RF_PhysDiskAddr_t *new_pda;
|
|
|
|
/* when we're accessing only a portion of one stripe unit, we
|
|
* want the parity descriptor to identify only the chunk of
|
|
* parity associated with the data. When the access spans
|
|
* exactly one stripe unit boundary and is less than a stripe
|
|
* unit in size, it uses two disjoint regions of the parity
|
|
* unit. When an access spans more than one stripe unit
|
|
* boundary, it uses all of the parity unit.
|
|
*
|
|
* To better handle the case where stripe units are small, we
|
|
* may eventually want to change the 2nd case so that if the
|
|
* SU size is below some threshold, we just read/write the
|
|
* whole thing instead of breaking it up into two accesses. */
|
|
if (asm_p->numStripeUnitsAccessed == 1) {
|
|
int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
|
|
toAdjust->startSector += x;
|
|
toAdjust->raidAddress += x;
|
|
toAdjust->numSector = asm_p->physInfo->numSector;
|
|
RF_ASSERT(toAdjust->numSector != 0);
|
|
} else
|
|
if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
|
|
int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
|
|
|
|
/* create a second pda and copy the parity map info
|
|
* into it */
|
|
RF_ASSERT(toAdjust->next == NULL);
|
|
/* the following will get freed in rf_FreeAccessStripeMap() via
|
|
rf_FreePDAList() */
|
|
new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
|
|
*new_pda = *toAdjust; /* structure assignment */
|
|
new_pda->next = NULL;
|
|
|
|
/* adjust the start sector & number of blocks for the
|
|
* first parity pda */
|
|
toAdjust->startSector += x;
|
|
toAdjust->raidAddress += x;
|
|
toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
|
|
RF_ASSERT(toAdjust->numSector != 0);
|
|
|
|
/* adjust the second pda */
|
|
new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
|
|
/* new_pda->raidAddress =
|
|
* rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
|
|
* toAdjust->raidAddress); */
|
|
RF_ASSERT(new_pda->numSector != 0);
|
|
}
|
|
}
|
|
|
|
/* Check if a disk has been spared or failed. If spared, redirect the
|
|
* I/O. If it has been failed, record it in the asm pointer. Fifth
|
|
* arg is whether data or parity. */
|
|
void
|
|
rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
|
|
RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
|
|
int parity)
|
|
{
|
|
RF_DiskStatus_t dstatus;
|
|
RF_RowCol_t fcol;
|
|
|
|
dstatus = disks[pda_p->col].status;
|
|
|
|
if (dstatus == rf_ds_spared) {
|
|
/* if the disk has been spared, redirect access to the spare */
|
|
fcol = pda_p->col;
|
|
pda_p->col = disks[fcol].spareCol;
|
|
} else
|
|
if (dstatus == rf_ds_dist_spared) {
|
|
/* ditto if disk has been spared to dist spare space */
|
|
#if RF_DEBUG_MAP
|
|
RF_RowCol_t oc = pda_p->col;
|
|
RF_SectorNum_t oo = pda_p->startSector;
|
|
#endif
|
|
if (pda_p->type == RF_PDA_TYPE_DATA)
|
|
raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
|
|
else
|
|
raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
|
|
|
|
#if RF_DEBUG_MAP
|
|
if (rf_mapDebug) {
|
|
printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
|
|
pda_p->col, (int) pda_p->startSector);
|
|
}
|
|
#endif
|
|
} else
|
|
if (RF_DEAD_DISK(dstatus)) {
|
|
/* if the disk is inaccessible, mark the
|
|
* failure */
|
|
if (parity)
|
|
asm_p->numParityFailed++;
|
|
else {
|
|
asm_p->numDataFailed++;
|
|
}
|
|
asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
|
|
asm_p->numFailedPDAs++;
|
|
#if 0
|
|
switch (asm_p->numParityFailed + asm_p->numDataFailed) {
|
|
case 1:
|
|
asm_p->failedPDAs[0] = pda_p;
|
|
break;
|
|
case 2:
|
|
asm_p->failedPDAs[1] = pda_p;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
/* the redirected access should never span a stripe unit boundary */
|
|
RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
|
|
rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
|
|
RF_ASSERT(pda_p->col != -1);
|
|
}
|