NetBSD/gnu/dist/binutils/gprof/symtab.c

281 lines
7.1 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* symtab.c
Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "gprof.h"
#include "search_list.h"
#include "source.h"
#include "symtab.h"
#include "cg_arcs.h"
#include "corefile.h"
static int cmp_addr PARAMS ((const PTR, const PTR));
Sym_Table symtab;
/* Initialize a symbol (so it's empty). */
void
sym_init (sym)
Sym *sym;
{
memset (sym, 0, sizeof (*sym));
/* It is not safe to assume that a binary zero corresponds
to a floating-point 0.0, so initialize floats explicitly. */
sym->hist.time = 0.0;
sym->cg.child_time = 0.0;
sym->cg.prop.fract = 0.0;
sym->cg.prop.self = 0.0;
sym->cg.prop.child = 0.0;
}
/* Compare the function entry-point of two symbols and return <0, =0,
or >0 depending on whether the left value is smaller than, equal
to, or greater than the right value. If two symbols are equal
but one has is_func set and the other doesn't, we make the
non-function symbol one "bigger" so that the function symbol will
survive duplicate removal. Finally, if both symbols have the
same is_func value, we discriminate against is_static such that
the global symbol survives. */
static int
cmp_addr (lp, rp)
const PTR lp;
const PTR rp;
{
const Sym *left = (const Sym *) lp;
const Sym *right = (const Sym *) rp;
if (left->addr > right->addr)
return 1;
else if (left->addr < right->addr)
return -1;
if (left->is_func != right->is_func)
return right->is_func - left->is_func;
return left->is_static - right->is_static;
}
void
symtab_finalize (tab)
Sym_Table *tab;
{
Sym *src, *dst;
bfd_vma prev_addr;
if (!tab->len)
return;
/* Sort symbol table in order of increasing function addresses. */
qsort (tab->base, tab->len, sizeof (Sym), cmp_addr);
/* Remove duplicate entries to speed-up later processing and
set end_addr if its not set yet. */
prev_addr = tab->base[0].addr + 1;
for (src = dst = tab->base; src < tab->limit; ++src)
{
if (src->addr == prev_addr)
{
/* If same address, favor global symbol over static one,
then function over line number. If both symbols are
either static or global and either function or line, check
whether one has name beginning with underscore while
the other doesn't. In such cases, keep sym without
underscore. This takes cares of compiler generated
symbols (such as __gnu_compiled, __c89_used, etc.). */
if ((!src->is_static && dst[-1].is_static)
|| ((src->is_static == dst[-1].is_static)
&& ((src->is_func && !dst[-1].is_func)
|| ((src->is_func == dst[-1].is_func)
&& ((src->name[0] != '_' && dst[-1].name[0] == '_')
|| (src->name[0]
&& src->name[1] != '_'
&& dst[-1].name[1] == '_'))))))
{
DBG (AOUTDEBUG | IDDEBUG,
printf ("[symtab_finalize] favor %s@%c%c over %s@%c%c",
src->name, src->is_static ? 't' : 'T',
src->is_func ? 'F' : 'f',
dst[-1].name, dst[-1].is_static ? 't' : 'T',
dst[-1].is_func ? 'F' : 'f');
printf (" (addr=%lx)\n", (unsigned long) src->addr));
dst[-1] = *src;
}
else
{
DBG (AOUTDEBUG | IDDEBUG,
printf ("[symtab_finalize] favor %s@%c%c over %s@%c%c",
dst[-1].name, dst[-1].is_static ? 't' : 'T',
dst[-1].is_func ? 'F' : 'f',
src->name, src->is_static ? 't' : 'T',
src->is_func ? 'F' : 'f');
printf (" (addr=%lx)\n", (unsigned long) src->addr));
}
}
else
{
if (dst > tab->base && dst[-1].end_addr == 0)
dst[-1].end_addr = src->addr - 1;
/* Retain sym only if it has a non-empty address range. */
if (!src->end_addr || src->addr <= src->end_addr)
{
*dst = *src;
dst++;
prev_addr = src->addr;
}
}
}
if (tab->len > 0 && dst[-1].end_addr == 0)
dst[-1].end_addr = core_text_sect->vma + core_text_sect->_raw_size - 1;
DBG (AOUTDEBUG | IDDEBUG,
printf ("[symtab_finalize]: removed %d duplicate entries\n",
tab->len - (int) (dst - tab->base)));
tab->limit = dst;
tab->len = tab->limit - tab->base;
DBG (AOUTDEBUG | IDDEBUG,
unsigned int j;
for (j = 0; j < tab->len; ++j)
{
printf ("[symtab_finalize] 0x%lx-0x%lx\t%s\n",
(long) tab->base[j].addr, (long) tab->base[j].end_addr,
tab->base[j].name);
}
);
}
#ifdef DEBUG
Sym *
dbg_sym_lookup (sym_tab, address)
Sym_Table *sym_tab;
bfd_vma address;
{
long low, mid, high;
Sym *sym;
fprintf (stderr, "[dbg_sym_lookup] address 0x%lx\n",
(unsigned long) address);
sym = sym_tab->base;
for (low = 0, high = sym_tab->len - 1; low != high;)
{
mid = (high + low) >> 1;
fprintf (stderr, "[dbg_sym_lookup] low=0x%lx, mid=0x%lx, high=0x%lx\n",
low, mid, high);
fprintf (stderr, "[dbg_sym_lookup] sym[m]=0x%lx sym[m + 1]=0x%lx\n",
(unsigned long) sym[mid].addr,
(unsigned long) sym[mid + 1].addr);
if (sym[mid].addr <= address && sym[mid + 1].addr > address)
return &sym[mid];
if (sym[mid].addr > address)
high = mid;
else
low = mid + 1;
}
fprintf (stderr, "[dbg_sym_lookup] binary search fails???\n");
return 0;
}
#endif /* DEBUG */
/* Look up an address in the symbol-table that is sorted by address.
If address does not hit any symbol, 0 is returned. */
Sym *
sym_lookup (sym_tab, address)
Sym_Table *sym_tab;
bfd_vma address;
{
long low, high;
long mid = -1;
Sym *sym;
#ifdef DEBUG
int probes = 0;
#endif /* DEBUG */
if (!sym_tab->len)
return 0;
sym = sym_tab->base;
for (low = 0, high = sym_tab->len - 1; low != high;)
{
DBG (LOOKUPDEBUG, ++probes);
mid = (high + low) / 2;
if (sym[mid].addr <= address && sym[mid + 1].addr > address)
{
if (address > sym[mid].end_addr)
{
/* Address falls into gap between
sym[mid] and sym[mid + 1]. */
return 0;
}
else
{
DBG (LOOKUPDEBUG,
printf ("[sym_lookup] %d probes (symtab->len=%u)\n",
probes, sym_tab->len - 1));
return &sym[mid];
}
}
if (sym[mid].addr > address)
high = mid;
else
low = mid + 1;
}
if (sym[mid + 1].addr <= address)
{
if (address > sym[mid + 1].end_addr)
{
/* Address is beyond end of sym[mid + 1]. */
return 0;
}
else
{
DBG (LOOKUPDEBUG, printf ("[sym_lookup] %d (%u) probes, fall off\n",
probes, sym_tab->len - 1));
return &sym[mid + 1];
}
}
return 0;
}