NetBSD/lib/libcrypto/man/blowfish.3
2001-01-09 12:11:27 +00:00

306 lines
9.1 KiB
Groff

.rn '' }`
'''
'''
.de Sh
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp
.if t .sp .5v
.if n .sp
..
.de Ip
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb
.ft CW
.nf
.ne \\$1
..
.de Ve
.ft R
.fi
..
'''
'''
''' Set up \*(-- to give an unbreakable dash;
''' string Tr holds user defined translation string.
''' Bell System Logo is used as a dummy character.
'''
.tr \(*W-|\(bv\*(Tr
.ie n \{\
.ds -- \(*W-
.ds PI pi
.if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
.ds L" ""
.ds R" ""
''' \*(M", \*(S", \*(N" and \*(T" are the equivalent of
''' \*(L" and \*(R", except that they are used on ".xx" lines,
''' such as .IP and .SH, which do another additional levels of
''' double-quote interpretation
.ds M" """
.ds S" """
.ds N" """""
.ds T" """""
.ds L' '
.ds R' '
.ds M' '
.ds S' '
.ds N' '
.ds T' '
'br\}
.el\{\
.ds -- \(em\|
.tr \*(Tr
.ds L" ``
.ds R" ''
.ds M" ``
.ds S" ''
.ds N" ``
.ds T" ''
.ds L' `
.ds R' '
.ds M' `
.ds S' '
.ds N' `
.ds T' '
.ds PI \(*p
'br\}
.\" If the F register is turned on, we'll generate
.\" index entries out stderr for the following things:
.\" TH Title
.\" SH Header
.\" Sh Subsection
.\" Ip Item
.\" X<> Xref (embedded
.\" Of course, you have to process the output yourself
.\" in some meaninful fashion.
.if \nF \{
.de IX
.tm Index:\\$1\t\\n%\t"\\$2"
..
.nr % 0
.rr F
.\}
.TH blowfish 3 "0.9.5a" "22/Jul/2000" "OpenSSL"
.UC
.if n .hy 0
.if n .na
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.de CQ \" put $1 in typewriter font
.ft CW
'if n "\c
'if t \\&\\$1\c
'if n \\&\\$1\c
'if n \&"
\\&\\$2 \\$3 \\$4 \\$5 \\$6 \\$7
'.ft R
..
.\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2
. \" AM - accent mark definitions
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds ? ?
. ds ! !
. ds /
. ds q
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds ? \s-2c\h'-\w'c'u*7/10'\u\h'\*(#H'\zi\d\s+2\h'\w'c'u*8/10'
. ds ! \s-2\(or\s+2\h'-\w'\(or'u'\v'-.8m'.\v'.8m'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
. ds q o\h'-\w'o'u*8/10'\s-4\v'.4m'\z\(*i\v'-.4m'\s+4\h'\w'o'u*8/10'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds v \\k:\h'-(\\n(.wu*9/10-\*(#H)'\v'-\*(#V'\*(#[\s-4v\s0\v'\*(#V'\h'|\\n:u'\*(#]
.ds _ \\k:\h'-(\\n(.wu*9/10-\*(#H+(\*(#F*2/3))'\v'-.4m'\z\(hy\v'.4m'\h'|\\n:u'
.ds . \\k:\h'-(\\n(.wu*8/10)'\v'\*(#V*4/10'\z.\v'-\*(#V*4/10'\h'|\\n:u'
.ds 3 \*(#[\v'.2m'\s-2\&3\s0\v'-.2m'\*(#]
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.ds oe o\h'-(\w'o'u*4/10)'e
.ds Oe O\h'-(\w'O'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds v \h'-1'\o'\(aa\(ga'
. ds _ \h'-1'^
. ds . \h'-1'.
. ds 3 3
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
. ds oe oe
. ds Oe OE
.\}
.rm #[ #] #H #V #F C
.SH "NAME"
blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt,
BF_cfb64_encrypt, BF_ofb64_encrypt, BF_options \- Blowfish encryption
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.PP
.Vb 1
\& #include <openssl/blowfish.h>
.Ve
.Vb 1
\& void BF_set_key(BF_KEY *key, int len, const unsigned char *data);
.Ve
.Vb 13
\& void BF_encrypt(BF_LONG *data,const BF_KEY *key);
\& void BF_decrypt(BF_LONG *data,const BF_KEY *key);
\&
\& void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
\& BF_KEY *key, int enc);
\& void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
\& long length, BF_KEY *schedule, unsigned char *ivec, int enc);
\& void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, BF_KEY *schedule, unsigned char *ivec, int *num,
\& int enc);
\& void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, BF_KEY *schedule, unsigned char *ivec, int *num);
\& const char *BF_options(void);
.Ve
.SH "DESCRIPTION"
This library implements the Blowfish cipher, which is invented and described
by Counterpane (see http://www.counterpane.com/blowfish/ ).
.PP
Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data.
It uses a variable size key, but typically, 128 bit (16 byte) keys are
a considered good for strong encryption. Blowfish can be used in the same
modes as DES (see the \fIdes_modes(7)|des_modes(7)\fR manpage). Blowfish is currently one
of the faster block ciphers. It is quite a bit faster than DES, and much
faster than IDEA or RC2.
.PP
Blowfish consists of a key setup phase and the actual encryption or decryption
phase.
.PP
\fIBF_set_key()\fR sets up the \fBBF_KEY\fR \fBkey\fR using the \fBlen\fR bytes long key
at \fBdata\fR.
.PP
\fIBF_encrypt()\fR and \fIBF_decrypt()\fR are the lowest level functions for Blowfish
encryption. They encrypt/decrypt the first 64 bits of the vector pointed by
\fBdata\fR, using the key \fBkey\fR. These functions should not be used unless you
implement \*(L'modes\*(R' of Blowfish.
.PP
\fIBF_ecb_encrypt()\fR is the basic Blowfish encryption and decryption function.
It encrypts or decrypts the first 64 bits of \fBin\fR using the key \fBkey\fR,
putting the result in \fBout\fR. \fBenc\fR decides if encryption (\fBBF_ENCRYPT\fR)
or decryption (\fBBF_DECRYPT\fR) shall be performed. The vector pointed at by
\fBin\fR and \fBout\fR must be 64 bits in length, no less. If they are larger,
everything after the first 64 bits is ignored.
.PP
The mode functions \fIBF_cbc_encrypt()\fR, \fIBF_cfb64_encrypt()\fR and \fIBF_ofb64_encrypt()\fR
all operate on variable length data. They all take an initialisation vector
\fBivec\fR which needs to be passed along into the next call of the same function
for the same message. \fBivec\fR may be initialised with anything, but the
recipient needs to know what it was initialised with, or it won't be able
to decrypt. Some programs and protocols simplify this, like SSH, where
\fBivec\fR is simply initialised to zero.
\fIBF_cbc_encrypt()\fR operates of data that is a multiple of 8 bytes long, while
\fIBF_cfb64_encrypt()\fR and \fIBF_ofb64_encrypt()\fR are used to encrypt an variable
number of bytes (the amount does not have to be an exact multiple of 8). The
purpose of the latter two is to simulate stream ciphers, and therefore, they
need the parameter \fBnum\fR, which is a pointer to an integer where the current
offset in \fBivec\fR is stored between calls. This integer must be initialised
to zero when \fBivec\fR is initialised.
.PP
\fIBF_cbc_encrypt()\fR is the Cipher Block Chaining function for Blowfish. It
encrypts or decrypts the 64 bits chunks of \fBin\fR using the key \fBschedule\fR,
putting the result in \fBout\fR. \fBenc\fR decides if encryption (BF_ENCRYPT) or
decryption (BF_DECRYPT) shall be performed. \fBivec\fR must point at an 8 byte
long initialisation vector.
.PP
\fIBF_cfb64_encrypt()\fR is the CFB mode for Blowfish with 64 bit feedback.
It encrypts or decrypts the bytes in \fBin\fR using the key \fBschedule\fR,
putting the result in \fBout\fR. \fBenc\fR decides if encryption (\fBBF_ENCRYPT\fR)
or decryption (\fBBF_DECRYPT\fR) shall be performed. \fBivec\fR must point at an
8 byte long initialisation vector. \fBnum\fR must point at an integer which must
be initially zero.
.PP
\fIBF_ofb64_encrypt()\fR is the OFB mode for Blowfish with 64 bit feedback.
It uses the same parameters as \fIBF_cfb64_encrypt()\fR, which must be initialised
the same way.
.SH "RETURN VALUES"
None of the functions presented here return any value.
.SH "NOTE"
Applications should use the higher level functions
the \fIEVP_EncryptInit(3)|EVP_EncryptInit(3)\fR manpage etc. instead of calling the
blowfish functions directly.
.SH "SEE ALSO"
the \fIdes_modes(7)|des_modes(7)\fR manpage
.SH "HISTORY"
The Blowfish functions are available in all versions of SSLeay and OpenSSL.
.rn }` ''
.IX Title "blowfish 3"
.IX Name "blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt,
BF_cfb64_encrypt, BF_ofb64_encrypt, BF_options - Blowfish encryption"
.IX Header "NAME"
.IX Header "SYNOPSIS"
.IX Header "DESCRIPTION"
.IX Header "RETURN VALUES"
.IX Header "NOTE"
.IX Header "SEE ALSO"
.IX Header "HISTORY"