1037 lines
25 KiB
C
1037 lines
25 KiB
C
/* $NetBSD: zs.c,v 1.48 2008/12/07 08:24:26 tsutsui Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996, 1998 Bill Studenmund
|
|
* Copyright (c) 1995 Gordon W. Ross
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
* 4. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Gordon Ross
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Zilog Z8530 Dual UART driver (machine-dependent part)
|
|
*
|
|
* Runs two serial lines per chip using slave drivers.
|
|
* Plain tty/async lines use the zs_async slave.
|
|
* Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
|
|
* Other ports use their own mice & keyboard slaves.
|
|
*
|
|
* Credits & history:
|
|
*
|
|
* With NetBSD 1.1, port-mac68k started using a port of the port-sparc
|
|
* (port-sun3?) zs.c driver (which was in turn based on code in the
|
|
* Berkeley 4.4 Lite release). Bill Studenmund did the port, with
|
|
* help from Allen Briggs and Gordon Ross <gwr@NetBSD.org>. Noud de
|
|
* Brouwer field-tested the driver at a local ISP.
|
|
*
|
|
* Bill Studenmund and Gordon Ross then ported the machine-independent
|
|
* z8530 driver to work with port-mac68k. NetBSD 1.2 contained an
|
|
* intermediate version (mac68k using a local, patched version of
|
|
* the m.i. drivers), with NetBSD 1.3 containing a full version.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.48 2008/12/07 08:24:26 tsutsui Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_kgdb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/cpu.h>
|
|
#ifdef KGDB
|
|
#include <sys/kgdb.h>
|
|
#endif
|
|
|
|
#include <dev/cons.h>
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <dev/ic/z8530reg.h>
|
|
|
|
#include <machine/z8530var.h>
|
|
#include <machine/autoconf.h>
|
|
#include <machine/pio.h>
|
|
|
|
/* Are these in a header file anywhere? */
|
|
/* Booter flags interface */
|
|
#define ZSMAC_RAW 0x01
|
|
#define ZSMAC_LOCALTALK 0x02
|
|
|
|
/*
|
|
* Some warts needed by z8530tty.c -
|
|
*/
|
|
int zs_def_cflag = (CREAD | CS8 | HUPCL);
|
|
|
|
/*
|
|
* abort detection on console will now timeout after iterating on a loop
|
|
* the following # of times. Cheep hack. Also, abort detection is turned
|
|
* off after a timeout (i.e. maybe there's not a terminal hooked up).
|
|
*/
|
|
#define ZSABORT_DELAY 3000000
|
|
|
|
struct zsdevice {
|
|
/* Yes, they are backwards. */
|
|
struct zschan zs_chan_b;
|
|
struct zschan zs_chan_a;
|
|
};
|
|
|
|
static int zs_defspeed[2] = {
|
|
38400, /* ttyZ0 */
|
|
38400, /* ttyZ1 */
|
|
};
|
|
|
|
/* console stuff */
|
|
void *zs_conschan = 0;
|
|
int zs_conschannel = -1;
|
|
#ifdef ZS_CONSOLE_ABORT
|
|
int zs_cons_canabort = 1;
|
|
#else
|
|
int zs_cons_canabort = 0;
|
|
#endif /* ZS_CONSOLE_ABORT*/
|
|
|
|
/* device to which the console is attached--if serial. */
|
|
/* Mac stuff */
|
|
|
|
static int zs_get_speed(struct zs_chanstate *);
|
|
|
|
/*
|
|
* Even though zsparam will set up the clock multiples, etc., we
|
|
* still set them here as: 1) mice & keyboards don't use zsparam,
|
|
* and 2) the console stuff uses these defaults before device
|
|
* attach.
|
|
*/
|
|
|
|
static uint8_t zs_init_reg[16] = {
|
|
0, /* 0: CMD (reset, etc.) */
|
|
0, /* 1: No interrupts yet. */
|
|
0, /* IVECT */
|
|
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
|
|
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
|
|
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
|
|
0, /* 6: TXSYNC/SYNCLO */
|
|
0, /* 7: RXSYNC/SYNCHI */
|
|
0, /* 8: alias for data port */
|
|
ZSWR9_MASTER_IE,
|
|
0, /*10: Misc. TX/RX control bits */
|
|
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
|
|
((PCLK/32)/38400)-2, /*12: BAUDLO (default=38400) */
|
|
0, /*13: BAUDHI (default=38400) */
|
|
ZSWR14_BAUD_ENA,
|
|
ZSWR15_BREAK_IE,
|
|
};
|
|
|
|
/****************************************************************
|
|
* Autoconfig
|
|
****************************************************************/
|
|
|
|
/* Definition of the driver for autoconfig. */
|
|
static int zsc_match(device_t, cfdata_t, void *);
|
|
static void zsc_attach(device_t, device_t, void *);
|
|
static int zsc_print(void *, const char *);
|
|
|
|
CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc),
|
|
zsc_match, zsc_attach, NULL, NULL);
|
|
|
|
extern struct cfdriver zsc_cd;
|
|
|
|
int zsc_attached;
|
|
|
|
int zshard(void *);
|
|
#ifdef ZS_TXDMA
|
|
static int zs_txdma_int(void *);
|
|
#endif
|
|
|
|
void zscnprobe(struct consdev *);
|
|
void zscninit(struct consdev *);
|
|
int zscngetc(dev_t);
|
|
void zscnputc(dev_t, int);
|
|
void zscnpollc(dev_t, int);
|
|
|
|
/*
|
|
* Is the zs chip present?
|
|
*/
|
|
static int
|
|
zsc_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct confargs *ca = aux;
|
|
|
|
if (strcmp(ca->ca_name, "escc") != 0)
|
|
return 0;
|
|
|
|
if (zsc_attached)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attach a found zs.
|
|
*
|
|
* Match slave number to zs unit number, so that misconfiguration will
|
|
* not set up the keyboard as ttya, etc.
|
|
*/
|
|
static void
|
|
zsc_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct zsc_softc *zsc = device_private(self);
|
|
struct confargs *ca = aux;
|
|
struct zsc_attach_args zsc_args;
|
|
volatile struct zschan *zc;
|
|
struct xzs_chanstate *xcs;
|
|
struct zs_chanstate *cs;
|
|
struct zsdevice *zsd;
|
|
int channel;
|
|
int s, chip, theflags;
|
|
int node, intr[2][3];
|
|
u_int regs[6];
|
|
|
|
zsc_attached = 1;
|
|
|
|
zsc->zsc_dev = self;
|
|
|
|
chip = 0;
|
|
ca->ca_reg[0] += ca->ca_baseaddr;
|
|
zsd = mapiodev(ca->ca_reg[0], ca->ca_reg[1]);
|
|
|
|
node = OF_child(ca->ca_node); /* ch-a */
|
|
|
|
for (channel = 0; channel < 2; channel++) {
|
|
if (OF_getprop(node, "AAPL,interrupts",
|
|
intr[channel], sizeof(intr[0])) == -1 &&
|
|
OF_getprop(node, "interrupts",
|
|
intr[channel], sizeof(intr[0])) == -1) {
|
|
aprint_error(": cannot find interrupt property\n");
|
|
return;
|
|
}
|
|
|
|
if (OF_getprop(node, "reg", regs, sizeof(regs)) < 24) {
|
|
aprint_error(": cannot find reg property\n");
|
|
return;
|
|
}
|
|
regs[2] += ca->ca_baseaddr;
|
|
regs[4] += ca->ca_baseaddr;
|
|
#ifdef ZS_TXDMA
|
|
zsc->zsc_txdmareg[channel] = mapiodev(regs[2], regs[3]);
|
|
zsc->zsc_txdmacmd[channel] =
|
|
dbdma_alloc(sizeof(dbdma_command_t) * 3);
|
|
memset(zsc->zsc_txdmacmd[channel], 0,
|
|
sizeof(dbdma_command_t) * 3);
|
|
dbdma_reset(zsc->zsc_txdmareg[channel]);
|
|
#endif
|
|
node = OF_peer(node); /* ch-b */
|
|
}
|
|
|
|
aprint_normal(" irq %d,%d\n", intr[0][0], intr[1][0]);
|
|
|
|
/*
|
|
* Initialize software state for each channel.
|
|
*/
|
|
for (channel = 0; channel < 2; channel++) {
|
|
zsc_args.channel = channel;
|
|
zsc_args.hwflags = (channel == zs_conschannel ?
|
|
ZS_HWFLAG_CONSOLE : 0);
|
|
xcs = &zsc->xzsc_xcs_store[channel];
|
|
cs = &xcs->xzs_cs;
|
|
zsc->zsc_cs[channel] = cs;
|
|
|
|
zs_lock_init(cs);
|
|
cs->cs_channel = channel;
|
|
cs->cs_private = NULL;
|
|
cs->cs_ops = &zsops_null;
|
|
|
|
zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
|
|
|
|
cs->cs_reg_csr = &zc->zc_csr;
|
|
cs->cs_reg_data = &zc->zc_data;
|
|
|
|
memcpy(cs->cs_creg, zs_init_reg, 16);
|
|
memcpy(cs->cs_preg, zs_init_reg, 16);
|
|
|
|
/* Current BAUD rate generator clock. */
|
|
cs->cs_brg_clk = PCLK / 16; /* RTxC is 230400*16, so use 230400 */
|
|
if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
|
|
cs->cs_defspeed = zs_get_speed(cs);
|
|
else
|
|
cs->cs_defspeed = zs_defspeed[channel];
|
|
cs->cs_defcflag = zs_def_cflag;
|
|
|
|
/* Make these correspond to cs_defcflag (-crtscts) */
|
|
cs->cs_rr0_dcd = ZSRR0_DCD;
|
|
cs->cs_rr0_cts = 0;
|
|
cs->cs_wr5_dtr = ZSWR5_DTR;
|
|
cs->cs_wr5_rts = 0;
|
|
|
|
#ifdef __notyet__
|
|
cs->cs_slave_type = ZS_SLAVE_NONE;
|
|
#endif
|
|
|
|
/* Define BAUD rate stuff. */
|
|
xcs->cs_clocks[0].clk = PCLK;
|
|
xcs->cs_clocks[0].flags = ZSC_RTXBRG | ZSC_RTXDIV;
|
|
xcs->cs_clocks[1].flags =
|
|
ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN;
|
|
xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE;
|
|
xcs->cs_clock_count = 3;
|
|
if (channel == 0) {
|
|
theflags = 0; /*mac68k_machine.modem_flags;*/
|
|
/*xcs->cs_clocks[1].clk = mac68k_machine.modem_dcd_clk;*/
|
|
/*xcs->cs_clocks[2].clk = mac68k_machine.modem_cts_clk;*/
|
|
xcs->cs_clocks[1].clk = 0;
|
|
xcs->cs_clocks[2].clk = 0;
|
|
} else {
|
|
theflags = 0; /*mac68k_machine.print_flags;*/
|
|
xcs->cs_clocks[1].flags = ZSC_VARIABLE;
|
|
/*
|
|
* Yes, we aren't defining ANY clock source enables for the
|
|
* printer's DCD clock in. The hardware won't let us
|
|
* use it. But a clock will freak out the chip, so we
|
|
* let you set it, telling us to bar interrupts on the line.
|
|
*/
|
|
/*xcs->cs_clocks[1].clk = mac68k_machine.print_dcd_clk;*/
|
|
/*xcs->cs_clocks[2].clk = mac68k_machine.print_cts_clk;*/
|
|
xcs->cs_clocks[1].clk = 0;
|
|
xcs->cs_clocks[2].clk = 0;
|
|
}
|
|
if (xcs->cs_clocks[1].clk)
|
|
zsc_args.hwflags |= ZS_HWFLAG_NO_DCD;
|
|
if (xcs->cs_clocks[2].clk)
|
|
zsc_args.hwflags |= ZS_HWFLAG_NO_CTS;
|
|
|
|
/* Set defaults in our "extended" chanstate. */
|
|
xcs->cs_csource = 0;
|
|
xcs->cs_psource = 0;
|
|
xcs->cs_cclk_flag = 0; /* Nothing fancy by default */
|
|
xcs->cs_pclk_flag = 0;
|
|
|
|
if (theflags & ZSMAC_RAW) {
|
|
zsc_args.hwflags |= ZS_HWFLAG_RAW;
|
|
printf(" (raw defaults)");
|
|
}
|
|
|
|
/*
|
|
* XXX - This might be better done with a "stub" driver
|
|
* (to replace zstty) that ignores LocalTalk for now.
|
|
*/
|
|
if (theflags & ZSMAC_LOCALTALK) {
|
|
printf(" shielding from LocalTalk");
|
|
cs->cs_defspeed = 1;
|
|
cs->cs_creg[ZSRR_BAUDLO] = cs->cs_preg[ZSRR_BAUDLO] = 0xff;
|
|
cs->cs_creg[ZSRR_BAUDHI] = cs->cs_preg[ZSRR_BAUDHI] = 0xff;
|
|
zs_write_reg(cs, ZSRR_BAUDLO, 0xff);
|
|
zs_write_reg(cs, ZSRR_BAUDHI, 0xff);
|
|
/*
|
|
* If we might have LocalTalk, then make sure we have the
|
|
* Baud rate low-enough to not do any damage.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* We used to disable chip interrupts here, but we now
|
|
* do that in zscnprobe, just in case MacOS left the chip on.
|
|
*/
|
|
|
|
xcs->cs_chip = chip;
|
|
|
|
/* Stash away a copy of the final H/W flags. */
|
|
xcs->cs_hwflags = zsc_args.hwflags;
|
|
|
|
/*
|
|
* Look for a child driver for this channel.
|
|
* The child attach will setup the hardware.
|
|
*/
|
|
if (!config_found(self, (void *)&zsc_args, zsc_print)) {
|
|
/* No sub-driver. Just reset it. */
|
|
uint8_t reset = (channel == 0) ?
|
|
ZSWR9_A_RESET : ZSWR9_B_RESET;
|
|
s = splzs();
|
|
zs_write_reg(cs, 9, reset);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/* XXX - Now safe to install interrupt handlers. */
|
|
intr_establish(intr[0][0], IST_EDGE, IPL_TTY, zshard, zsc);
|
|
intr_establish(intr[1][0], IST_EDGE, IPL_TTY, zshard, zsc);
|
|
#ifdef ZS_TXDMA
|
|
intr_establish(intr[0][1], IST_EDGE, IPL_TTY, zs_txdma_int, (void *)0);
|
|
intr_establish(intr[1][1], IST_EDGE, IPL_TTY, zs_txdma_int, (void *)1);
|
|
#endif
|
|
|
|
zsc->zsc_si = softint_establish(SOFTINT_SERIAL,
|
|
(void (*)(void *)) zsc_intr_soft, zsc);
|
|
|
|
/*
|
|
* Set the master interrupt enable and interrupt vector.
|
|
* (common to both channels, do it on A)
|
|
*/
|
|
cs = zsc->zsc_cs[0];
|
|
s = splzs();
|
|
/* interrupt vector */
|
|
zs_write_reg(cs, 2, zs_init_reg[2]);
|
|
/* master interrupt control (enable) */
|
|
zs_write_reg(cs, 9, zs_init_reg[9]);
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
zsc_print(void *aux, const char *name)
|
|
{
|
|
struct zsc_attach_args *args = aux;
|
|
|
|
if (name != NULL)
|
|
aprint_normal("%s: ", name);
|
|
|
|
if (args->channel != -1)
|
|
aprint_normal(" channel %d", args->channel);
|
|
|
|
return UNCONF;
|
|
}
|
|
|
|
int
|
|
zsmdioctl(struct zs_chanstate *cs, u_long cmd, void *data)
|
|
{
|
|
switch (cmd) {
|
|
default:
|
|
return (EPASSTHROUGH);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zsmd_setclock(struct zs_chanstate *cs)
|
|
{
|
|
#ifdef NOTYET
|
|
struct xzs_chanstate *xcs = (void *)cs;
|
|
|
|
if (cs->cs_channel != 0)
|
|
return;
|
|
|
|
/*
|
|
* If the new clock has the external bit set, then select the
|
|
* external source.
|
|
*/
|
|
via_set_modem((xcs->cs_pclk_flag & ZSC_EXTERN) ? 1 : 0);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
zshard(void *arg)
|
|
{
|
|
struct zsc_softc *zsc;
|
|
int rval;
|
|
|
|
zsc = arg;
|
|
rval = zsc_intr_hard(zsc);
|
|
if ((zsc->zsc_cs[0]->cs_softreq) || (zsc->zsc_cs[1]->cs_softreq))
|
|
softint_schedule(zsc->zsc_si);
|
|
|
|
return rval;
|
|
}
|
|
|
|
#ifdef ZS_TXDMA
|
|
int
|
|
zs_txdma_int(void *arg)
|
|
{
|
|
int ch = (int)arg;
|
|
struct zsc_softc *zsc;
|
|
struct zs_chanstate *cs;
|
|
|
|
zsc = device_lookup_private(&zsc_cd, ch);
|
|
if (zsc == NULL)
|
|
panic("zs_txdma_int");
|
|
|
|
cs = zsc->zsc_cs[ch];
|
|
zstty_txdma_int(cs);
|
|
|
|
if (cs->cs_softreq)
|
|
softint_schedule(zsc->zsc_si);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
zs_dma_setup(struct zs_chanstate *cs, void *pa, int len)
|
|
{
|
|
struct zsc_softc *zsc;
|
|
dbdma_command_t *cmdp;
|
|
int ch = cs->cs_channel;
|
|
|
|
zsc = device_lookup_private(&zsc_cd, ch);
|
|
cmdp = zsc->zsc_txdmacmd[ch];
|
|
|
|
DBDMA_BUILD(cmdp, DBDMA_CMD_OUT_LAST, 0, len, kvtop(pa),
|
|
DBDMA_INT_ALWAYS, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
|
|
cmdp++;
|
|
DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0,
|
|
DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
|
|
|
|
__asm volatile("eieio");
|
|
|
|
dbdma_start(zsc->zsc_txdmareg[ch], zsc->zsc_txdmacmd[ch]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Compute the current baud rate given a ZS channel.
|
|
* XXX Assume internal BRG.
|
|
*/
|
|
int
|
|
zs_get_speed(struct zs_chanstate *cs)
|
|
{
|
|
int tconst;
|
|
|
|
tconst = zs_read_reg(cs, 12);
|
|
tconst |= zs_read_reg(cs, 13) << 8;
|
|
return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
|
|
}
|
|
|
|
#ifndef ZS_TOLERANCE
|
|
#define ZS_TOLERANCE 51
|
|
/* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */
|
|
#endif
|
|
|
|
/*
|
|
* Search through the signal sources in the channel, and
|
|
* pick the best one for the baud rate requested. Return
|
|
* a -1 if not achievable in tolerance. Otherwise return 0
|
|
* and fill in the values.
|
|
*
|
|
* This routine draws inspiration from the Atari port's zs.c
|
|
* driver in NetBSD 1.1 which did the same type of source switching.
|
|
* Tolerance code inspired by comspeed routine in isa/com.c.
|
|
*
|
|
* By Bill Studenmund, 1996-05-12
|
|
*/
|
|
int
|
|
zs_set_speed(struct zs_chanstate *cs, int bps)
|
|
{
|
|
struct xzs_chanstate *xcs = (void *) cs;
|
|
int i, tc, tc0 = 0, tc1, s, sf = 0;
|
|
int src, rate0, rate1, err, tol;
|
|
|
|
if (bps == 0)
|
|
return (0);
|
|
|
|
src = -1; /* no valid source yet */
|
|
tol = ZS_TOLERANCE;
|
|
|
|
/*
|
|
* Step through all the sources and see which one matches
|
|
* the best. A source has to match BETTER than tol to be chosen.
|
|
* Thus if two sources give the same error, the first one will be
|
|
* chosen. Also, allow for the possability that one source might run
|
|
* both the BRG and the direct divider (i.e. RTxC).
|
|
*/
|
|
for (i = 0; i < xcs->cs_clock_count; i++) {
|
|
if (xcs->cs_clocks[i].clk <= 0)
|
|
continue; /* skip non-existent or bad clocks */
|
|
if (xcs->cs_clocks[i].flags & ZSC_BRG) {
|
|
/* check out BRG at /16 */
|
|
tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps);
|
|
if (tc1 >= 0) {
|
|
rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1);
|
|
err = abs(((rate1 - bps)*1000)/bps);
|
|
if (err < tol) {
|
|
tol = err;
|
|
src = i;
|
|
sf = xcs->cs_clocks[i].flags & ~ZSC_DIV;
|
|
tc0 = tc1;
|
|
rate0 = rate1;
|
|
}
|
|
}
|
|
}
|
|
if (xcs->cs_clocks[i].flags & ZSC_DIV) {
|
|
/*
|
|
* Check out either /1, /16, /32, or /64
|
|
* Note: for /1, you'd better be using a synchronized
|
|
* clock!
|
|
*/
|
|
int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps);
|
|
int b1 = b0 >> 4, e1 = abs(b1-bps);
|
|
int b2 = b1 >> 1, e2 = abs(b2-bps);
|
|
int b3 = b2 >> 1, e3 = abs(b3-bps);
|
|
|
|
if (e0 < e1 && e0 < e2 && e0 < e3) {
|
|
err = e0;
|
|
rate1 = b0;
|
|
tc1 = ZSWR4_CLK_X1;
|
|
} else if (e0 > e1 && e1 < e2 && e1 < e3) {
|
|
err = e1;
|
|
rate1 = b1;
|
|
tc1 = ZSWR4_CLK_X16;
|
|
} else if (e0 > e2 && e1 > e2 && e2 < e3) {
|
|
err = e2;
|
|
rate1 = b2;
|
|
tc1 = ZSWR4_CLK_X32;
|
|
} else {
|
|
err = e3;
|
|
rate1 = b3;
|
|
tc1 = ZSWR4_CLK_X64;
|
|
}
|
|
|
|
err = (err * 1000)/bps;
|
|
if (err < tol) {
|
|
tol = err;
|
|
src = i;
|
|
sf = xcs->cs_clocks[i].flags & ~ZSC_BRG;
|
|
tc0 = tc1;
|
|
rate0 = rate1;
|
|
}
|
|
}
|
|
}
|
|
#ifdef ZSMACDEBUG
|
|
zsprintf("Checking for rate %d. Found source #%d.\n",bps, src);
|
|
#endif
|
|
if (src == -1)
|
|
return (EINVAL); /* no can do */
|
|
|
|
/*
|
|
* The M.I. layer likes to keep cs_brg_clk current, even though
|
|
* we are the only ones who should be touching the BRG's rate.
|
|
*
|
|
* Note: we are assuming that any ZSC_EXTERN signal source comes in
|
|
* on the RTxC pin. Correct for the mac68k obio zsc.
|
|
*/
|
|
if (sf & ZSC_EXTERN)
|
|
cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4;
|
|
else
|
|
cs->cs_brg_clk = PCLK / 16;
|
|
|
|
/*
|
|
* Now we have a source, so set it up.
|
|
*/
|
|
s = splzs();
|
|
xcs->cs_psource = src;
|
|
xcs->cs_pclk_flag = sf;
|
|
bps = rate0;
|
|
if (sf & ZSC_BRG) {
|
|
cs->cs_preg[4] = ZSWR4_CLK_X16;
|
|
cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD;
|
|
if (sf & ZSC_PCLK) {
|
|
cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK;
|
|
} else {
|
|
cs->cs_preg[14] = ZSWR14_BAUD_ENA;
|
|
}
|
|
tc = tc0;
|
|
} else {
|
|
cs->cs_preg[4] = tc0;
|
|
if (sf & ZSC_RTXDIV) {
|
|
cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC;
|
|
} else {
|
|
cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC;
|
|
}
|
|
cs->cs_preg[14]= 0;
|
|
tc = 0xffff;
|
|
}
|
|
/* Set the BAUD rate divisor. */
|
|
cs->cs_preg[12] = tc;
|
|
cs->cs_preg[13] = tc >> 8;
|
|
splx(s);
|
|
|
|
#ifdef ZSMACDEBUG
|
|
zsprintf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \
|
|
bps, tc, src, sf);
|
|
zsprintf("Registers are: 4 %x, 11 %x, 14 %x\n\n",
|
|
cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]);
|
|
#endif
|
|
|
|
cs->cs_preg[5] |= ZSWR5_RTS; /* Make sure the drivers are on! */
|
|
|
|
/* Caller will stuff the pending registers. */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zs_set_modes(struct zs_chanstate *cs, int cflag)
|
|
{
|
|
struct xzs_chanstate *xcs = (void*)cs;
|
|
int s;
|
|
|
|
/*
|
|
* Make sure we don't enable hfc on a signal line we're ignoring.
|
|
* As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS,
|
|
* this code also effectivly turns off ZSWR15_CTS_IE.
|
|
*
|
|
* Also, disable DCD interrupts if we've been told to ignore
|
|
* the DCD pin. Happens on mac68k because the input line for
|
|
* DCD can also be used as a clock input. (Just set CLOCAL.)
|
|
*
|
|
* If someone tries to turn an invalid flow mode on, Just Say No
|
|
* (Suggested by gwr)
|
|
*/
|
|
if ((cflag & CDTRCTS) && (cflag & (CRTSCTS | MDMBUF)))
|
|
return (EINVAL);
|
|
if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) {
|
|
if (cflag & MDMBUF)
|
|
return (EINVAL);
|
|
cflag |= CLOCAL;
|
|
}
|
|
if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & (CRTSCTS | CDTRCTS)))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Output hardware flow control on the chip is horrendous:
|
|
* if carrier detect drops, the receiver is disabled, and if
|
|
* CTS drops, the transmitter is stoped IN MID CHARACTER!
|
|
* Therefore, NEVER set the HFC bit, and instead use the
|
|
* status interrupt to detect CTS changes.
|
|
*/
|
|
s = splzs();
|
|
if ((cflag & (CLOCAL | MDMBUF)) != 0)
|
|
cs->cs_rr0_dcd = 0;
|
|
else
|
|
cs->cs_rr0_dcd = ZSRR0_DCD;
|
|
/*
|
|
* The mac hardware only has one output, DTR (HSKo in Mac
|
|
* parlance). In HFC mode, we use it for the functions
|
|
* typically served by RTS and DTR on other ports, so we
|
|
* have to fake the upper layer out some.
|
|
*
|
|
* CRTSCTS we use CTS as an input which tells us when to shut up.
|
|
* We make no effort to shut up the other side of the connection.
|
|
* DTR is used to hang up the modem.
|
|
*
|
|
* In CDTRCTS, we use CTS to tell us to stop, but we use DTR to
|
|
* shut up the other side.
|
|
*/
|
|
if ((cflag & CRTSCTS) != 0) {
|
|
cs->cs_wr5_dtr = ZSWR5_DTR;
|
|
cs->cs_wr5_rts = 0;
|
|
cs->cs_rr0_cts = ZSRR0_CTS;
|
|
} else if ((cflag & CDTRCTS) != 0) {
|
|
cs->cs_wr5_dtr = 0;
|
|
cs->cs_wr5_rts = ZSWR5_DTR;
|
|
cs->cs_rr0_cts = ZSRR0_CTS;
|
|
} else if ((cflag & MDMBUF) != 0) {
|
|
cs->cs_wr5_dtr = 0;
|
|
cs->cs_wr5_rts = ZSWR5_DTR;
|
|
cs->cs_rr0_cts = ZSRR0_DCD;
|
|
} else {
|
|
cs->cs_wr5_dtr = ZSWR5_DTR;
|
|
cs->cs_wr5_rts = 0;
|
|
cs->cs_rr0_cts = 0;
|
|
}
|
|
splx(s);
|
|
|
|
/* Caller will stuff the pending registers. */
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read or write the chip with suitable delays.
|
|
* MacII hardware has the delay built in.
|
|
* No need for extra delay. :-) However, some clock-chirped
|
|
* macs, or zsc's on serial add-on boards might need it.
|
|
*/
|
|
#define ZS_DELAY()
|
|
|
|
uint8_t
|
|
zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
|
|
{
|
|
uint8_t val;
|
|
|
|
out8(cs->cs_reg_csr, reg);
|
|
ZS_DELAY();
|
|
val = in8(cs->cs_reg_csr);
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
|
|
{
|
|
out8(cs->cs_reg_csr, reg);
|
|
ZS_DELAY();
|
|
out8(cs->cs_reg_csr, val);
|
|
ZS_DELAY();
|
|
}
|
|
|
|
uint8_t
|
|
zs_read_csr(struct zs_chanstate *cs)
|
|
{
|
|
uint8_t val;
|
|
|
|
val = in8(cs->cs_reg_csr);
|
|
ZS_DELAY();
|
|
/* make up for the fact CTS is wired backwards */
|
|
val ^= ZSRR0_CTS;
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_csr(struct zs_chanstate *cs, uint8_t val)
|
|
{
|
|
/* Note, the csr does not write CTS... */
|
|
out8(cs->cs_reg_csr, val);
|
|
ZS_DELAY();
|
|
}
|
|
|
|
uint8_t
|
|
zs_read_data(struct zs_chanstate *cs)
|
|
{
|
|
uint8_t val;
|
|
|
|
val = in8(cs->cs_reg_data);
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_data(struct zs_chanstate *cs, uint8_t val)
|
|
{
|
|
out8(cs->cs_reg_data, val);
|
|
ZS_DELAY();
|
|
}
|
|
|
|
/****************************************************************
|
|
* Console support functions (powermac specific!)
|
|
* Note: this code is allowed to know about the layout of
|
|
* the chip registers, and uses that to keep things simple.
|
|
* XXX - I think I like the mvme167 code better. -gwr
|
|
* XXX - Well :-P :-) -wrs
|
|
****************************************************************/
|
|
|
|
#define zscnpollc nullcnpollc
|
|
cons_decl(zs);
|
|
|
|
static int stdin, stdout;
|
|
|
|
/*
|
|
* Console functions.
|
|
*/
|
|
|
|
/*
|
|
* zscnprobe is the routine which gets called as the kernel is trying to
|
|
* figure out where the console should be. Each io driver which might
|
|
* be the console (as defined in mac68k/conf.c) gets probed. The probe
|
|
* fills in the consdev structure. Important parts are the device #,
|
|
* and the console priority. Values are CN_DEAD (don't touch me),
|
|
* CN_NORMAL (I'm here, but elsewhere might be better), CN_INTERNAL
|
|
* (the video, better than CN_NORMAL), and CN_REMOTE (pick me!)
|
|
*
|
|
* As the mac's a bit different, we do extra work here. We mainly check
|
|
* to see if we have serial echo going on. Also chould check for default
|
|
* speeds.
|
|
*/
|
|
|
|
/*
|
|
* Polled input char.
|
|
*/
|
|
int
|
|
zs_getc(void *v)
|
|
{
|
|
volatile struct zschan *zc = v;
|
|
int s, c, rr0;
|
|
|
|
s = splhigh();
|
|
/* Wait for a character to arrive. */
|
|
do {
|
|
rr0 = in8(&zc->zc_csr);
|
|
ZS_DELAY();
|
|
} while ((rr0 & ZSRR0_RX_READY) == 0);
|
|
|
|
c = in8(&zc->zc_data);
|
|
ZS_DELAY();
|
|
splx(s);
|
|
|
|
/*
|
|
* This is used by the kd driver to read scan codes,
|
|
* so don't translate '\r' ==> '\n' here...
|
|
*/
|
|
return (c);
|
|
}
|
|
|
|
/*
|
|
* Polled output char.
|
|
*/
|
|
void
|
|
zs_putc(void *v, int c)
|
|
{
|
|
volatile struct zschan *zc = v;
|
|
int s, rr0;
|
|
long wait = 0;
|
|
|
|
s = splhigh();
|
|
/* Wait for transmitter to become ready. */
|
|
do {
|
|
rr0 = in8(&zc->zc_csr);
|
|
ZS_DELAY();
|
|
} while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000));
|
|
|
|
if ((rr0 & ZSRR0_TX_READY) != 0) {
|
|
out8(&zc->zc_data, c);
|
|
ZS_DELAY();
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* Polled console input putchar.
|
|
*/
|
|
int
|
|
zscngetc(dev_t dev)
|
|
{
|
|
volatile struct zschan *zc = zs_conschan;
|
|
int c;
|
|
|
|
if (zc) {
|
|
c = zs_getc(__UNVOLATILE(zc));
|
|
} else {
|
|
char ch = 0;
|
|
OF_read(stdin, &ch, 1);
|
|
c = ch;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Polled console output putchar.
|
|
*/
|
|
void
|
|
zscnputc(dev_t dev, int c)
|
|
{
|
|
volatile struct zschan *zc = zs_conschan;
|
|
|
|
if (zc) {
|
|
zs_putc(__UNVOLATILE(zc), c);
|
|
} else {
|
|
char ch = c;
|
|
OF_write(stdout, &ch, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle user request to enter kernel debugger.
|
|
*/
|
|
void
|
|
zs_abort(struct zs_chanstate *cs)
|
|
{
|
|
volatile struct zschan *zc = zs_conschan;
|
|
int rr0;
|
|
long wait = 0;
|
|
|
|
if (zs_cons_canabort == 0)
|
|
return;
|
|
|
|
/* Wait for end of break to avoid PROM abort. */
|
|
do {
|
|
rr0 = in8(&zc->zc_csr);
|
|
ZS_DELAY();
|
|
} while ((rr0 & ZSRR0_BREAK) && (wait++ < ZSABORT_DELAY));
|
|
|
|
if (wait > ZSABORT_DELAY) {
|
|
zs_cons_canabort = 0;
|
|
/* If we time out, turn off the abort ability! */
|
|
}
|
|
|
|
#if defined(KGDB)
|
|
kgdb_connect(1);
|
|
#elif defined(DDB)
|
|
Debugger();
|
|
#endif
|
|
}
|
|
|
|
extern int ofccngetc(dev_t);
|
|
extern void ofccnputc(dev_t, int);
|
|
|
|
struct consdev consdev_zs = {
|
|
zscnprobe,
|
|
zscninit,
|
|
zscngetc,
|
|
zscnputc,
|
|
zscnpollc,
|
|
};
|
|
|
|
void
|
|
zscnprobe(struct consdev *cp)
|
|
{
|
|
int chosen, pkg;
|
|
char name[16];
|
|
|
|
if ((chosen = OF_finddevice("/chosen")) == -1)
|
|
return;
|
|
|
|
if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1)
|
|
return;
|
|
if (OF_getprop(chosen, "stdout", &stdout, sizeof(stdout)) == -1)
|
|
return;
|
|
|
|
if ((pkg = OF_instance_to_package(stdin)) == -1)
|
|
return;
|
|
|
|
memset(name, 0, sizeof(name));
|
|
if (OF_getprop(pkg, "device_type", name, sizeof(name)) == -1)
|
|
return;
|
|
|
|
if (strcmp(name, "serial") != 0)
|
|
return;
|
|
|
|
memset(name, 0, sizeof(name));
|
|
if (OF_getprop(pkg, "name", name, sizeof(name)) == -1)
|
|
return;
|
|
|
|
cp->cn_pri = CN_REMOTE;
|
|
}
|
|
|
|
void
|
|
zscninit(struct consdev *cp)
|
|
{
|
|
int escc, escc_ch, obio, zs_offset;
|
|
u_int32_t reg[5];
|
|
char name[16];
|
|
|
|
if ((escc_ch = OF_instance_to_package(stdin)) == -1)
|
|
return;
|
|
|
|
memset(name, 0, sizeof(name));
|
|
if (OF_getprop(escc_ch, "name", name, sizeof(name)) == -1)
|
|
return;
|
|
|
|
zs_conschannel = strcmp(name, "ch-b") == 0;
|
|
|
|
if (OF_getprop(escc_ch, "reg", reg, sizeof(reg)) < 4)
|
|
return;
|
|
zs_offset = reg[0];
|
|
|
|
escc = OF_parent(escc_ch);
|
|
obio = OF_parent(escc);
|
|
|
|
if (OF_getprop(obio, "assigned-addresses", reg, sizeof(reg)) < 12)
|
|
return;
|
|
zs_conschan = (void *)(reg[2] + zs_offset);
|
|
}
|