662ada8f7a
them on boot/swapon.
962 lines
24 KiB
C
962 lines
24 KiB
C
/* $NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* Copyright (c) 1991, 1993, The Regents of the University of California.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles D. Cranor,
|
|
* Washington University, the University of California, Berkeley and
|
|
* its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
|
|
* from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* uvm_pdaemon.c: the page daemon
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $");
|
|
|
|
#include "opt_uvmhist.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
/*
|
|
* UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
|
|
* in a pass thru the inactive list when swap is full. the value should be
|
|
* "small"... if it's too large we'll cycle the active pages thru the inactive
|
|
* queue too quickly to for them to be referenced and avoid being freed.
|
|
*/
|
|
|
|
#define UVMPD_NUMDIRTYREACTS 16
|
|
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
void uvmpd_scan(void);
|
|
void uvmpd_scan_inactive(struct pglist *);
|
|
void uvmpd_tune(void);
|
|
|
|
/*
|
|
* XXX hack to avoid hangs when large processes fork.
|
|
*/
|
|
int uvm_extrapages;
|
|
|
|
/*
|
|
* uvm_wait: wait (sleep) for the page daemon to free some pages
|
|
*
|
|
* => should be called with all locks released
|
|
* => should _not_ be called by the page daemon (to avoid deadlock)
|
|
*/
|
|
|
|
void
|
|
uvm_wait(wmsg)
|
|
const char *wmsg;
|
|
{
|
|
int timo = 0;
|
|
int s = splbio();
|
|
|
|
/*
|
|
* check for page daemon going to sleep (waiting for itself)
|
|
*/
|
|
|
|
if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
|
|
/*
|
|
* now we have a problem: the pagedaemon wants to go to
|
|
* sleep until it frees more memory. but how can it
|
|
* free more memory if it is asleep? that is a deadlock.
|
|
* we have two options:
|
|
* [1] panic now
|
|
* [2] put a timeout on the sleep, thus causing the
|
|
* pagedaemon to only pause (rather than sleep forever)
|
|
*
|
|
* note that option [2] will only help us if we get lucky
|
|
* and some other process on the system breaks the deadlock
|
|
* by exiting or freeing memory (thus allowing the pagedaemon
|
|
* to continue). for now we panic if DEBUG is defined,
|
|
* otherwise we hope for the best with option [2] (better
|
|
* yet, this should never happen in the first place!).
|
|
*/
|
|
|
|
printf("pagedaemon: deadlock detected!\n");
|
|
timo = hz >> 3; /* set timeout */
|
|
#if defined(DEBUG)
|
|
/* DEBUG: panic so we can debug it */
|
|
panic("pagedaemon deadlock");
|
|
#endif
|
|
}
|
|
|
|
simple_lock(&uvm.pagedaemon_lock);
|
|
wakeup(&uvm.pagedaemon); /* wake the daemon! */
|
|
UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
|
|
timo);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* uvmpd_tune: tune paging parameters
|
|
*
|
|
* => called when ever memory is added (or removed?) to the system
|
|
* => caller must call with page queues locked
|
|
*/
|
|
|
|
void
|
|
uvmpd_tune(void)
|
|
{
|
|
UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
|
|
|
|
uvmexp.freemin = uvmexp.npages / 20;
|
|
|
|
/* between 16k and 256k */
|
|
/* XXX: what are these values good for? */
|
|
uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
|
|
uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
|
|
|
|
/* Make sure there's always a user page free. */
|
|
if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
|
|
uvmexp.freemin = uvmexp.reserve_kernel + 1;
|
|
|
|
uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
|
|
if (uvmexp.freetarg <= uvmexp.freemin)
|
|
uvmexp.freetarg = uvmexp.freemin + 1;
|
|
|
|
uvmexp.freetarg += uvm_extrapages;
|
|
uvm_extrapages = 0;
|
|
|
|
/* uvmexp.inactarg: computed in main daemon loop */
|
|
|
|
uvmexp.wiredmax = uvmexp.npages / 3;
|
|
UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
|
|
uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
|
|
}
|
|
|
|
/*
|
|
* uvm_pageout: the main loop for the pagedaemon
|
|
*/
|
|
|
|
void
|
|
uvm_pageout(void *arg)
|
|
{
|
|
int bufcnt, npages = 0;
|
|
int extrapages = 0;
|
|
UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
|
|
|
|
/*
|
|
* ensure correct priority and set paging parameters...
|
|
*/
|
|
|
|
uvm.pagedaemon_proc = curproc;
|
|
uvm_lock_pageq();
|
|
npages = uvmexp.npages;
|
|
uvmpd_tune();
|
|
uvm_unlock_pageq();
|
|
|
|
/*
|
|
* main loop
|
|
*/
|
|
|
|
for (;;) {
|
|
simple_lock(&uvm.pagedaemon_lock);
|
|
|
|
UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
|
|
UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
|
|
&uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
|
|
uvmexp.pdwoke++;
|
|
UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
|
|
|
|
/*
|
|
* now lock page queues and recompute inactive count
|
|
*/
|
|
|
|
uvm_lock_pageq();
|
|
if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
|
|
npages = uvmexp.npages;
|
|
extrapages = uvm_extrapages;
|
|
uvmpd_tune();
|
|
}
|
|
|
|
uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
|
|
if (uvmexp.inactarg <= uvmexp.freetarg) {
|
|
uvmexp.inactarg = uvmexp.freetarg + 1;
|
|
}
|
|
|
|
/*
|
|
* Estimate a hint. Note that bufmem are returned to
|
|
* system only when entire pool page is empty.
|
|
*/
|
|
bufcnt = uvmexp.freetarg - uvmexp.free;
|
|
if (bufcnt < 0)
|
|
bufcnt = 0;
|
|
|
|
UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
|
|
uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
|
|
uvmexp.inactarg);
|
|
|
|
/*
|
|
* scan if needed
|
|
*/
|
|
|
|
if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
|
|
uvmexp.inactive < uvmexp.inactarg) {
|
|
uvmpd_scan();
|
|
}
|
|
|
|
/*
|
|
* if there's any free memory to be had,
|
|
* wake up any waiters.
|
|
*/
|
|
|
|
if (uvmexp.free > uvmexp.reserve_kernel ||
|
|
uvmexp.paging == 0) {
|
|
wakeup(&uvmexp.free);
|
|
}
|
|
|
|
/*
|
|
* scan done. unlock page queues (the only lock we are holding)
|
|
*/
|
|
|
|
uvm_unlock_pageq();
|
|
|
|
buf_drain(bufcnt << PAGE_SHIFT);
|
|
|
|
/*
|
|
* drain pool resources now that we're not holding any locks
|
|
*/
|
|
|
|
pool_drain(0);
|
|
|
|
/*
|
|
* free any cached u-areas we don't need
|
|
*/
|
|
uvm_uarea_drain(TRUE);
|
|
|
|
}
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
|
|
/*
|
|
* uvm_aiodone_daemon: main loop for the aiodone daemon.
|
|
*/
|
|
|
|
void
|
|
uvm_aiodone_daemon(void *arg)
|
|
{
|
|
int s, free;
|
|
struct buf *bp, *nbp;
|
|
UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
|
|
|
|
for (;;) {
|
|
|
|
/*
|
|
* carefully attempt to go to sleep (without losing "wakeups"!).
|
|
* we need splbio because we want to make sure the aio_done list
|
|
* is totally empty before we go to sleep.
|
|
*/
|
|
|
|
s = splbio();
|
|
simple_lock(&uvm.aiodoned_lock);
|
|
if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
|
|
UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
|
|
UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
|
|
&uvm.aiodoned_lock, FALSE, "aiodoned", 0);
|
|
UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
|
|
|
|
/* relock aiodoned_lock, still at splbio */
|
|
simple_lock(&uvm.aiodoned_lock);
|
|
}
|
|
|
|
/*
|
|
* check for done aio structures
|
|
*/
|
|
|
|
bp = TAILQ_FIRST(&uvm.aio_done);
|
|
if (bp) {
|
|
TAILQ_INIT(&uvm.aio_done);
|
|
}
|
|
|
|
simple_unlock(&uvm.aiodoned_lock);
|
|
splx(s);
|
|
|
|
/*
|
|
* process each i/o that's done.
|
|
*/
|
|
|
|
free = uvmexp.free;
|
|
while (bp != NULL) {
|
|
nbp = TAILQ_NEXT(bp, b_freelist);
|
|
(*bp->b_iodone)(bp);
|
|
bp = nbp;
|
|
}
|
|
if (free <= uvmexp.reserve_kernel) {
|
|
s = uvm_lock_fpageq();
|
|
wakeup(&uvm.pagedaemon);
|
|
uvm_unlock_fpageq(s);
|
|
} else {
|
|
simple_lock(&uvm.pagedaemon_lock);
|
|
wakeup(&uvmexp.free);
|
|
simple_unlock(&uvm.pagedaemon_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
|
|
*
|
|
* => called with page queues locked
|
|
* => we work on meeting our free target by converting inactive pages
|
|
* into free pages.
|
|
* => we handle the building of swap-backed clusters
|
|
* => we return TRUE if we are exiting because we met our target
|
|
*/
|
|
|
|
void
|
|
uvmpd_scan_inactive(pglst)
|
|
struct pglist *pglst;
|
|
{
|
|
int error;
|
|
struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
|
|
struct uvm_object *uobj;
|
|
struct vm_anon *anon;
|
|
struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
|
|
struct simplelock *slock;
|
|
int swnpages, swcpages;
|
|
int swslot;
|
|
int dirtyreacts, t, result;
|
|
boolean_t anonunder, fileunder, execunder;
|
|
boolean_t anonover, fileover, execover;
|
|
boolean_t anonreact, filereact, execreact;
|
|
UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* swslot is non-zero if we are building a swap cluster. we want
|
|
* to stay in the loop while we have a page to scan or we have
|
|
* a swap-cluster to build.
|
|
*/
|
|
|
|
swslot = 0;
|
|
swnpages = swcpages = 0;
|
|
dirtyreacts = 0;
|
|
|
|
/*
|
|
* decide which types of pages we want to reactivate instead of freeing
|
|
* to keep usage within the minimum and maximum usage limits.
|
|
*/
|
|
|
|
t = uvmexp.active + uvmexp.inactive + uvmexp.free;
|
|
anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
|
|
fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
|
|
execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
|
|
anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
|
|
fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
|
|
execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
|
|
anonreact = anonunder || (!anonover && (fileover || execover));
|
|
filereact = fileunder || (!fileover && (anonover || execover));
|
|
execreact = execunder || (!execover && (anonover || fileover));
|
|
if (filereact && execreact && (anonreact || uvm_swapisfull())) {
|
|
anonreact = filereact = execreact = FALSE;
|
|
}
|
|
for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
|
|
uobj = NULL;
|
|
anon = NULL;
|
|
if (p) {
|
|
|
|
/*
|
|
* see if we've met the free target.
|
|
*/
|
|
|
|
if (uvmexp.free + uvmexp.paging >=
|
|
uvmexp.freetarg << 2 ||
|
|
dirtyreacts == UVMPD_NUMDIRTYREACTS) {
|
|
UVMHIST_LOG(pdhist," met free target: "
|
|
"exit loop", 0, 0, 0, 0);
|
|
|
|
if (swslot == 0) {
|
|
/* exit now if no swap-i/o pending */
|
|
break;
|
|
}
|
|
|
|
/* set p to null to signal final swap i/o */
|
|
p = NULL;
|
|
nextpg = NULL;
|
|
}
|
|
}
|
|
if (p) { /* if (we have a new page to consider) */
|
|
|
|
/*
|
|
* we are below target and have a new page to consider.
|
|
*/
|
|
|
|
uvmexp.pdscans++;
|
|
nextpg = TAILQ_NEXT(p, pageq);
|
|
|
|
/*
|
|
* move referenced pages back to active queue and
|
|
* skip to next page.
|
|
*/
|
|
|
|
if (pmap_clear_reference(p)) {
|
|
uvm_pageactivate(p);
|
|
uvmexp.pdreact++;
|
|
continue;
|
|
}
|
|
anon = p->uanon;
|
|
uobj = p->uobject;
|
|
|
|
/*
|
|
* enforce the minimum thresholds on different
|
|
* types of memory usage. if reusing the current
|
|
* page would reduce that type of usage below its
|
|
* minimum, reactivate the page instead and move
|
|
* on to the next page.
|
|
*/
|
|
|
|
if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
|
|
uvm_pageactivate(p);
|
|
uvmexp.pdreexec++;
|
|
continue;
|
|
}
|
|
if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
|
|
!UVM_OBJ_IS_VTEXT(uobj) && filereact) {
|
|
uvm_pageactivate(p);
|
|
uvmexp.pdrefile++;
|
|
continue;
|
|
}
|
|
if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
|
|
uvm_pageactivate(p);
|
|
uvmexp.pdreanon++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* first we attempt to lock the object that this page
|
|
* belongs to. if our attempt fails we skip on to
|
|
* the next page (no harm done). it is important to
|
|
* "try" locking the object as we are locking in the
|
|
* wrong order (pageq -> object) and we don't want to
|
|
* deadlock.
|
|
*
|
|
* the only time we expect to see an ownerless page
|
|
* (i.e. a page with no uobject and !PQ_ANON) is if an
|
|
* anon has loaned a page from a uvm_object and the
|
|
* uvm_object has dropped the ownership. in that
|
|
* case, the anon can "take over" the loaned page
|
|
* and make it its own.
|
|
*/
|
|
|
|
/* does the page belong to an object? */
|
|
if (uobj != NULL) {
|
|
slock = &uobj->vmobjlock;
|
|
if (!simple_lock_try(slock)) {
|
|
continue;
|
|
}
|
|
if (p->flags & PG_BUSY) {
|
|
simple_unlock(slock);
|
|
uvmexp.pdbusy++;
|
|
continue;
|
|
}
|
|
uvmexp.pdobscan++;
|
|
} else {
|
|
KASSERT(anon != NULL);
|
|
slock = &anon->an_lock;
|
|
if (!simple_lock_try(slock)) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* set PQ_ANON if it isn't set already.
|
|
*/
|
|
|
|
if ((p->pqflags & PQ_ANON) == 0) {
|
|
KASSERT(p->loan_count > 0);
|
|
p->loan_count--;
|
|
p->pqflags |= PQ_ANON;
|
|
/* anon now owns it */
|
|
}
|
|
if (p->flags & PG_BUSY) {
|
|
simple_unlock(slock);
|
|
uvmexp.pdbusy++;
|
|
continue;
|
|
}
|
|
uvmexp.pdanscan++;
|
|
}
|
|
|
|
|
|
/*
|
|
* we now have the object and the page queues locked.
|
|
* if the page is not swap-backed, call the object's
|
|
* pager to flush and free the page.
|
|
*/
|
|
|
|
if ((p->pqflags & PQ_SWAPBACKED) == 0) {
|
|
uvm_unlock_pageq();
|
|
(void) (uobj->pgops->pgo_put)(uobj, p->offset,
|
|
p->offset + PAGE_SIZE,
|
|
PGO_CLEANIT|PGO_FREE);
|
|
uvm_lock_pageq();
|
|
if (nextpg &&
|
|
(nextpg->pqflags & PQ_INACTIVE) == 0) {
|
|
nextpg = TAILQ_FIRST(pglst);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* the page is swap-backed. remove all the permissions
|
|
* from the page so we can sync the modified info
|
|
* without any race conditions. if the page is clean
|
|
* we can free it now and continue.
|
|
*/
|
|
|
|
pmap_page_protect(p, VM_PROT_NONE);
|
|
if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
|
|
p->flags &= ~(PG_CLEAN);
|
|
}
|
|
if (p->flags & PG_CLEAN) {
|
|
int slot;
|
|
int pageidx;
|
|
|
|
pageidx = p->offset >> PAGE_SHIFT;
|
|
uvm_pagefree(p);
|
|
uvmexp.pdfreed++;
|
|
|
|
/*
|
|
* for anons, we need to remove the page
|
|
* from the anon ourselves. for aobjs,
|
|
* pagefree did that for us.
|
|
*/
|
|
|
|
if (anon) {
|
|
KASSERT(anon->an_swslot != 0);
|
|
anon->an_page = NULL;
|
|
slot = anon->an_swslot;
|
|
} else {
|
|
slot = uao_find_swslot(uobj, pageidx);
|
|
}
|
|
simple_unlock(slock);
|
|
|
|
if (slot > 0) {
|
|
/* this page is now only in swap. */
|
|
simple_lock(&uvm.swap_data_lock);
|
|
KASSERT(uvmexp.swpgonly <
|
|
uvmexp.swpginuse);
|
|
uvmexp.swpgonly++;
|
|
simple_unlock(&uvm.swap_data_lock);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* this page is dirty, skip it if we'll have met our
|
|
* free target when all the current pageouts complete.
|
|
*/
|
|
|
|
if (uvmexp.free + uvmexp.paging >
|
|
uvmexp.freetarg << 2) {
|
|
simple_unlock(slock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* free any swap space allocated to the page since
|
|
* we'll have to write it again with its new data.
|
|
*/
|
|
|
|
if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
|
|
uvm_swap_free(anon->an_swslot, 1);
|
|
anon->an_swslot = 0;
|
|
} else if (p->pqflags & PQ_AOBJ) {
|
|
uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* if all pages in swap are only in swap,
|
|
* the swap space is full and we can't page out
|
|
* any more swap-backed pages. reactivate this page
|
|
* so that we eventually cycle all pages through
|
|
* the inactive queue.
|
|
*/
|
|
|
|
if (uvm_swapisfull()) {
|
|
dirtyreacts++;
|
|
uvm_pageactivate(p);
|
|
simple_unlock(slock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* start new swap pageout cluster (if necessary).
|
|
*/
|
|
|
|
if (swslot == 0) {
|
|
/* Even with strange MAXPHYS, the shift
|
|
implicitly rounds down to a page. */
|
|
swnpages = MAXPHYS >> PAGE_SHIFT;
|
|
swslot = uvm_swap_alloc(&swnpages, TRUE);
|
|
if (swslot == 0) {
|
|
simple_unlock(slock);
|
|
continue;
|
|
}
|
|
swcpages = 0;
|
|
}
|
|
|
|
/*
|
|
* at this point, we're definitely going reuse this
|
|
* page. mark the page busy and delayed-free.
|
|
* we should remove the page from the page queues
|
|
* so we don't ever look at it again.
|
|
* adjust counters and such.
|
|
*/
|
|
|
|
p->flags |= PG_BUSY;
|
|
UVM_PAGE_OWN(p, "scan_inactive");
|
|
|
|
p->flags |= PG_PAGEOUT;
|
|
uvmexp.paging++;
|
|
uvm_pagedequeue(p);
|
|
|
|
uvmexp.pgswapout++;
|
|
|
|
/*
|
|
* add the new page to the cluster.
|
|
*/
|
|
|
|
if (anon) {
|
|
anon->an_swslot = swslot + swcpages;
|
|
simple_unlock(slock);
|
|
} else {
|
|
result = uao_set_swslot(uobj,
|
|
p->offset >> PAGE_SHIFT, swslot + swcpages);
|
|
if (result == -1) {
|
|
p->flags &= ~(PG_BUSY|PG_PAGEOUT);
|
|
UVM_PAGE_OWN(p, NULL);
|
|
uvmexp.paging--;
|
|
uvm_pageactivate(p);
|
|
simple_unlock(slock);
|
|
continue;
|
|
}
|
|
simple_unlock(slock);
|
|
}
|
|
swpps[swcpages] = p;
|
|
swcpages++;
|
|
|
|
/*
|
|
* if the cluster isn't full, look for more pages
|
|
* before starting the i/o.
|
|
*/
|
|
|
|
if (swcpages < swnpages) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if this is the final pageout we could have a few
|
|
* unused swap blocks. if so, free them now.
|
|
*/
|
|
|
|
if (swcpages < swnpages) {
|
|
uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
|
|
}
|
|
|
|
/*
|
|
* now start the pageout.
|
|
*/
|
|
|
|
uvm_unlock_pageq();
|
|
uvmexp.pdpageouts++;
|
|
error = uvm_swap_put(swslot, swpps, swcpages, 0);
|
|
KASSERT(error == 0);
|
|
uvm_lock_pageq();
|
|
|
|
/*
|
|
* zero swslot to indicate that we are
|
|
* no longer building a swap-backed cluster.
|
|
*/
|
|
|
|
swslot = 0;
|
|
|
|
/*
|
|
* the pageout is in progress. bump counters and set up
|
|
* for the next loop.
|
|
*/
|
|
|
|
uvmexp.pdpending++;
|
|
if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
|
|
nextpg = TAILQ_FIRST(pglst);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvmpd_scan: scan the page queues and attempt to meet our targets.
|
|
*
|
|
* => called with pageq's locked
|
|
*/
|
|
|
|
void
|
|
uvmpd_scan(void)
|
|
{
|
|
int inactive_shortage, swap_shortage, pages_freed;
|
|
struct vm_page *p, *nextpg;
|
|
struct uvm_object *uobj;
|
|
struct vm_anon *anon;
|
|
struct simplelock *slock;
|
|
UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
|
|
|
|
uvmexp.pdrevs++;
|
|
uobj = NULL;
|
|
anon = NULL;
|
|
|
|
#ifndef __SWAP_BROKEN
|
|
|
|
/*
|
|
* swap out some processes if we are below our free target.
|
|
* we need to unlock the page queues for this.
|
|
*/
|
|
|
|
if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
|
|
uvmexp.pdswout++;
|
|
UVMHIST_LOG(pdhist," free %d < target %d: swapout",
|
|
uvmexp.free, uvmexp.freetarg, 0, 0);
|
|
uvm_unlock_pageq();
|
|
uvm_swapout_threads();
|
|
uvm_lock_pageq();
|
|
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* now we want to work on meeting our targets. first we work on our
|
|
* free target by converting inactive pages into free pages. then
|
|
* we work on meeting our inactive target by converting active pages
|
|
* to inactive ones.
|
|
*/
|
|
|
|
UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
|
|
|
|
pages_freed = uvmexp.pdfreed;
|
|
uvmpd_scan_inactive(&uvm.page_inactive);
|
|
pages_freed = uvmexp.pdfreed - pages_freed;
|
|
|
|
/*
|
|
* we have done the scan to get free pages. now we work on meeting
|
|
* our inactive target.
|
|
*/
|
|
|
|
inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
|
|
|
|
/*
|
|
* detect if we're not going to be able to page anything out
|
|
* until we free some swap resources from active pages.
|
|
*/
|
|
|
|
swap_shortage = 0;
|
|
if (uvmexp.free < uvmexp.freetarg &&
|
|
uvmexp.swpginuse >= uvmexp.swpgavail &&
|
|
!uvm_swapisfull() &&
|
|
pages_freed == 0) {
|
|
swap_shortage = uvmexp.freetarg - uvmexp.free;
|
|
}
|
|
|
|
UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
|
|
inactive_shortage, swap_shortage,0,0);
|
|
for (p = TAILQ_FIRST(&uvm.page_active);
|
|
p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
|
|
p = nextpg) {
|
|
nextpg = TAILQ_NEXT(p, pageq);
|
|
if (p->flags & PG_BUSY) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* lock the page's owner.
|
|
*/
|
|
|
|
if (p->uobject != NULL) {
|
|
uobj = p->uobject;
|
|
slock = &uobj->vmobjlock;
|
|
if (!simple_lock_try(slock)) {
|
|
continue;
|
|
}
|
|
} else {
|
|
anon = p->uanon;
|
|
KASSERT(anon != NULL);
|
|
slock = &anon->an_lock;
|
|
if (!simple_lock_try(slock)) {
|
|
continue;
|
|
}
|
|
|
|
/* take over the page? */
|
|
if ((p->pqflags & PQ_ANON) == 0) {
|
|
KASSERT(p->loan_count > 0);
|
|
p->loan_count--;
|
|
p->pqflags |= PQ_ANON;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* skip this page if it's busy.
|
|
*/
|
|
|
|
if ((p->flags & PG_BUSY) != 0) {
|
|
simple_unlock(slock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* if there's a shortage of swap, free any swap allocated
|
|
* to this page so that other pages can be paged out.
|
|
*/
|
|
|
|
if (swap_shortage > 0) {
|
|
if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
|
|
uvm_swap_free(anon->an_swslot, 1);
|
|
anon->an_swslot = 0;
|
|
p->flags &= ~PG_CLEAN;
|
|
swap_shortage--;
|
|
} else if (p->pqflags & PQ_AOBJ) {
|
|
int slot = uao_set_swslot(uobj,
|
|
p->offset >> PAGE_SHIFT, 0);
|
|
if (slot) {
|
|
uvm_swap_free(slot, 1);
|
|
p->flags &= ~PG_CLEAN;
|
|
swap_shortage--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if there's a shortage of inactive pages, deactivate.
|
|
*/
|
|
|
|
if (inactive_shortage > 0) {
|
|
/* no need to check wire_count as pg is "active" */
|
|
uvm_pagedeactivate(p);
|
|
uvmexp.pddeact++;
|
|
inactive_shortage--;
|
|
}
|
|
|
|
/*
|
|
* we're done with this page.
|
|
*/
|
|
|
|
simple_unlock(slock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_reclaimable: decide whether to wait for pagedaemon.
|
|
*
|
|
* => return TRUE if it seems to be worth to do uvm_wait.
|
|
*
|
|
* XXX should be tunable.
|
|
* XXX should consider pools, etc?
|
|
*/
|
|
|
|
boolean_t
|
|
uvm_reclaimable(void)
|
|
{
|
|
int filepages;
|
|
|
|
/*
|
|
* if swap is not full, no problem.
|
|
*/
|
|
|
|
if (!uvm_swapisfull()) {
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* file-backed pages can be reclaimed even when swap is full.
|
|
* if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
|
|
*
|
|
* XXX assume the worst case, ie. all wired pages are file-backed.
|
|
*
|
|
* XXX should consider about other reclaimable memory.
|
|
* XXX ie. pools, traditional buffer cache.
|
|
*/
|
|
|
|
filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
|
|
if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
|
|
5 * 1024 * 1024 >> PAGE_SHIFT)) {
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* kill the process, fail allocation, etc..
|
|
*/
|
|
|
|
return FALSE;
|
|
}
|