1074 lines
25 KiB
C
1074 lines
25 KiB
C
/*
|
|
* Copyright (c) University of British Columbia, 1984
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Laboratory for Computation Vision and the Computer Science Department
|
|
* of the University of British Columbia.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)pk_subr.c 7.16 (Berkeley) 6/6/91
|
|
* $Id: pk_subr.c,v 1.2 1993/05/20 04:12:21 cgd Exp $
|
|
*/
|
|
|
|
#include "param.h"
|
|
#include "systm.h"
|
|
#include "mbuf.h"
|
|
#include "socket.h"
|
|
#include "protosw.h"
|
|
#include "socketvar.h"
|
|
#include "errno.h"
|
|
#include "time.h"
|
|
#include "kernel.h"
|
|
|
|
#include "../net/if.h"
|
|
|
|
#include "x25.h"
|
|
#include "pk.h"
|
|
#include "pk_var.h"
|
|
#include "x25err.h"
|
|
|
|
int pk_sendspace = 1024 * 2 + 8;
|
|
int pk_recvspace = 1024 * 2 + 8;
|
|
|
|
struct pklcd_q pklcd_q = {&pklcd_q, &pklcd_q};
|
|
|
|
/*
|
|
* Attach X.25 protocol to socket, allocate logical channel descripter
|
|
* and buffer space, and enter LISTEN state if we are to accept
|
|
* IN-COMMING CALL packets.
|
|
*
|
|
*/
|
|
|
|
struct pklcd *
|
|
pk_attach (so)
|
|
struct socket *so;
|
|
{
|
|
register struct pklcd *lcp;
|
|
register int error = ENOBUFS;
|
|
int pk_output();
|
|
|
|
MALLOC(lcp, struct pklcd *, sizeof (*lcp), M_PCB, M_NOWAIT);
|
|
if (lcp) {
|
|
bzero ((caddr_t)lcp, sizeof (*lcp));
|
|
insque (&lcp -> lcd_q, &pklcd_q);
|
|
lcp -> lcd_state = READY;
|
|
lcp -> lcd_send = pk_output;
|
|
if (so) {
|
|
error = soreserve (so, pk_sendspace, pk_recvspace);
|
|
lcp -> lcd_so = so;
|
|
if (so -> so_options & SO_ACCEPTCONN)
|
|
lcp -> lcd_state = LISTEN;
|
|
} else
|
|
sbreserve (&lcp -> lcd_sb, pk_sendspace);
|
|
}
|
|
if (so) {
|
|
so -> so_pcb = (caddr_t) lcp;
|
|
so -> so_error = error;
|
|
}
|
|
return (lcp);
|
|
}
|
|
|
|
/*
|
|
* Disconnect X.25 protocol from socket.
|
|
*/
|
|
|
|
pk_disconnect (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct socket *so = lcp -> lcd_so;
|
|
register struct pklcd *l, *p;
|
|
|
|
switch (lcp -> lcd_state) {
|
|
case LISTEN:
|
|
for (p = 0, l = pk_listenhead; l && l != lcp; p = l, l = l -> lcd_listen);
|
|
if (p == 0) {
|
|
if (l != 0)
|
|
pk_listenhead = l -> lcd_listen;
|
|
}
|
|
else
|
|
if (l != 0)
|
|
p -> lcd_listen = l -> lcd_listen;
|
|
pk_close (lcp);
|
|
break;
|
|
|
|
case READY:
|
|
pk_acct (lcp);
|
|
pk_close (lcp);
|
|
break;
|
|
|
|
case SENT_CLEAR:
|
|
case RECEIVED_CLEAR:
|
|
break;
|
|
|
|
default:
|
|
pk_acct (lcp);
|
|
if (so) {
|
|
soisdisconnecting (so);
|
|
sbflush (&so -> so_rcv);
|
|
}
|
|
pk_clear (lcp, 241, 0); /* Normal Disconnect */
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close an X.25 Logical Channel. Discard all space held by the
|
|
* connection and internal descriptors. Wake up any sleepers.
|
|
*/
|
|
|
|
pk_close (lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
register struct socket *so = lcp -> lcd_so;
|
|
|
|
pk_freelcd (lcp);
|
|
|
|
if (so == NULL)
|
|
return;
|
|
|
|
so -> so_pcb = 0;
|
|
soisdisconnected (so);
|
|
/* sofree (so); /* gak!!! you can't do that here */
|
|
}
|
|
|
|
/*
|
|
* Create a template to be used to send X.25 packets on a logical
|
|
* channel. It allocates an mbuf and fills in a skeletal packet
|
|
* depending on its type. This packet is passed to pk_output where
|
|
* the remainer of the packet is filled in.
|
|
*/
|
|
|
|
struct mbuf *
|
|
pk_template (lcn, type)
|
|
int lcn, type;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct x25_packet *xp;
|
|
|
|
MGETHDR (m, M_DONTWAIT, MT_HEADER);
|
|
if (m == 0)
|
|
panic ("pk_template");
|
|
m -> m_act = 0;
|
|
|
|
/*
|
|
* Efficiency hack: leave a four byte gap at the beginning
|
|
* of the packet level header with the hope that this will
|
|
* be enough room for the link level to insert its header.
|
|
*/
|
|
m -> m_data += max_linkhdr;
|
|
m -> m_pkthdr.len = m -> m_len = PKHEADERLN;
|
|
|
|
xp = mtod (m, struct x25_packet *);
|
|
*(long *)xp = 0; /* ugly, but fast */
|
|
/* xp -> q_bit = 0;*/
|
|
xp -> fmt_identifier = 1;
|
|
/* xp -> lc_group_number = 0;*/
|
|
|
|
SET_LCN(xp, lcn);
|
|
xp -> packet_type = type;
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* This routine restarts all the virtual circuits. Actually,
|
|
* the virtual circuits are not "restarted" as such. Instead,
|
|
* any active switched circuit is simply returned to READY
|
|
* state.
|
|
*/
|
|
|
|
pk_restart (pkp, restart_cause)
|
|
register struct pkcb *pkp;
|
|
int restart_cause;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct pklcd *lcp;
|
|
register int i;
|
|
|
|
/* Restart all logical channels. */
|
|
if (pkp -> pk_chan == 0)
|
|
return;
|
|
for (i = 1; i <= pkp -> pk_maxlcn; ++i)
|
|
if ((lcp = pkp -> pk_chan[i]) != NULL) {
|
|
if (lcp -> lcd_so) {
|
|
lcp -> lcd_so -> so_error = ENETRESET;
|
|
pk_close (lcp);
|
|
} else {
|
|
pk_flush (lcp);
|
|
lcp -> lcd_state = READY;
|
|
if (lcp -> lcd_upper)
|
|
lcp -> lcd_upper (lcp, 0);
|
|
}
|
|
}
|
|
|
|
if (restart_cause < 0)
|
|
return;
|
|
|
|
pkp -> pk_state = DTE_SENT_RESTART;
|
|
lcp = pkp -> pk_chan[0];
|
|
m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESTART);
|
|
m -> m_pkthdr.len = m -> m_len += 2;
|
|
mtod (m, struct x25_packet *) -> packet_data = 0; /* DTE only */
|
|
mtod (m, octet *)[4] = restart_cause;
|
|
pk_output (lcp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This procedure frees up the Logical Channel Descripter.
|
|
*/
|
|
|
|
pk_freelcd (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
if (lcp == NULL)
|
|
return;
|
|
|
|
if (lcp -> lcd_lcn > 0)
|
|
lcp -> lcd_pkp -> pk_chan[lcp -> lcd_lcn] = NULL;
|
|
|
|
pk_flush (lcp);
|
|
remque (&lcp -> lcd_q);
|
|
free ((caddr_t)lcp, M_PCB);
|
|
}
|
|
|
|
|
|
/*
|
|
* Bind a address and protocol value to a socket. The important
|
|
* part is the protocol value - the first four characters of the
|
|
* Call User Data field.
|
|
*/
|
|
|
|
pk_bind (lcp, nam)
|
|
struct pklcd *lcp;
|
|
struct mbuf *nam;
|
|
{
|
|
register struct pkcb *pkp;
|
|
register struct pklcd *pp;
|
|
register struct sockaddr_x25 *sa;
|
|
|
|
if (nam == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
if (lcp -> lcd_ceaddr) /* XXX */
|
|
return (EADDRINUSE);
|
|
if (pk_checksockaddr (nam))
|
|
return (EINVAL);
|
|
sa = mtod (nam, struct sockaddr_x25 *);
|
|
|
|
/*
|
|
* If the user wishes to accept calls only from a particular
|
|
* net (net != 0), make sure the net is known
|
|
*/
|
|
|
|
if (sa -> x25_net)
|
|
for (pkp = pkcbhead; ; pkp = pkp -> pk_next) {
|
|
if (pkp == 0)
|
|
return (ENETUNREACH);
|
|
if (pkp -> pk_xcp -> xc_addr.x25_net == sa -> x25_net)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* For ISO's sake permit default listeners, but only one such . . .
|
|
*/
|
|
for (pp = pk_listenhead; pp; pp = pp -> lcd_listen) {
|
|
register struct sockaddr_x25 *sa2 = pp -> lcd_ceaddr;
|
|
if ((sa2 -> x25_udlen == sa -> x25_udlen) &&
|
|
(sa2 -> x25_udlen == 0 ||
|
|
(bcmp (sa2 -> x25_udata, sa -> x25_udata,
|
|
min (sa2 -> x25_udlen, sa -> x25_udlen)) == 0)))
|
|
return (EADDRINUSE);
|
|
}
|
|
lcp -> lcd_laddr = *sa;
|
|
lcp -> lcd_ceaddr = &lcp -> lcd_laddr;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Include a bound control block in the list of listeners.
|
|
*/
|
|
pk_listen (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct pklcd **pp;
|
|
|
|
if (lcp -> lcd_ceaddr == 0)
|
|
return (EDESTADDRREQ);
|
|
|
|
lcp -> lcd_state = LISTEN;
|
|
/*
|
|
* Add default listener at end, any others at start.
|
|
*/
|
|
if (lcp -> lcd_ceaddr -> x25_udlen == 0) {
|
|
for (pp = &pk_listenhead; *pp; )
|
|
pp = &((*pp) -> lcd_listen);
|
|
*pp = lcp;
|
|
} else {
|
|
lcp -> lcd_listen = pk_listenhead;
|
|
pk_listenhead = lcp;
|
|
}
|
|
return (0);
|
|
}
|
|
/*
|
|
* Include a listening control block for the benefit of other protocols.
|
|
*/
|
|
pk_protolisten (spi, spilen, callee)
|
|
int (*callee) ();
|
|
{
|
|
register struct pklcd *lcp = pk_attach ((struct socket *)0);
|
|
register struct mbuf *nam;
|
|
register struct sockaddr_x25 *sa;
|
|
int error = ENOBUFS;
|
|
|
|
if (lcp) {
|
|
if (nam = m_getclr (MT_SONAME, M_DONTWAIT)) {
|
|
sa = mtod (nam, struct sockaddr_x25 *);
|
|
sa -> x25_family = AF_CCITT;
|
|
sa -> x25_len = nam -> m_len = sizeof (*sa);
|
|
sa -> x25_udlen = spilen;
|
|
sa -> x25_udata[0] = spi;
|
|
lcp -> lcd_upper = callee;
|
|
lcp -> lcd_flags = X25_MBS_HOLD;
|
|
if ((error = pk_bind (lcp, nam)) == 0)
|
|
error = pk_listen (lcp);
|
|
(void) m_free (nam);
|
|
}
|
|
if (error)
|
|
pk_freelcd (lcp);
|
|
}
|
|
return error; /* Hopefully Zero !*/
|
|
}
|
|
|
|
/*
|
|
* Associate a logical channel descriptor with a network.
|
|
* Fill in the default network specific parameters and then
|
|
* set any parameters explicitly specified by the user or
|
|
* by the remote DTE.
|
|
*/
|
|
|
|
pk_assoc (pkp, lcp, sa)
|
|
register struct pkcb *pkp;
|
|
register struct pklcd *lcp;
|
|
register struct sockaddr_x25 *sa;
|
|
{
|
|
|
|
lcp -> lcd_pkp = pkp;
|
|
lcp -> lcd_packetsize = pkp -> pk_xcp -> xc_psize;
|
|
lcp -> lcd_windowsize = pkp -> pk_xcp -> xc_pwsize;
|
|
lcp -> lcd_rsn = MODULUS - 1;
|
|
pkp -> pk_chan[lcp -> lcd_lcn] = lcp;
|
|
|
|
if (sa -> x25_opts.op_psize)
|
|
lcp -> lcd_packetsize = sa -> x25_opts.op_psize;
|
|
else
|
|
sa -> x25_opts.op_psize = lcp -> lcd_packetsize;
|
|
if (sa -> x25_opts.op_wsize)
|
|
lcp -> lcd_windowsize = sa -> x25_opts.op_wsize;
|
|
else
|
|
sa -> x25_opts.op_wsize = lcp -> lcd_windowsize;
|
|
sa -> x25_net = pkp -> pk_xcp -> xc_addr.x25_net;
|
|
lcp -> lcd_flags |= sa -> x25_opts.op_flags;
|
|
lcp -> lcd_stime = time.tv_sec;
|
|
}
|
|
|
|
pk_connect (lcp, sa)
|
|
register struct pklcd *lcp;
|
|
register struct sockaddr_x25 *sa;
|
|
{
|
|
register struct pkcb *pkp;
|
|
|
|
if (sa -> x25_addr[0] == '\0')
|
|
return (EDESTADDRREQ);
|
|
if (lcp -> lcd_pkp == 0)
|
|
for (pkp = pkcbhead; ; pkp = pkp -> pk_next) {
|
|
if (pkp == 0)
|
|
return (ENETUNREACH);
|
|
/*
|
|
* use first net configured (last in list
|
|
* headed by pkcbhead) if net is zero
|
|
*
|
|
* This is clearly bogus for many llc2's sharing
|
|
* the same xcp; we will replace this with a
|
|
* routing lookup.
|
|
*/
|
|
if (sa -> x25_net == 0 && pkp -> pk_next == 0)
|
|
break;
|
|
if (sa -> x25_net == pkp -> pk_xcp -> xc_addr.x25_net)
|
|
break;
|
|
}
|
|
|
|
if (pkp -> pk_state != DTE_READY)
|
|
return (ENETDOWN);
|
|
if ((lcp -> lcd_lcn = pk_getlcn (pkp)) == 0)
|
|
return (EMFILE);
|
|
lcp -> lcd_faddr = *sa;
|
|
lcp -> lcd_ceaddr = & lcp -> lcd_faddr;
|
|
pk_assoc (pkp, lcp, lcp -> lcd_ceaddr);
|
|
if (lcp -> lcd_so)
|
|
soisconnecting (lcp -> lcd_so);
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
|
|
pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
|
|
return (*pkp -> pk_ia -> ia_start) (lcp);
|
|
}
|
|
|
|
struct bcdinfo {
|
|
octet *cp;
|
|
unsigned posn;
|
|
};
|
|
/*
|
|
* Build the rest of the CALL REQUEST packet. Fill in calling
|
|
* address, facilities fields and the user data field.
|
|
*/
|
|
|
|
pk_callrequest (lcp, sa, xcp)
|
|
struct pklcd *lcp;
|
|
register struct sockaddr_x25 *sa;
|
|
register struct x25config *xcp;
|
|
{
|
|
register struct x25_calladdr *a;
|
|
register struct mbuf *m = lcp -> lcd_template;
|
|
register struct x25_packet *xp = mtod (m, struct x25_packet *);
|
|
struct bcdinfo b;
|
|
|
|
if (lcp -> lcd_flags & X25_DBIT)
|
|
xp -> d_bit = 1;
|
|
a = (struct x25_calladdr *) &xp -> packet_data;
|
|
b.cp = (octet *) a -> address_field;
|
|
b.posn = 0;
|
|
a -> called_addrlen = to_bcd (&b, sa, xcp);
|
|
a -> calling_addrlen = to_bcd (&b, &xcp -> xc_addr, xcp);
|
|
if (b.posn & 0x01)
|
|
*b.cp++ &= 0xf0;
|
|
m -> m_pkthdr.len = m -> m_len += b.cp - (octet *) a;
|
|
|
|
if (lcp -> lcd_facilities) {
|
|
m -> m_pkthdr.len +=
|
|
(m -> m_next = lcp -> lcd_facilities) -> m_pkthdr.len;
|
|
lcp -> lcd_facilities = 0;
|
|
} else
|
|
pk_build_facilities (m, sa, (int)xcp -> xc_type);
|
|
|
|
m_copyback (m, m -> m_pkthdr.len, sa -> x25_udlen, sa -> x25_udata);
|
|
}
|
|
|
|
pk_build_facilities (m, sa, type)
|
|
register struct mbuf *m;
|
|
struct sockaddr_x25 *sa;
|
|
{
|
|
register octet *cp;
|
|
register octet *fcp;
|
|
register int revcharge;
|
|
|
|
cp = mtod (m, octet *) + m -> m_len;
|
|
fcp = cp + 1;
|
|
revcharge = sa -> x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
|
|
/*
|
|
* This is specific to Datapac X.25(1976) DTEs. International
|
|
* calls must have the "hi priority" bit on.
|
|
*/
|
|
if (type == X25_1976 && sa -> x25_opts.op_psize == X25_PS128)
|
|
revcharge |= 02;
|
|
if (revcharge) {
|
|
*fcp++ = FACILITIES_REVERSE_CHARGE;
|
|
*fcp++ = revcharge;
|
|
}
|
|
switch (type) {
|
|
case X25_1980:
|
|
case X25_1984:
|
|
*fcp++ = FACILITIES_PACKETSIZE;
|
|
*fcp++ = sa -> x25_opts.op_psize;
|
|
*fcp++ = sa -> x25_opts.op_psize;
|
|
|
|
*fcp++ = FACILITIES_WINDOWSIZE;
|
|
*fcp++ = sa -> x25_opts.op_wsize;
|
|
*fcp++ = sa -> x25_opts.op_wsize;
|
|
}
|
|
*cp = fcp - cp - 1;
|
|
m -> m_pkthdr.len = (m -> m_len += *cp + 1);
|
|
}
|
|
|
|
to_bcd (b, sa, xcp)
|
|
register struct bcdinfo *b;
|
|
struct sockaddr_x25 *sa;
|
|
register struct x25config *xcp;
|
|
{
|
|
register char *x = sa -> x25_addr;
|
|
unsigned start = b -> posn;
|
|
/*
|
|
* The nodnic and prepnd0 stuff looks tedious,
|
|
* but it does allow full X.121 addresses to be used,
|
|
* which is handy for routing info (& OSI type 37 addresses).
|
|
*/
|
|
if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
|
|
char dnicname[sizeof(long) * NBBY/3 + 2];
|
|
register char *p = dnicname;
|
|
|
|
sprintf (p, "%d", xcp -> xc_addr.x25_net & 0x7fff);
|
|
for (; *p; p++) /* *p == 0 means dnic matched */
|
|
if ((*p ^ *x++) & 0x0f)
|
|
break;
|
|
if (*p || xcp -> xc_nodnic == 0)
|
|
x = sa -> x25_addr;
|
|
if (*p && xcp -> xc_prepnd0) {
|
|
if ((b -> posn)++ & 0x01)
|
|
*(b -> cp)++;
|
|
else
|
|
*(b -> cp) = 0;
|
|
}
|
|
}
|
|
while (*x)
|
|
if ((b -> posn)++ & 0x01)
|
|
*(b -> cp)++ |= *x++ & 0x0F;
|
|
else
|
|
*(b -> cp) = *x++ << 4;
|
|
return ((b -> posn) - start);
|
|
}
|
|
|
|
/*
|
|
* This routine gets the first available logical channel number. The
|
|
* search is from the highest number to lowest number (DTE).
|
|
*/
|
|
|
|
pk_getlcn (pkp)
|
|
register struct pkcb *pkp;
|
|
{
|
|
register int i;
|
|
|
|
if (pkp -> pk_chan == 0)
|
|
return (0);
|
|
for (i = pkp -> pk_maxlcn; i > 0; --i)
|
|
if (pkp -> pk_chan[i] == NULL)
|
|
break;
|
|
return (i);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure sends a CLEAR request packet. The lc state is
|
|
* set to "SENT_CLEAR".
|
|
*/
|
|
|
|
pk_clear (lcp, diagnostic, abortive)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct mbuf *m = pk_template (lcp -> lcd_lcn, X25_CLEAR);
|
|
|
|
m -> m_len += 2;
|
|
mtod (m, struct x25_packet *) -> packet_data = 0;
|
|
mtod (m, octet *)[4] = diagnostic;
|
|
if (lcp -> lcd_facilities) {
|
|
m -> m_next = lcp -> lcd_facilities;
|
|
m -> m_pkthdr.len += m -> m_next -> m_len;
|
|
lcp -> lcd_facilities = 0;
|
|
}
|
|
if (abortive)
|
|
lcp -> lcd_template = m;
|
|
else {
|
|
struct socket *so = lcp -> lcd_so;
|
|
struct sockbuf *sb = so ? & so -> so_snd : & lcp -> lcd_sb;
|
|
sbappendrecord (sb, m);
|
|
}
|
|
pk_output (lcp);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure generates RNR's or RR's to inhibit or enable
|
|
* inward data flow, if the current state changes (blocked ==> open or
|
|
* vice versa), or if forced to generate one. One forces RNR's to ack data.
|
|
*/
|
|
pk_flowcontrol (lcp, inhibit, forced)
|
|
register struct pklcd *lcp;
|
|
{
|
|
inhibit = (inhibit != 0);
|
|
if (lcp == 0 || lcp -> lcd_state != DATA_TRANSFER ||
|
|
(forced == 0 && lcp -> lcd_rxrnr_condition == inhibit))
|
|
return;
|
|
lcp -> lcd_rxrnr_condition = inhibit;
|
|
lcp -> lcd_template =
|
|
pk_template (lcp -> lcd_lcn, inhibit ? X25_RNR : X25_RR);
|
|
pk_output (lcp);
|
|
}
|
|
|
|
/*
|
|
* This procedure sends a RESET request packet. It re-intializes
|
|
* virtual circuit.
|
|
*/
|
|
|
|
static
|
|
pk_reset (lcp, diagnostic)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct socket *so = lcp -> lcd_so;
|
|
|
|
if (lcp -> lcd_state != DATA_TRANSFER)
|
|
return;
|
|
|
|
if (so)
|
|
so -> so_error = ECONNRESET;
|
|
lcp -> lcd_reset_condition = TRUE;
|
|
|
|
/* Reset all the control variables for the channel. */
|
|
pk_flush (lcp);
|
|
lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
|
|
lcp -> lcd_intrconf_pending = FALSE;
|
|
lcp -> lcd_rsn = MODULUS - 1;
|
|
lcp -> lcd_ssn = 0;
|
|
lcp -> lcd_output_window = lcp -> lcd_input_window =
|
|
lcp -> lcd_last_transmitted_pr = 0;
|
|
m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET);
|
|
m -> m_pkthdr.len = m -> m_len += 2;
|
|
mtod (m, struct x25_packet *) -> packet_data = 0;
|
|
mtod (m, octet *)[4] = diagnostic;
|
|
pk_output (lcp);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure frees all data queued for output or delivery on a
|
|
* virtual circuit.
|
|
*/
|
|
|
|
pk_flush (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct socket *so;
|
|
|
|
if (lcp -> lcd_template)
|
|
m_freem (lcp -> lcd_template);
|
|
|
|
if (lcp -> lcd_cps) {
|
|
m_freem (lcp -> lcd_cps);
|
|
lcp -> lcd_cps = 0;
|
|
}
|
|
if (lcp -> lcd_facilities) {
|
|
m_freem (lcp -> lcd_facilities);
|
|
lcp -> lcd_facilities = 0;
|
|
}
|
|
if (so = lcp -> lcd_so) {
|
|
sbflush (&so -> so_rcv);
|
|
sbflush (&so -> so_snd);
|
|
} else
|
|
sbflush (&lcp -> lcd_sb);
|
|
}
|
|
|
|
/*
|
|
* This procedure handles all local protocol procedure errors.
|
|
*/
|
|
|
|
pk_procerror (error, lcp, errstr, diagnostic)
|
|
register struct pklcd *lcp;
|
|
char *errstr;
|
|
{
|
|
|
|
pk_message (lcp -> lcd_lcn, lcp -> lcd_pkp -> pk_xcp, errstr);
|
|
|
|
switch (error) {
|
|
case CLEAR:
|
|
if (lcp -> lcd_so) {
|
|
lcp -> lcd_so -> so_error = ECONNABORTED;
|
|
soisdisconnecting (lcp -> lcd_so);
|
|
}
|
|
pk_clear (lcp, diagnostic, 1);
|
|
break;
|
|
|
|
case RESET:
|
|
pk_reset (lcp, diagnostic);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This procedure is called during the DATA TRANSFER state to check
|
|
* and process the P(R) values received in the DATA, RR OR RNR
|
|
* packets.
|
|
*/
|
|
|
|
pk_ack (lcp, pr)
|
|
struct pklcd *lcp;
|
|
unsigned pr;
|
|
{
|
|
register struct socket *so = lcp -> lcd_so;
|
|
|
|
if (lcp -> lcd_output_window == pr)
|
|
return (PACKET_OK);
|
|
if (lcp -> lcd_output_window < lcp -> lcd_ssn) {
|
|
if (pr < lcp -> lcd_output_window || pr > lcp -> lcd_ssn) {
|
|
pk_procerror (RESET, lcp,
|
|
"p(r) flow control error", 2);
|
|
return (ERROR_PACKET);
|
|
}
|
|
}
|
|
else {
|
|
if (pr < lcp -> lcd_output_window && pr > lcp -> lcd_ssn) {
|
|
pk_procerror (RESET, lcp,
|
|
"p(r) flow control error #2", 2);
|
|
return (ERROR_PACKET);
|
|
}
|
|
}
|
|
|
|
lcp -> lcd_output_window = pr; /* Rotate window. */
|
|
if (lcp -> lcd_window_condition == TRUE)
|
|
lcp -> lcd_window_condition = FALSE;
|
|
|
|
if (so && ((so -> so_snd.sb_flags & SB_WAIT) || so -> so_snd.sb_sel))
|
|
sowwakeup (so);
|
|
|
|
return (PACKET_OK);
|
|
}
|
|
|
|
/*
|
|
* This procedure decodes the X.25 level 3 packet returning a
|
|
* code to be used in switchs or arrays.
|
|
*/
|
|
|
|
pk_decode (xp)
|
|
register struct x25_packet *xp;
|
|
{
|
|
register int type;
|
|
|
|
if (xp -> fmt_identifier != 1)
|
|
return (INVALID_PACKET);
|
|
#ifdef ancient_history
|
|
/*
|
|
* Make sure that the logical channel group number is 0.
|
|
* This restriction may be removed at some later date.
|
|
*/
|
|
if (xp -> lc_group_number != 0)
|
|
return (INVALID_PACKET);
|
|
#endif
|
|
/*
|
|
* Test for data packet first.
|
|
*/
|
|
if (!(xp -> packet_type & DATA_PACKET_DESIGNATOR))
|
|
return (DATA);
|
|
|
|
/*
|
|
* Test if flow control packet (RR or RNR).
|
|
*/
|
|
if (!(xp -> packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
|
|
switch (xp -> packet_type & 0x1f) {
|
|
case X25_RR:
|
|
return (RR);
|
|
case X25_RNR:
|
|
return (RNR);
|
|
case X25_REJECT:
|
|
return (REJECT);
|
|
}
|
|
|
|
/*
|
|
* Determine the rest of the packet types.
|
|
*/
|
|
switch (xp -> packet_type) {
|
|
case X25_CALL:
|
|
type = CALL;
|
|
break;
|
|
|
|
case X25_CALL_ACCEPTED:
|
|
type = CALL_ACCEPTED;
|
|
break;
|
|
|
|
case X25_CLEAR:
|
|
type = CLEAR;
|
|
break;
|
|
|
|
case X25_CLEAR_CONFIRM:
|
|
type = CLEAR_CONF;
|
|
break;
|
|
|
|
case X25_INTERRUPT:
|
|
type = INTERRUPT;
|
|
break;
|
|
|
|
case X25_INTERRUPT_CONFIRM:
|
|
type = INTERRUPT_CONF;
|
|
break;
|
|
|
|
case X25_RESET:
|
|
type = RESET;
|
|
break;
|
|
|
|
case X25_RESET_CONFIRM:
|
|
type = RESET_CONF;
|
|
break;
|
|
|
|
case X25_RESTART:
|
|
type = RESTART;
|
|
break;
|
|
|
|
case X25_RESTART_CONFIRM:
|
|
type = RESTART_CONF;
|
|
break;
|
|
|
|
case X25_DIAGNOSTIC:
|
|
type = DIAG_TYPE;
|
|
break;
|
|
|
|
default:
|
|
type = INVALID_PACKET;
|
|
}
|
|
return (type);
|
|
}
|
|
|
|
/*
|
|
* A restart packet has been received. Print out the reason
|
|
* for the restart.
|
|
*/
|
|
|
|
pk_restartcause (pkp, xp)
|
|
struct pkcb *pkp;
|
|
register struct x25_packet *xp;
|
|
{
|
|
register struct x25config *xcp = pkp -> pk_xcp;
|
|
register int lcn = LCN(xp);
|
|
|
|
switch (xp -> packet_data) {
|
|
case X25_RESTART_LOCAL_PROCEDURE_ERROR:
|
|
pk_message (lcn, xcp, "restart: local procedure error");
|
|
break;
|
|
|
|
case X25_RESTART_NETWORK_CONGESTION:
|
|
pk_message (lcn, xcp, "restart: network congestion");
|
|
break;
|
|
|
|
case X25_RESTART_NETWORK_OPERATIONAL:
|
|
pk_message (lcn, xcp, "restart: network operational");
|
|
break;
|
|
|
|
default:
|
|
pk_message (lcn, xcp, "restart: unknown cause");
|
|
}
|
|
}
|
|
|
|
#define MAXRESETCAUSE 7
|
|
|
|
int Reset_cause[] = {
|
|
EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
|
|
};
|
|
|
|
/*
|
|
* A reset packet has arrived. Return the cause to the user.
|
|
*/
|
|
|
|
pk_resetcause (pkp, xp)
|
|
struct pkcb *pkp;
|
|
register struct x25_packet *xp;
|
|
{
|
|
register struct pklcd *lcp =
|
|
pkp -> pk_chan[LCN(xp)];
|
|
register int code = xp -> packet_data;
|
|
|
|
if (code > MAXRESETCAUSE)
|
|
code = 7; /* EXRNCG */
|
|
|
|
pk_message(LCN(xp), lcp -> lcd_pkp, "reset code 0x%x, diagnostic 0x%x",
|
|
xp -> packet_data, 4[(u_char *)xp]);
|
|
|
|
if (lcp -> lcd_so)
|
|
lcp -> lcd_so -> so_error = Reset_cause[code];
|
|
}
|
|
|
|
#define MAXCLEARCAUSE 25
|
|
|
|
int Clear_cause[] = {
|
|
EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
|
|
0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
|
|
0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
|
|
};
|
|
|
|
/*
|
|
* A clear packet has arrived. Return the cause to the user.
|
|
*/
|
|
|
|
pk_clearcause (pkp, xp)
|
|
struct pkcb *pkp;
|
|
register struct x25_packet *xp;
|
|
{
|
|
register struct pklcd *lcp =
|
|
pkp -> pk_chan[LCN(xp)];
|
|
register int code = xp -> packet_data;
|
|
|
|
if (code > MAXCLEARCAUSE)
|
|
code = 5; /* EXRNCG */
|
|
if (lcp -> lcd_so)
|
|
lcp -> lcd_so -> so_error = Clear_cause[code];
|
|
}
|
|
|
|
char *
|
|
format_ntn (xcp)
|
|
register struct x25config *xcp;
|
|
{
|
|
|
|
return (xcp -> xc_addr.x25_addr);
|
|
}
|
|
|
|
/* VARARGS1 */
|
|
pk_message (lcn, xcp, fmt, a1, a2, a3, a4, a5, a6)
|
|
struct x25config *xcp;
|
|
char *fmt;
|
|
{
|
|
|
|
if (lcn)
|
|
if (pkcbhead -> pk_next)
|
|
printf ("X.25(%s): lcn %d: ", format_ntn (xcp), lcn);
|
|
else
|
|
printf ("X.25: lcn %d: ", lcn);
|
|
else
|
|
if (pkcbhead -> pk_next)
|
|
printf ("X.25(%s): ", format_ntn (xcp));
|
|
else
|
|
printf ("X.25: ");
|
|
|
|
printf (fmt, a1, a2, a3, a4, a5, a6);
|
|
printf ("\n");
|
|
}
|
|
|
|
pk_fragment (lcp, m0, qbit, mbit, wait)
|
|
struct mbuf *m0;
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct mbuf *m = m0;
|
|
register struct x25_packet *xp;
|
|
register struct sockbuf *sb;
|
|
struct mbuf *head = 0, *next, **mp = &head, *m_split ();
|
|
int totlen, psize = 1 << (lcp -> lcd_packetsize);
|
|
|
|
if (m == 0)
|
|
return 0;
|
|
if (m -> m_flags & M_PKTHDR == 0)
|
|
panic ("pk_fragment");
|
|
totlen = m -> m_pkthdr.len;
|
|
m -> m_act = 0;
|
|
sb = lcp -> lcd_so ? &lcp -> lcd_so -> so_snd : & lcp -> lcd_sb;
|
|
do {
|
|
if (totlen > psize) {
|
|
if ((next = m_split (m, psize, wait)) == 0)
|
|
goto abort;
|
|
totlen -= psize;
|
|
} else
|
|
next = 0;
|
|
M_PREPEND(m, PKHEADERLN, wait);
|
|
if (m == 0)
|
|
goto abort;
|
|
*mp = m;
|
|
mp = & m -> m_act;
|
|
*mp = 0;
|
|
xp = mtod (m, struct x25_packet *);
|
|
0[(char *)xp] = 0;
|
|
if (qbit)
|
|
xp -> q_bit = 1;
|
|
if (lcp -> lcd_flags & X25_DBIT)
|
|
xp -> d_bit = 1;
|
|
xp -> fmt_identifier = 1;
|
|
xp -> packet_type = X25_DATA;
|
|
SET_LCN(xp, lcp -> lcd_lcn);
|
|
if (next || (mbit && (totlen == psize ||
|
|
(lcp -> lcd_flags & X25_DBIT))))
|
|
MBIT(xp) = 1;
|
|
} while (m = next);
|
|
for (m = head; m; m = next) {
|
|
next = m -> m_act;
|
|
m -> m_act = 0;
|
|
sbappendrecord (sb, m);
|
|
}
|
|
return 0;
|
|
abort:
|
|
if (wait)
|
|
panic ("pk_fragment null mbuf after wait");
|
|
if (next)
|
|
m_freem (next);
|
|
for (m = head; m; m = next) {
|
|
next = m -> m_act;
|
|
m_freem (m);
|
|
}
|
|
return ENOBUFS;
|
|
}
|
|
|
|
struct mbuf *
|
|
m_split (m0, len0, wait)
|
|
register struct mbuf *m0;
|
|
int len0;
|
|
{
|
|
register struct mbuf *m, *n;
|
|
unsigned len = len0, remain;
|
|
|
|
for (m = m0; m && len > m -> m_len; m = m -> m_next)
|
|
len -= m -> m_len;
|
|
if (m == 0)
|
|
return (0);
|
|
remain = m -> m_len - len;
|
|
if (m0 -> m_flags & M_PKTHDR) {
|
|
MGETHDR(n, wait, m0 -> m_type);
|
|
if (n == 0)
|
|
return (0);
|
|
n -> m_pkthdr.rcvif = m0 -> m_pkthdr.rcvif;
|
|
n -> m_pkthdr.len = m0 -> m_pkthdr.len - len0;
|
|
m0 -> m_pkthdr.len = len0;
|
|
if (m -> m_flags & M_EXT)
|
|
goto extpacket;
|
|
if (remain > MHLEN) {
|
|
/* m can't be the lead packet */
|
|
MH_ALIGN(n, 0);
|
|
n -> m_next = m_split (m, len, wait);
|
|
if (n -> m_next == 0) {
|
|
(void) m_free (n);
|
|
return (0);
|
|
} else
|
|
return (n);
|
|
} else
|
|
MH_ALIGN(n, remain);
|
|
} else if (remain == 0) {
|
|
n = m -> m_next;
|
|
m -> m_next = 0;
|
|
return (n);
|
|
} else {
|
|
MGET(n, wait, m -> m_type);
|
|
if (n == 0)
|
|
return (0);
|
|
M_ALIGN(n, remain);
|
|
}
|
|
extpacket:
|
|
if (m -> m_flags & M_EXT) {
|
|
n -> m_flags |= M_EXT;
|
|
n -> m_ext = m -> m_ext;
|
|
mclrefcnt[mtocl (m -> m_ext.ext_buf)]++;
|
|
n -> m_data = m -> m_data + len;
|
|
} else {
|
|
bcopy (mtod (m, caddr_t) + len, mtod (n, caddr_t), remain);
|
|
}
|
|
n -> m_len = remain;
|
|
m -> m_len = len;
|
|
n -> m_next = m -> m_next;
|
|
m -> m_next = 0;
|
|
return (n);
|
|
}
|