93d494f9a5
Patch supplied by INOUE Yoshinari <pf5y-inue@asahi-net.or.jp>, kern/8654.
833 lines
20 KiB
C
833 lines
20 KiB
C
/* $NetBSD: clock.c,v 1.63 2000/02/02 15:26:27 minoura Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1993, 1994 Charles M. Hannum.
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz and Don Ahn.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)clock.c 7.2 (Berkeley) 5/12/91
|
|
*/
|
|
/*
|
|
* Mach Operating System
|
|
* Copyright (c) 1991,1990,1989 Carnegie Mellon University
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and its
|
|
* documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
|
|
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie Mellon
|
|
* the rights to redistribute these changes.
|
|
*/
|
|
/*
|
|
Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and
|
|
its documentation for any purpose and without fee is hereby
|
|
granted, provided that the above copyright notice appears in all
|
|
copies and that both the copyright notice and this permission notice
|
|
appear in supporting documentation, and that the name of Intel
|
|
not be used in advertising or publicity pertaining to distribution
|
|
of the software without specific, written prior permission.
|
|
|
|
INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
|
|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
|
|
IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
|
|
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
|
LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
|
|
NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
|
|
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/* #define CLOCKDEBUG */
|
|
/* #define CLOCK_PARANOIA */
|
|
|
|
/*
|
|
* Primitive clock interrupt routines.
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/pio.h>
|
|
#include <machine/cpufunc.h>
|
|
|
|
#include <dev/isa/isareg.h>
|
|
#include <dev/isa/isavar.h>
|
|
#include <dev/ic/mc146818reg.h>
|
|
#include <i386/isa/nvram.h>
|
|
#include <i386/isa/timerreg.h>
|
|
#include <dev/clock_subr.h>
|
|
|
|
#include "pcppi.h"
|
|
#if (NPCPPI > 0)
|
|
#include <dev/isa/pcppivar.h>
|
|
|
|
#ifdef CLOCKDEBUG
|
|
int clock_debug = 0;
|
|
#define DPRINTF(arg) if (clock_debug) printf arg
|
|
#else
|
|
#define DPRINTF(arg)
|
|
#endif
|
|
|
|
int sysbeepmatch __P((struct device *, struct cfdata *, void *));
|
|
void sysbeepattach __P((struct device *, struct device *, void *));
|
|
|
|
struct cfattach sysbeep_ca = {
|
|
sizeof(struct device), sysbeepmatch, sysbeepattach
|
|
};
|
|
|
|
static int ppi_attached;
|
|
static pcppi_tag_t ppicookie;
|
|
#endif /* PCPPI */
|
|
|
|
void spinwait __P((int));
|
|
int clockintr __P((void *));
|
|
int gettick __P((void));
|
|
void sysbeep __P((int, int));
|
|
void rtcinit __P((void));
|
|
int rtcget __P((mc_todregs *));
|
|
void rtcput __P((mc_todregs *));
|
|
int bcdtobin __P((int));
|
|
int bintobcd __P((int));
|
|
|
|
static void check_clock_bug __P((void));
|
|
static inline int gettick_broken_latch __P((void));
|
|
|
|
|
|
__inline u_int mc146818_read __P((void *, u_int));
|
|
__inline void mc146818_write __P((void *, u_int, u_int));
|
|
|
|
__inline u_int
|
|
mc146818_read(sc, reg)
|
|
void *sc; /* XXX use it? */
|
|
u_int reg;
|
|
{
|
|
|
|
outb(IO_RTC, reg);
|
|
return (inb(IO_RTC+1));
|
|
}
|
|
|
|
__inline void
|
|
mc146818_write(sc, reg, datum)
|
|
void *sc; /* XXX use it? */
|
|
u_int reg, datum;
|
|
{
|
|
|
|
outb(IO_RTC, reg);
|
|
outb(IO_RTC+1, datum);
|
|
}
|
|
|
|
static u_long rtclock_tval;
|
|
static int clock_broken_latch = 0;
|
|
|
|
#ifdef CLOCK_PARANOIA
|
|
static int ticks[6];
|
|
#endif
|
|
|
|
/*
|
|
* i8254 latch check routine:
|
|
* National Geode (formerly Cyrix MediaGX) has a sirious bug in
|
|
* its built-in i8254-compatible clock module.
|
|
* Set the variable 'clock_broken_latch' to indicate it.
|
|
* XXX check only cpu_id
|
|
*/
|
|
static void
|
|
check_clock_bug()
|
|
{
|
|
extern int cpu_id;
|
|
|
|
switch (cpu_id) {
|
|
case 0x440: /* Cyrix MediaGX */
|
|
case 0x540: /* GXm */
|
|
clock_broken_latch = 1;
|
|
break;
|
|
default:
|
|
clock_broken_latch = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
gettick_broken_latch()
|
|
{
|
|
u_long ef;
|
|
int v1, v2, v3;
|
|
int w1, w2, w3;
|
|
|
|
/* Don't want someone screwing with the counter
|
|
while we're here. */
|
|
ef = read_eflags();
|
|
disable_intr();
|
|
|
|
v1 = inb(TIMER_CNTR0);
|
|
v1 |= inb(TIMER_CNTR0) << 8;
|
|
v2 = inb(TIMER_CNTR0);
|
|
v2 |= inb(TIMER_CNTR0) << 8;
|
|
v3 = inb(TIMER_CNTR0);
|
|
v3 |= inb(TIMER_CNTR0) << 8;
|
|
|
|
write_eflags(ef);
|
|
|
|
#ifdef CLOCK_PARANOIA
|
|
if (clock_debug) {
|
|
ticks[0] = ticks[3];
|
|
ticks[1] = ticks[4];
|
|
ticks[2] = ticks[5];
|
|
ticks[3] = v1;
|
|
ticks[4] = v2;
|
|
ticks[5] = v3;
|
|
}
|
|
#endif
|
|
|
|
if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
|
|
return (v2);
|
|
|
|
#define _swap_val(a, b) do { \
|
|
int c = a; \
|
|
a = b; \
|
|
b = c; \
|
|
} while (0)
|
|
|
|
/*
|
|
* sort v1 v2 v3
|
|
*/
|
|
if (v1 < v2)
|
|
_swap_val(v1, v2);
|
|
if (v2 < v3)
|
|
_swap_val(v2, v3);
|
|
if (v1 < v2)
|
|
_swap_val(v1, v2);
|
|
|
|
/*
|
|
* compute the middle value
|
|
*/
|
|
|
|
if (v1 - v3 < 0x200)
|
|
return (v2);
|
|
|
|
w1 = v2 - v3;
|
|
w2 = v3 - v1 + rtclock_tval;
|
|
w3 = v1 - v2;
|
|
if (w1 >= w2) {
|
|
if (w1 >= w3)
|
|
return (v1);
|
|
} else {
|
|
if (w2 >= w3)
|
|
return (v2);
|
|
}
|
|
return (v3);
|
|
}
|
|
|
|
/* minimal initialization, enough for delay() */
|
|
void
|
|
initrtclock()
|
|
{
|
|
u_long tval;
|
|
|
|
/*
|
|
* Compute timer_count, the count-down count the timer will be
|
|
* set to. Also, correctly round
|
|
* this by carrying an extra bit through the division.
|
|
*/
|
|
tval = (TIMER_FREQ * 2) / (u_long) hz;
|
|
tval = (tval / 2) + (tval & 0x1);
|
|
|
|
/* initialize 8253 clock */
|
|
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
|
|
|
|
/* Correct rounding will buy us a better precision in timekeeping */
|
|
outb(IO_TIMER1, tval % 256);
|
|
outb(IO_TIMER1, tval / 256);
|
|
|
|
rtclock_tval = tval;
|
|
|
|
check_clock_bug();
|
|
}
|
|
|
|
/*
|
|
* microtime() makes use of the following globals. Note that isa_timer_tick
|
|
* may be redundant to the `tick' variable, but is kept here for stability.
|
|
* isa_timer_count is the countdown count for the timer. timer_msb_table[]
|
|
* and timer_lsb_table[] are used to compute the microsecond increment
|
|
* for time.tv_usec in the follow fashion:
|
|
*
|
|
* time.tv_usec += isa_timer_msb_table[cnt_msb] - isa_timer_lsb_table[cnt_lsb];
|
|
*/
|
|
#define ISA_TIMER_MSB_TABLE_SIZE 128
|
|
|
|
u_long isa_timer_tick; /* the number of microseconds in a tick */
|
|
u_short isa_timer_count; /* the countdown count for the timer */
|
|
u_short isa_timer_msb_table[ISA_TIMER_MSB_TABLE_SIZE]; /* timer->usec MSB */
|
|
u_short isa_timer_lsb_table[256]; /* timer->usec conversion for LSB */
|
|
|
|
void
|
|
startrtclock()
|
|
{
|
|
int s;
|
|
u_long tval;
|
|
u_long t, msb, lsb, quotient, remainder;
|
|
|
|
if (!rtclock_tval)
|
|
initrtclock();
|
|
|
|
/*
|
|
* Compute timer_tick from hz. We truncate this value (i.e.
|
|
* round down) to minimize the possibility of a backward clock
|
|
* step if hz is not a nice number.
|
|
*/
|
|
isa_timer_tick = 1000000 / (u_long) hz;
|
|
|
|
/*
|
|
* We can't stand any number with an MSB larger than
|
|
* TIMER_MSB_TABLE_SIZE will accomodate.
|
|
*/
|
|
tval = rtclock_tval;
|
|
if ((tval / 256) >= ISA_TIMER_MSB_TABLE_SIZE
|
|
|| TIMER_FREQ > (8*1024*1024)) {
|
|
panic("startrtclock: TIMER_FREQ/HZ unsupportable");
|
|
}
|
|
isa_timer_count = (u_short) tval;
|
|
|
|
/*
|
|
* Now compute the translation tables from timer ticks to
|
|
* microseconds. We go to some length to ensure all values
|
|
* are rounded-to-nearest (i.e. +-0.5 of the exact values)
|
|
* as this will ensure the computation
|
|
*
|
|
* isa_timer_msb_table[msb] - isa_timer_lsb_table[lsb]
|
|
*
|
|
* will produce a result which is +-1 usec away from the
|
|
* correctly rounded conversion (in fact, it'll be exact about
|
|
* 75% of the time, 1 too large 12.5% of the time, and 1 too
|
|
* small 12.5% of the time).
|
|
*/
|
|
for (s = 0; s < 256; s++) {
|
|
/* LSB table is easy, just divide and round */
|
|
t = ((u_long) s * 1000000 * 2) / TIMER_FREQ;
|
|
isa_timer_lsb_table[s] = (u_short) ((t / 2) + (t & 0x1));
|
|
|
|
/* MSB table is zero unless the MSB is <= isa_timer_count */
|
|
if (s < ISA_TIMER_MSB_TABLE_SIZE) {
|
|
msb = ((u_long) s) * 256;
|
|
if (msb > tval) {
|
|
isa_timer_msb_table[s] = 0;
|
|
} else {
|
|
/*
|
|
* Harder computation here, since multiplying
|
|
* the value by 1000000 can overflow a long.
|
|
* To avoid 64-bit computations we divide
|
|
* the high order byte and the low order
|
|
* byte of the numerator separately, adding
|
|
* the remainder of the first computation
|
|
* into the second. The constraint on
|
|
* TIMER_FREQ above should prevent overflow
|
|
* here.
|
|
*/
|
|
msb = tval - msb;
|
|
lsb = msb % 256;
|
|
msb = (msb / 256) * 1000000;
|
|
quotient = msb / TIMER_FREQ;
|
|
remainder = msb % TIMER_FREQ;
|
|
t = ((remainder * 256 * 2)
|
|
+ (lsb * 1000000 * 2)) / TIMER_FREQ;
|
|
isa_timer_msb_table[s] = (u_short)((t / 2)
|
|
+ (t & 0x1) + (quotient * 256));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check diagnostic status */
|
|
if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
|
|
char bits[128];
|
|
printf("RTC BIOS diagnostic error %s\n",
|
|
bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
|
|
}
|
|
}
|
|
|
|
int
|
|
clockintr(arg)
|
|
void *arg;
|
|
{
|
|
struct clockframe *frame = arg; /* not strictly necessary */
|
|
|
|
hardclock(frame);
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
gettick()
|
|
{
|
|
u_long ef;
|
|
u_char lo, hi;
|
|
|
|
if (clock_broken_latch)
|
|
return (gettick_broken_latch());
|
|
|
|
/* Don't want someone screwing with the counter while we're here. */
|
|
ef = read_eflags();
|
|
disable_intr();
|
|
/* Select counter 0 and latch it. */
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
|
|
lo = inb(TIMER_CNTR0);
|
|
hi = inb(TIMER_CNTR0);
|
|
write_eflags(ef);
|
|
return ((hi << 8) | lo);
|
|
}
|
|
|
|
/*
|
|
* Wait approximately `n' microseconds.
|
|
* Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
|
|
* Note: timer had better have been programmed before this is first used!
|
|
* (Note that we use `rate generator' mode, which counts at 1:1; `square
|
|
* wave' mode counts at 2:1).
|
|
* Don't rely on this being particularly accurate.
|
|
*/
|
|
void
|
|
delay(n)
|
|
int n;
|
|
{
|
|
int tick, otick;
|
|
static const int delaytab[26] = {
|
|
0, 2, 3, 4, 5, 6, 7, 9, 10, 11,
|
|
12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
|
|
24, 25, 27, 28, 29, 30,
|
|
};
|
|
|
|
/* allow DELAY() to be used before startrtclock() */
|
|
if (!rtclock_tval)
|
|
initrtclock();
|
|
|
|
/*
|
|
* Read the counter first, so that the rest of the setup overhead is
|
|
* counted.
|
|
*/
|
|
otick = gettick();
|
|
|
|
if (n <= 25)
|
|
n = delaytab[n];
|
|
else {
|
|
#ifdef __GNUC__
|
|
/*
|
|
* Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler
|
|
* code so we can take advantage of the intermediate 64-bit
|
|
* quantity to prevent loss of significance.
|
|
*/
|
|
register int m;
|
|
__asm __volatile("mul %3"
|
|
: "=a" (n), "=d" (m)
|
|
: "0" (n), "r" (TIMER_FREQ));
|
|
__asm __volatile("div %3"
|
|
: "=a" (n)
|
|
: "0" (n), "d" (m), "r" (1000000)
|
|
: "%edx");
|
|
#else
|
|
/*
|
|
* Calculate ((n * TIMER_FREQ) / 1e6) without using floating
|
|
* point and without any avoidable overflows.
|
|
*/
|
|
int sec = n / 1000000,
|
|
usec = n % 1000000;
|
|
n = sec * TIMER_FREQ +
|
|
usec * (TIMER_FREQ / 1000000) +
|
|
usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
|
|
usec * (TIMER_FREQ % 1000) / 1000000;
|
|
#endif
|
|
}
|
|
|
|
while (n > 0) {
|
|
#ifdef CLOCK_PARANOIA
|
|
int delta;
|
|
tick = gettick();
|
|
if (tick > otick)
|
|
delta = rtclock_tval - (tick - otick);
|
|
else
|
|
delta = otick - tick;
|
|
if (delta < 0 || delta >= rtclock_tval / 2) {
|
|
DPRINTF(("delay: ignore ticks %.4x-%.4x",
|
|
otick, tick));
|
|
if (clock_broken_latch) {
|
|
DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
|
|
ticks[0], ticks[1], ticks[2],
|
|
ticks[3], ticks[4], ticks[5]));
|
|
} else {
|
|
DPRINTF(("\n"));
|
|
}
|
|
} else
|
|
n -= delta;
|
|
#else
|
|
tick = gettick();
|
|
if (tick > otick)
|
|
n -= rtclock_tval - (tick - otick);
|
|
else
|
|
n -= otick - tick;
|
|
#endif
|
|
otick = tick;
|
|
}
|
|
}
|
|
|
|
#if (NPCPPI > 0)
|
|
int
|
|
sysbeepmatch(parent, match, aux)
|
|
struct device *parent;
|
|
struct cfdata *match;
|
|
void *aux;
|
|
{
|
|
return (!ppi_attached);
|
|
}
|
|
|
|
void
|
|
sysbeepattach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
printf("\n");
|
|
|
|
ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
|
|
ppi_attached = 1;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sysbeep(pitch, period)
|
|
int pitch, period;
|
|
{
|
|
#if (NPCPPI > 0)
|
|
if (ppi_attached)
|
|
pcppi_bell(ppicookie, pitch, period, 0);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
cpu_initclocks()
|
|
{
|
|
|
|
/*
|
|
* XXX If you're doing strange things with multiple clocks, you might
|
|
* want to keep track of clock handlers.
|
|
*/
|
|
(void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK, clockintr, 0);
|
|
}
|
|
|
|
void
|
|
rtcinit()
|
|
{
|
|
static int first_rtcopen_ever = 1;
|
|
|
|
if (!first_rtcopen_ever)
|
|
return;
|
|
first_rtcopen_ever = 0;
|
|
|
|
mc146818_write(NULL, MC_REGA, /* XXX softc */
|
|
MC_BASE_32_KHz | MC_RATE_1024_Hz);
|
|
mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
|
|
}
|
|
|
|
int
|
|
rtcget(regs)
|
|
mc_todregs *regs;
|
|
{
|
|
|
|
rtcinit();
|
|
if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
|
|
return (-1);
|
|
MC146818_GETTOD(NULL, regs); /* XXX softc */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
rtcput(regs)
|
|
mc_todregs *regs;
|
|
{
|
|
|
|
rtcinit();
|
|
MC146818_PUTTOD(NULL, regs); /* XXX softc */
|
|
}
|
|
|
|
int
|
|
bcdtobin(n)
|
|
int n;
|
|
{
|
|
|
|
return (((n >> 4) & 0x0f) * 10 + (n & 0x0f));
|
|
}
|
|
|
|
int
|
|
bintobcd(n)
|
|
int n;
|
|
{
|
|
|
|
return ((u_char)(((n / 10) << 4) & 0xf0) | ((n % 10) & 0x0f));
|
|
}
|
|
|
|
static int timeset;
|
|
|
|
/*
|
|
* check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
|
|
* to be called at splclock()
|
|
*/
|
|
static int cmoscheck __P((void));
|
|
static int
|
|
cmoscheck()
|
|
{
|
|
int i;
|
|
unsigned short cksum = 0;
|
|
|
|
for (i = 0x10; i <= 0x2d; i++)
|
|
cksum += mc146818_read(NULL, i); /* XXX softc */
|
|
|
|
return (cksum == (mc146818_read(NULL, 0x2e) << 8)
|
|
+ mc146818_read(NULL, 0x2f));
|
|
}
|
|
|
|
/*
|
|
* patchable to control century byte handling:
|
|
* 1: always update
|
|
* -1: never touch
|
|
* 0: try to figure out itself
|
|
*/
|
|
int rtc_update_century = 0;
|
|
|
|
/*
|
|
* Expand a two-digit year as read from the clock chip
|
|
* into full width.
|
|
* Being here, deal with the CMOS century byte.
|
|
*/
|
|
static int clock_expandyear __P((int));
|
|
static int
|
|
clock_expandyear(clockyear)
|
|
int clockyear;
|
|
{
|
|
int s, clockcentury, cmoscentury;
|
|
|
|
clockcentury = (clockyear < 70) ? 20 : 19;
|
|
clockyear += 100 * clockcentury;
|
|
|
|
if (rtc_update_century < 0)
|
|
return (clockyear);
|
|
|
|
s = splclock();
|
|
if (cmoscheck())
|
|
cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
|
|
else
|
|
cmoscentury = 0;
|
|
splx(s);
|
|
if (!cmoscentury) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("clock: unknown CMOS layout\n");
|
|
#endif
|
|
return (clockyear);
|
|
}
|
|
cmoscentury = bcdtobin(cmoscentury);
|
|
|
|
if (cmoscentury != clockcentury) {
|
|
/* XXX note: saying "century is 20" might confuse the naive. */
|
|
printf("WARNING: NVRAM century is %d but RTC year is %d\n",
|
|
cmoscentury, clockyear);
|
|
|
|
/* Kludge to roll over century. */
|
|
if ((rtc_update_century > 0) ||
|
|
((cmoscentury == 19) && (clockcentury == 20) &&
|
|
(clockyear == 2000))) {
|
|
printf("WARNING: Setting NVRAM century to %d\n",
|
|
clockcentury);
|
|
s = splclock();
|
|
mc146818_write(NULL, NVRAM_CENTURY,
|
|
bintobcd(clockcentury));
|
|
splx(s);
|
|
}
|
|
} else if (cmoscentury == 19 && rtc_update_century == 0)
|
|
rtc_update_century = 1; /* will update later in resettodr() */
|
|
|
|
return (clockyear);
|
|
}
|
|
|
|
/*
|
|
* Initialize the time of day register, based on the time base which is, e.g.
|
|
* from a filesystem.
|
|
*/
|
|
void
|
|
inittodr(base)
|
|
time_t base;
|
|
{
|
|
mc_todregs rtclk;
|
|
struct clock_ymdhms dt;
|
|
int s;
|
|
|
|
/*
|
|
* We mostly ignore the suggested time and go for the RTC clock time
|
|
* stored in the CMOS RAM. If the time can't be obtained from the
|
|
* CMOS, or if the time obtained from the CMOS is 5 or more years
|
|
* less than the suggested time, we used the suggested time. (In
|
|
* the latter case, it's likely that the CMOS battery has died.)
|
|
*/
|
|
|
|
if (base < 25*SECYR) { /* if before 1995, something's odd... */
|
|
printf("WARNING: preposterous time in file system\n");
|
|
/* read the system clock anyway */
|
|
base = 27*SECYR + 186*SECDAY + SECDAY/2;
|
|
}
|
|
|
|
s = splclock();
|
|
if (rtcget(&rtclk)) {
|
|
splx(s);
|
|
printf("WARNING: invalid time in clock chip\n");
|
|
goto fstime;
|
|
}
|
|
splx(s);
|
|
#ifdef DEBUG_CLOCK
|
|
printf("readclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR],
|
|
rtclk[MC_MONTH], rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN],
|
|
rtclk[MC_SEC]);
|
|
#endif
|
|
|
|
dt.dt_sec = bcdtobin(rtclk[MC_SEC]);
|
|
dt.dt_min = bcdtobin(rtclk[MC_MIN]);
|
|
dt.dt_hour = bcdtobin(rtclk[MC_HOUR]);
|
|
dt.dt_day = bcdtobin(rtclk[MC_DOM]);
|
|
dt.dt_mon = bcdtobin(rtclk[MC_MONTH]);
|
|
dt.dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
|
|
|
|
/*
|
|
* If time_t is 32 bits, then the "End of Time" is
|
|
* Mon Jan 18 22:14:07 2038 (US/Eastern)
|
|
* This code copes with RTC's past the end of time if time_t
|
|
* is an int32 or less. Needed because sometimes RTCs screw
|
|
* up or are badly set, and that would cause the time to go
|
|
* negative in the calculation below, which causes Very Bad
|
|
* Mojo. This at least lets the user boot and fix the problem.
|
|
* Note the code is self eliminating once time_t goes to 64 bits.
|
|
*/
|
|
if (sizeof(time_t) <= sizeof(int32_t)) {
|
|
if (dt.dt_year >= 2038) {
|
|
printf("WARNING: RTC time at or beyond 2038.\n");
|
|
dt.dt_year = 2037;
|
|
printf("WARNING: year set back to 2037.\n");
|
|
printf("WARNING: CHECK AND RESET THE DATE!\n");
|
|
}
|
|
}
|
|
|
|
time.tv_sec = clock_ymdhms_to_secs(&dt) + rtc_offset * 60;
|
|
#ifdef DEBUG_CLOCK
|
|
printf("readclock: %ld (%ld)\n", time.tv_sec, base);
|
|
#endif
|
|
|
|
if (base < time.tv_sec - 5*SECYR)
|
|
printf("WARNING: file system time much less than clock time\n");
|
|
else if (base > time.tv_sec + 5*SECYR) {
|
|
printf("WARNING: clock time much less than file system time\n");
|
|
printf("WARNING: using file system time\n");
|
|
goto fstime;
|
|
}
|
|
|
|
timeset = 1;
|
|
return;
|
|
|
|
fstime:
|
|
timeset = 1;
|
|
time.tv_sec = base;
|
|
printf("WARNING: CHECK AND RESET THE DATE!\n");
|
|
}
|
|
|
|
/*
|
|
* Reset the clock.
|
|
*/
|
|
void
|
|
resettodr()
|
|
{
|
|
mc_todregs rtclk;
|
|
struct clock_ymdhms dt;
|
|
int century;
|
|
int s;
|
|
|
|
/*
|
|
* We might have been called by boot() due to a crash early
|
|
* on. Don't reset the clock chip in this case.
|
|
*/
|
|
if (!timeset)
|
|
return;
|
|
|
|
s = splclock();
|
|
if (rtcget(&rtclk))
|
|
memset(&rtclk, 0, sizeof(rtclk));
|
|
splx(s);
|
|
|
|
clock_secs_to_ymdhms(time.tv_sec - rtc_offset * 60, &dt);
|
|
|
|
rtclk[MC_SEC] = bintobcd(dt.dt_sec);
|
|
rtclk[MC_MIN] = bintobcd(dt.dt_min);
|
|
rtclk[MC_HOUR] = bintobcd(dt.dt_hour);
|
|
rtclk[MC_DOW] = dt.dt_wday;
|
|
rtclk[MC_YEAR] = bintobcd(dt.dt_year % 100);
|
|
rtclk[MC_MONTH] = bintobcd(dt.dt_mon);
|
|
rtclk[MC_DOM] = bintobcd(dt.dt_day);
|
|
|
|
#ifdef DEBUG_CLOCK
|
|
printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
|
|
rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
|
|
#endif
|
|
s = splclock();
|
|
rtcput(&rtclk);
|
|
if (rtc_update_century > 0) {
|
|
century = bintobcd(dt.dt_year / 100);
|
|
mc146818_write(NULL, NVRAM_CENTURY, century); /* XXX softc */
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
setstatclockrate(arg)
|
|
int arg;
|
|
{
|
|
}
|