NetBSD/sys/netinet/tcp_usrreq.c
ozaki-r 9e8d969cf0 Tweak softnet_lock and NET_MPSAFE
- Don't hold softnet_lock in some functions if NET_MPSAFE
- Add softnet_lock to sysctl_net_inet_icmp_redirtimeout
- Add softnet_lock to expire_upcalls of ip_mroute.c
- Restore softnet_lock for in{,6}_pcbpurgeif{,0} if NET_MPSAFE
- Mark some softnet_lock for future work
2017-01-24 07:09:24 +00:00

2526 lines
66 KiB
C

/* $NetBSD: tcp_usrreq.c,v 1.214 2017/01/24 07:09:24 ozaki-r Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1997, 1998, 2005, 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
* Facility, NASA Ames Research Center.
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
* This code is derived from software contributed to The NetBSD Foundation
* by Rui Paulo.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_usrreq.c 8.5 (Berkeley) 6/21/95
*/
/*
* TCP protocol interface to socket abstraction.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tcp_usrreq.c,v 1.214 2017/01/24 07:09:24 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_tcp_debug.h"
#include "opt_mbuftrace.h"
#include "opt_tcp_space.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/proc.h>
#include <sys/domain.h>
#include <sys/sysctl.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/uidinfo.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/in_offload.h>
#ifdef INET6
#ifndef INET
#include <netinet/in.h>
#endif
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#endif
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_private.h>
#include <netinet/tcp_congctl.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_debug.h>
#include <netinet/tcp_vtw.h>
static int
tcp_debug_capture(struct tcpcb *tp, int req)
{
#ifdef KPROF
tcp_acounts[tp->t_state][req]++;
#endif
#ifdef TCP_DEBUG
return tp->t_state;
#endif
return 0;
}
static inline void
tcp_debug_trace(struct socket *so, struct tcpcb *tp, int ostate, int req)
{
#ifdef TCP_DEBUG
if (tp && (so->so_options & SO_DEBUG))
tcp_trace(TA_USER, ostate, tp, NULL, req);
#endif
}
static int
tcp_getpcb(struct socket *so, struct inpcb **inp,
struct in6pcb **in6p, struct tcpcb **tp)
{
KASSERT(solocked(so));
/*
* When a TCP is attached to a socket, then there will be
* a (struct inpcb) pointed at by the socket, and this
* structure will point at a subsidary (struct tcpcb).
*/
switch (so->so_proto->pr_domain->dom_family) {
#ifdef INET
case PF_INET:
*inp = sotoinpcb(so);
if (*inp == NULL)
return EINVAL;
*tp = intotcpcb(*inp);
break;
#endif
#ifdef INET6
case PF_INET6:
*in6p = sotoin6pcb(so);
if (*in6p == NULL)
return EINVAL;
*tp = in6totcpcb(*in6p);
break;
#endif
default:
return EAFNOSUPPORT;
}
KASSERT(tp != NULL);
return 0;
}
static void
change_keepalive(struct socket *so, struct tcpcb *tp)
{
tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
TCP_TIMER_DISARM(tp, TCPT_KEEP);
TCP_TIMER_DISARM(tp, TCPT_2MSL);
if (tp->t_state == TCPS_SYN_RECEIVED ||
tp->t_state == TCPS_SYN_SENT) {
TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
} else if (so->so_options & SO_KEEPALIVE &&
tp->t_state <= TCPS_CLOSE_WAIT) {
TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepintvl);
} else {
TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
}
if ((tp->t_state == TCPS_FIN_WAIT_2) && (tp->t_maxidle > 0))
TCP_TIMER_ARM(tp, TCPT_2MSL, tp->t_maxidle);
}
/*
* Export TCP internal state information via a struct tcp_info, based on the
* Linux 2.6 API. Not ABI compatible as our constants are mapped differently
* (TCP state machine, etc). We export all information using FreeBSD-native
* constants -- for example, the numeric values for tcpi_state will differ
* from Linux.
*/
static void
tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti)
{
bzero(ti, sizeof(*ti));
ti->tcpi_state = tp->t_state;
if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
if (tp->t_flags & TF_SACK_PERMIT)
ti->tcpi_options |= TCPI_OPT_SACK;
if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
ti->tcpi_options |= TCPI_OPT_WSCALE;
ti->tcpi_snd_wscale = tp->snd_scale;
ti->tcpi_rcv_wscale = tp->rcv_scale;
}
if (tp->t_flags & TF_ECN_PERMIT) {
ti->tcpi_options |= TCPI_OPT_ECN;
}
ti->tcpi_rto = tp->t_rxtcur * tick;
ti->tcpi_last_data_recv = (long)(hardclock_ticks -
(int)tp->t_rcvtime) * tick;
ti->tcpi_rtt = ((u_int64_t)tp->t_srtt * tick) >> TCP_RTT_SHIFT;
ti->tcpi_rttvar = ((u_int64_t)tp->t_rttvar * tick) >> TCP_RTTVAR_SHIFT;
ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
/* Linux API wants these in # of segments, apparently */
ti->tcpi_snd_cwnd = tp->snd_cwnd / tp->t_segsz;
ti->tcpi_snd_wnd = tp->snd_wnd / tp->t_segsz;
/*
* FreeBSD-specific extension fields for tcp_info.
*/
ti->tcpi_rcv_space = tp->rcv_wnd;
ti->tcpi_rcv_nxt = tp->rcv_nxt;
ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */
ti->tcpi_snd_nxt = tp->snd_nxt;
ti->tcpi_snd_mss = tp->t_segsz;
ti->tcpi_rcv_mss = tp->t_segsz;
#ifdef TF_TOE
if (tp->t_flags & TF_TOE)
ti->tcpi_options |= TCPI_OPT_TOE;
#endif
/* From the redundant department of redundancies... */
ti->__tcpi_retransmits = ti->__tcpi_retrans =
ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
ti->tcpi_snd_zerowin = tp->t_sndzerowin;
}
int
tcp_ctloutput(int op, struct socket *so, struct sockopt *sopt)
{
int error = 0, s;
struct inpcb *inp;
#ifdef INET6
struct in6pcb *in6p;
#endif
struct tcpcb *tp;
struct tcp_info ti;
u_int ui;
int family; /* family of the socket */
int level, optname, optval;
level = sopt->sopt_level;
optname = sopt->sopt_name;
family = so->so_proto->pr_domain->dom_family;
s = splsoftnet();
switch (family) {
#ifdef INET
case PF_INET:
inp = sotoinpcb(so);
#ifdef INET6
in6p = NULL;
#endif
break;
#endif
#ifdef INET6
case PF_INET6:
inp = NULL;
in6p = sotoin6pcb(so);
break;
#endif
default:
splx(s);
panic("%s: af %d", __func__, family);
}
#ifndef INET6
if (inp == NULL)
#else
if (inp == NULL && in6p == NULL)
#endif
{
splx(s);
return (ECONNRESET);
}
if (level != IPPROTO_TCP) {
switch (family) {
#ifdef INET
case PF_INET:
error = ip_ctloutput(op, so, sopt);
break;
#endif
#ifdef INET6
case PF_INET6:
error = ip6_ctloutput(op, so, sopt);
break;
#endif
}
splx(s);
return (error);
}
if (inp)
tp = intotcpcb(inp);
#ifdef INET6
else if (in6p)
tp = in6totcpcb(in6p);
#endif
else
tp = NULL;
switch (op) {
case PRCO_SETOPT:
switch (optname) {
#ifdef TCP_SIGNATURE
case TCP_MD5SIG:
error = sockopt_getint(sopt, &optval);
if (error)
break;
if (optval > 0)
tp->t_flags |= TF_SIGNATURE;
else
tp->t_flags &= ~TF_SIGNATURE;
break;
#endif /* TCP_SIGNATURE */
case TCP_NODELAY:
error = sockopt_getint(sopt, &optval);
if (error)
break;
if (optval)
tp->t_flags |= TF_NODELAY;
else
tp->t_flags &= ~TF_NODELAY;
break;
case TCP_MAXSEG:
error = sockopt_getint(sopt, &optval);
if (error)
break;
if (optval > 0 && optval <= tp->t_peermss)
tp->t_peermss = optval; /* limit on send size */
else
error = EINVAL;
break;
#ifdef notyet
case TCP_CONGCTL:
/* XXX string overflow XXX */
error = tcp_congctl_select(tp, sopt->sopt_data);
break;
#endif
case TCP_KEEPIDLE:
error = sockopt_get(sopt, &ui, sizeof(ui));
if (error)
break;
if (ui > 0) {
tp->t_keepidle = ui;
change_keepalive(so, tp);
} else
error = EINVAL;
break;
case TCP_KEEPINTVL:
error = sockopt_get(sopt, &ui, sizeof(ui));
if (error)
break;
if (ui > 0) {
tp->t_keepintvl = ui;
change_keepalive(so, tp);
} else
error = EINVAL;
break;
case TCP_KEEPCNT:
error = sockopt_get(sopt, &ui, sizeof(ui));
if (error)
break;
if (ui > 0) {
tp->t_keepcnt = ui;
change_keepalive(so, tp);
} else
error = EINVAL;
break;
case TCP_KEEPINIT:
error = sockopt_get(sopt, &ui, sizeof(ui));
if (error)
break;
if (ui > 0) {
tp->t_keepinit = ui;
change_keepalive(so, tp);
} else
error = EINVAL;
break;
default:
error = ENOPROTOOPT;
break;
}
break;
case PRCO_GETOPT:
switch (optname) {
#ifdef TCP_SIGNATURE
case TCP_MD5SIG:
optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
#endif
case TCP_NODELAY:
optval = tp->t_flags & TF_NODELAY;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
case TCP_MAXSEG:
optval = tp->t_peermss;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
case TCP_INFO:
tcp_fill_info(tp, &ti);
error = sockopt_set(sopt, &ti, sizeof ti);
break;
#ifdef notyet
case TCP_CONGCTL:
break;
#endif
default:
error = ENOPROTOOPT;
break;
}
break;
}
splx(s);
return (error);
}
#ifndef TCP_SENDSPACE
#define TCP_SENDSPACE 1024*32
#endif
int tcp_sendspace = TCP_SENDSPACE;
#ifndef TCP_RECVSPACE
#define TCP_RECVSPACE 1024*32
#endif
int tcp_recvspace = TCP_RECVSPACE;
/*
* tcp_attach: attach TCP protocol to socket, allocating internet protocol
* control block, TCP control block, buffer space and entering LISTEN state
* if to accept connections.
*/
static int
tcp_attach(struct socket *so, int proto)
{
struct tcpcb *tp;
struct inpcb *inp;
#ifdef INET6
struct in6pcb *in6p;
#endif
int s, error, family;
/* Assign the lock (must happen even if we will error out). */
s = splsoftnet();
sosetlock(so);
KASSERT(solocked(so));
family = so->so_proto->pr_domain->dom_family;
switch (family) {
#ifdef INET
case PF_INET:
inp = sotoinpcb(so);
#ifdef INET6
in6p = NULL;
#endif
break;
#endif
#ifdef INET6
case PF_INET6:
inp = NULL;
in6p = sotoin6pcb(so);
break;
#endif
default:
error = EAFNOSUPPORT;
goto out;
}
KASSERT(inp == NULL);
#ifdef INET6
KASSERT(in6p == NULL);
#endif
#ifdef MBUFTRACE
so->so_mowner = &tcp_sock_mowner;
so->so_rcv.sb_mowner = &tcp_sock_rx_mowner;
so->so_snd.sb_mowner = &tcp_sock_tx_mowner;
#endif
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, tcp_sendspace, tcp_recvspace);
if (error)
goto out;
}
so->so_rcv.sb_flags |= SB_AUTOSIZE;
so->so_snd.sb_flags |= SB_AUTOSIZE;
switch (family) {
#ifdef INET
case PF_INET:
error = in_pcballoc(so, &tcbtable);
if (error)
goto out;
inp = sotoinpcb(so);
#ifdef INET6
in6p = NULL;
#endif
break;
#endif
#ifdef INET6
case PF_INET6:
error = in6_pcballoc(so, &tcbtable);
if (error)
goto out;
inp = NULL;
in6p = sotoin6pcb(so);
break;
#endif
default:
error = EAFNOSUPPORT;
goto out;
}
if (inp)
tp = tcp_newtcpcb(family, (void *)inp);
#ifdef INET6
else if (in6p)
tp = tcp_newtcpcb(family, (void *)in6p);
#endif
else
tp = NULL;
if (tp == NULL) {
int nofd = so->so_state & SS_NOFDREF; /* XXX */
so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */
#ifdef INET
if (inp)
in_pcbdetach(inp);
#endif
#ifdef INET6
if (in6p)
in6_pcbdetach(in6p);
#endif
so->so_state |= nofd;
error = ENOBUFS;
goto out;
}
tp->t_state = TCPS_CLOSED;
if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
so->so_linger = TCP_LINGERTIME;
}
out:
KASSERT(solocked(so));
splx(s);
return error;
}
static void
tcp_detach(struct socket *so)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int s;
if (tcp_getpcb(so, &inp, &in6p, &tp) != 0)
return;
s = splsoftnet();
(void)tcp_disconnect1(tp);
splx(s);
}
static int
tcp_accept(struct socket *so, struct sockaddr *nam)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_ACCEPT);
/*
* Accept a connection. Essentially all the work is
* done at higher levels; just return the address
* of the peer, storing through addr.
*/
s = splsoftnet();
#ifdef INET
if (inp) {
in_setpeeraddr(inp, (struct sockaddr_in *)nam);
}
#endif
#ifdef INET6
if (in6p) {
in6_setpeeraddr(in6p, (struct sockaddr_in6 *)nam);
}
#endif
tcp_debug_trace(so, tp, ostate, PRU_ACCEPT);
splx(s);
return 0;
}
static int
tcp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
#ifdef INET6
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
#endif /* INET6 */
struct tcpcb *tp = NULL;
int s;
int error = 0;
int ostate = 0;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_BIND);
/*
* Give the socket an address.
*/
s = splsoftnet();
switch (so->so_proto->pr_domain->dom_family) {
#ifdef INET
case PF_INET:
error = in_pcbbind(inp, sin, l);
break;
#endif
#ifdef INET6
case PF_INET6:
error = in6_pcbbind(in6p, sin6, l);
if (!error) {
/* mapped addr case */
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr))
tp->t_family = AF_INET;
else
tp->t_family = AF_INET6;
}
break;
#endif
}
tcp_debug_trace(so, tp, ostate, PRU_BIND);
splx(s);
return error;
}
static int
tcp_listen(struct socket *so, struct lwp *l)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int error = 0;
int ostate = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_LISTEN);
/*
* Prepare to accept connections.
*/
s = splsoftnet();
#ifdef INET
if (inp && inp->inp_lport == 0) {
error = in_pcbbind(inp, NULL, l);
if (error)
goto release;
}
#endif
#ifdef INET6
if (in6p && in6p->in6p_lport == 0) {
error = in6_pcbbind(in6p, NULL, l);
if (error)
goto release;
}
#endif
tp->t_state = TCPS_LISTEN;
release:
tcp_debug_trace(so, tp, ostate, PRU_LISTEN);
splx(s);
return error;
}
static int
tcp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int s;
int error = 0;
int ostate = 0;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_CONNECT);
/*
* Initiate connection to peer.
* Create a template for use in transmissions on this connection.
* Enter SYN_SENT state, and mark socket as connecting.
* Start keep-alive timer, and seed output sequence space.
* Send initial segment on connection.
*/
s = splsoftnet();
#ifdef INET
if (inp) {
if (inp->inp_lport == 0) {
error = in_pcbbind(inp, NULL, l);
if (error)
goto release;
}
error = in_pcbconnect(inp, (struct sockaddr_in *)nam, l);
}
#endif
#ifdef INET6
if (in6p) {
if (in6p->in6p_lport == 0) {
error = in6_pcbbind(in6p, NULL, l);
if (error)
goto release;
}
error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l);
if (!error) {
/* mapped addr case */
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
tp->t_family = AF_INET;
else
tp->t_family = AF_INET6;
}
}
#endif
if (error)
goto release;
tp->t_template = tcp_template(tp);
if (tp->t_template == 0) {
#ifdef INET
if (inp)
in_pcbdisconnect(inp);
#endif
#ifdef INET6
if (in6p)
in6_pcbdisconnect(in6p);
#endif
error = ENOBUFS;
goto release;
}
/*
* Compute window scaling to request.
* XXX: This should be moved to tcp_output().
*/
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
(TCP_MAXWIN << tp->request_r_scale) < sb_max)
tp->request_r_scale++;
soisconnecting(so);
TCP_STATINC(TCP_STAT_CONNATTEMPT);
tp->t_state = TCPS_SYN_SENT;
TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
tp->iss = tcp_new_iss(tp, 0);
tcp_sendseqinit(tp);
error = tcp_output(tp);
release:
tcp_debug_trace(so, tp, ostate, PRU_CONNECT);
splx(s);
return error;
}
static int
tcp_connect2(struct socket *so, struct socket *so2)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int error = 0;
int ostate = 0;
KASSERT(solocked(so));
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_CONNECT2);
tcp_debug_trace(so, tp, ostate, PRU_CONNECT2);
return EOPNOTSUPP;
}
static int
tcp_disconnect(struct socket *so)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int error = 0;
int ostate = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_DISCONNECT);
/*
* Initiate disconnect from peer.
* If connection never passed embryonic stage, just drop;
* else if don't need to let data drain, then can just drop anyways,
* else have to begin TCP shutdown process: mark socket disconnecting,
* drain unread data, state switch to reflect user close, and
* send segment (e.g. FIN) to peer. Socket will be really disconnected
* when peer sends FIN and acks ours.
*
* SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
*/
s = splsoftnet();
tp = tcp_disconnect1(tp);
tcp_debug_trace(so, tp, ostate, PRU_DISCONNECT);
splx(s);
return error;
}
static int
tcp_shutdown(struct socket *so)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int error = 0;
int ostate = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_SHUTDOWN);
/*
* Mark the connection as being incapable of further output.
*/
s = splsoftnet();
socantsendmore(so);
tp = tcp_usrclosed(tp);
if (tp)
error = tcp_output(tp);
tcp_debug_trace(so, tp, ostate, PRU_SHUTDOWN);
splx(s);
return error;
}
static int
tcp_abort(struct socket *so)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int error = 0;
int ostate = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_ABORT);
/*
* Abort the TCP.
*/
s = splsoftnet();
tp = tcp_drop(tp, ECONNABORTED);
tcp_debug_trace(so, tp, ostate, PRU_ABORT);
splx(s);
return error;
}
static int
tcp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
{
switch (so->so_proto->pr_domain->dom_family) {
#ifdef INET
case PF_INET:
return in_control(so, cmd, nam, ifp);
#endif
#ifdef INET6
case PF_INET6:
return in6_control(so, cmd, nam, ifp);
#endif
default:
return EAFNOSUPPORT;
}
}
static int
tcp_stat(struct socket *so, struct stat *ub)
{
KASSERT(solocked(so));
/* stat: don't bother with a blocksize. */
return 0;
}
static int
tcp_peeraddr(struct socket *so, struct sockaddr *nam)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_PEERADDR);
s = splsoftnet();
#ifdef INET
if (inp) {
in_setpeeraddr(inp, (struct sockaddr_in *)nam);
}
#endif
#ifdef INET6
if (in6p) {
in6_setpeeraddr(in6p, (struct sockaddr_in6 *)nam);
}
#endif
tcp_debug_trace(so, tp, ostate, PRU_PEERADDR);
splx(s);
return 0;
}
static int
tcp_sockaddr(struct socket *so, struct sockaddr *nam)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_SOCKADDR);
s = splsoftnet();
#ifdef INET
if (inp) {
in_setsockaddr(inp, (struct sockaddr_in *)nam);
}
#endif
#ifdef INET6
if (in6p) {
in6_setsockaddr(in6p, (struct sockaddr_in6 *)nam);
}
#endif
tcp_debug_trace(so, tp, ostate, PRU_SOCKADDR);
splx(s);
return 0;
}
static int
tcp_rcvd(struct socket *so, int flags, struct lwp *l)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_RCVD);
/*
* After a receive, possibly send window update to peer.
*
* soreceive() calls this function when a user receives
* ancillary data on a listening socket. We don't call
* tcp_output in such a case, since there is no header
* template for a listening socket and hence the kernel
* will panic.
*/
s = splsoftnet();
if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) != 0)
(void) tcp_output(tp);
splx(s);
tcp_debug_trace(so, tp, ostate, PRU_RCVD);
return 0;
}
static int
tcp_recvoob(struct socket *so, struct mbuf *m, int flags)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_RCVOOB);
s = splsoftnet();
if ((so->so_oobmark == 0 &&
(so->so_state & SS_RCVATMARK) == 0) ||
so->so_options & SO_OOBINLINE ||
tp->t_oobflags & TCPOOB_HADDATA) {
splx(s);
return EINVAL;
}
if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
splx(s);
return EWOULDBLOCK;
}
m->m_len = 1;
*mtod(m, char *) = tp->t_iobc;
if ((flags & MSG_PEEK) == 0)
tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
tcp_debug_trace(so, tp, ostate, PRU_RCVOOB);
splx(s);
return 0;
}
static int
tcp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct lwp *l)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_SEND);
/*
* Do a send by putting data in output queue and updating urgent
* marker if URG set. Possibly send more data.
*/
s = splsoftnet();
if (control && control->m_len) {
m_freem(control);
m_freem(m);
tcp_debug_trace(so, tp, ostate, PRU_SEND);
splx(s);
return EINVAL;
}
sbappendstream(&so->so_snd, m);
error = tcp_output(tp);
tcp_debug_trace(so, tp, ostate, PRU_SEND);
splx(s);
return error;
}
static int
tcp_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
{
struct inpcb *inp = NULL;
struct in6pcb *in6p = NULL;
struct tcpcb *tp = NULL;
int ostate = 0;
int error = 0;
int s;
if ((error = tcp_getpcb(so, &inp, &in6p, &tp)) != 0)
return error;
ostate = tcp_debug_capture(tp, PRU_SENDOOB);
s = splsoftnet();
if (sbspace(&so->so_snd) < -512) {
m_freem(m);
splx(s);
return ENOBUFS;
}
/*
* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section.
* Otherwise, snd_up should be one lower.
*/
sbappendstream(&so->so_snd, m);
tp->snd_up = tp->snd_una + so->so_snd.sb_cc;
tp->t_force = 1;
error = tcp_output(tp);
tp->t_force = 0;
tcp_debug_trace(so, tp, ostate, PRU_SENDOOB);
splx(s);
return error;
}
static int
tcp_purgeif(struct socket *so, struct ifnet *ifp)
{
int s;
int error = 0;
s = splsoftnet();
mutex_enter(softnet_lock);
switch (so->so_proto->pr_domain->dom_family) {
#ifdef INET
case PF_INET:
in_pcbpurgeif0(&tcbtable, ifp);
#ifdef NET_MPSAFE
mutex_exit(softnet_lock);
#endif
in_purgeif(ifp);
#ifdef NET_MPSAFE
mutex_enter(softnet_lock);
#endif
in_pcbpurgeif(&tcbtable, ifp);
break;
#endif
#ifdef INET6
case PF_INET6:
in6_pcbpurgeif0(&tcbtable, ifp);
#ifdef NET_MPSAFE
mutex_exit(softnet_lock);
#endif
in6_purgeif(ifp);
#ifdef NET_MPSAFE
mutex_enter(softnet_lock);
#endif
in6_pcbpurgeif(&tcbtable, ifp);
break;
#endif
default:
error = EAFNOSUPPORT;
break;
}
mutex_exit(softnet_lock);
splx(s);
return error;
}
/*
* Initiate (or continue) disconnect.
* If embryonic state, just send reset (once).
* If in ``let data drain'' option and linger null, just drop.
* Otherwise (hard), mark socket disconnecting and drop
* current input data; switch states based on user close, and
* send segment to peer (with FIN).
*/
struct tcpcb *
tcp_disconnect1(struct tcpcb *tp)
{
struct socket *so;
if (tp->t_inpcb)
so = tp->t_inpcb->inp_socket;
#ifdef INET6
else if (tp->t_in6pcb)
so = tp->t_in6pcb->in6p_socket;
#endif
else
so = NULL;
if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
tp = tcp_close(tp);
else if ((so->so_options & SO_LINGER) && so->so_linger == 0)
tp = tcp_drop(tp, 0);
else {
soisdisconnecting(so);
sbflush(&so->so_rcv);
tp = tcp_usrclosed(tp);
if (tp)
(void) tcp_output(tp);
}
return (tp);
}
/*
* User issued close, and wish to trail through shutdown states:
* if never received SYN, just forget it. If got a SYN from peer,
* but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
* If already got a FIN from peer, then almost done; go to LAST_ACK
* state. In all other cases, have already sent FIN to peer (e.g.
* after PRU_SHUTDOWN), and just have to play tedious game waiting
* for peer to send FIN or not respond to keep-alives, etc.
* We can let the user exit from the close as soon as the FIN is acked.
*/
struct tcpcb *
tcp_usrclosed(struct tcpcb *tp)
{
switch (tp->t_state) {
case TCPS_CLOSED:
case TCPS_LISTEN:
case TCPS_SYN_SENT:
tp->t_state = TCPS_CLOSED;
tp = tcp_close(tp);
break;
case TCPS_SYN_RECEIVED:
case TCPS_ESTABLISHED:
tp->t_state = TCPS_FIN_WAIT_1;
break;
case TCPS_CLOSE_WAIT:
tp->t_state = TCPS_LAST_ACK;
break;
}
if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
struct socket *so;
if (tp->t_inpcb)
so = tp->t_inpcb->inp_socket;
#ifdef INET6
else if (tp->t_in6pcb)
so = tp->t_in6pcb->in6p_socket;
#endif
else
so = NULL;
if (so)
soisdisconnected(so);
/*
* If we are in FIN_WAIT_2, we arrived here because the
* application did a shutdown of the send side. Like the
* case of a transition from FIN_WAIT_1 to FIN_WAIT_2 after
* a full close, we start a timer to make sure sockets are
* not left in FIN_WAIT_2 forever.
*/
if ((tp->t_state == TCPS_FIN_WAIT_2) && (tp->t_maxidle > 0))
TCP_TIMER_ARM(tp, TCPT_2MSL, tp->t_maxidle);
else if (tp->t_state == TCPS_TIME_WAIT
&& ((tp->t_inpcb
&& (tcp4_vtw_enable & 1)
&& vtw_add(AF_INET, tp))
||
(tp->t_in6pcb
&& (tcp6_vtw_enable & 1)
&& vtw_add(AF_INET6, tp)))) {
tp = 0;
}
}
return (tp);
}
/*
* sysctl helper routine for net.inet.ip.mssdflt. it can't be less
* than 32.
*/
static int
sysctl_net_inet_tcp_mssdflt(SYSCTLFN_ARGS)
{
int error, mssdflt;
struct sysctlnode node;
mssdflt = tcp_mssdflt;
node = *rnode;
node.sysctl_data = &mssdflt;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (mssdflt < 32)
return (EINVAL);
tcp_mssdflt = mssdflt;
mutex_enter(softnet_lock);
tcp_tcpcb_template();
mutex_exit(softnet_lock);
return (0);
}
/*
* sysctl helper for TCP CB template update
*/
static int
sysctl_update_tcpcb_template(SYSCTLFN_ARGS)
{
int t, error;
struct sysctlnode node;
/* follow procedures in sysctl(9) manpage */
t = *(int *)rnode->sysctl_data;
node = *rnode;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < 0)
return EINVAL;
*(int *)rnode->sysctl_data = t;
mutex_enter(softnet_lock);
tcp_tcpcb_template();
mutex_exit(softnet_lock);
return 0;
}
/*
* sysctl helper routine for setting port related values under
* net.inet.ip and net.inet6.ip6. does basic range checking and does
* additional checks for each type. this code has placed in
* tcp_input.c since INET and INET6 both use the same tcp code.
*
* this helper is not static so that both inet and inet6 can use it.
*/
int
sysctl_net_inet_ip_ports(SYSCTLFN_ARGS)
{
int error, tmp;
int apmin, apmax;
#ifndef IPNOPRIVPORTS
int lpmin, lpmax;
#endif /* IPNOPRIVPORTS */
struct sysctlnode node;
if (namelen != 0)
return (EINVAL);
switch (name[-3]) {
#ifdef INET
case PF_INET:
apmin = anonportmin;
apmax = anonportmax;
#ifndef IPNOPRIVPORTS
lpmin = lowportmin;
lpmax = lowportmax;
#endif /* IPNOPRIVPORTS */
break;
#endif /* INET */
#ifdef INET6
case PF_INET6:
apmin = ip6_anonportmin;
apmax = ip6_anonportmax;
#ifndef IPNOPRIVPORTS
lpmin = ip6_lowportmin;
lpmax = ip6_lowportmax;
#endif /* IPNOPRIVPORTS */
break;
#endif /* INET6 */
default:
return (EINVAL);
}
/*
* insert temporary copy into node, perform lookup on
* temporary, then restore pointer
*/
node = *rnode;
tmp = *(int*)rnode->sysctl_data;
node.sysctl_data = &tmp;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
/*
* simple port range check
*/
if (tmp < 0 || tmp > 65535)
return (EINVAL);
/*
* per-node range checks
*/
switch (rnode->sysctl_num) {
case IPCTL_ANONPORTMIN:
case IPV6CTL_ANONPORTMIN:
if (tmp >= apmax)
return (EINVAL);
#ifndef IPNOPRIVPORTS
if (tmp < IPPORT_RESERVED)
return (EINVAL);
#endif /* IPNOPRIVPORTS */
break;
case IPCTL_ANONPORTMAX:
case IPV6CTL_ANONPORTMAX:
if (apmin >= tmp)
return (EINVAL);
#ifndef IPNOPRIVPORTS
if (tmp < IPPORT_RESERVED)
return (EINVAL);
#endif /* IPNOPRIVPORTS */
break;
#ifndef IPNOPRIVPORTS
case IPCTL_LOWPORTMIN:
case IPV6CTL_LOWPORTMIN:
if (tmp >= lpmax ||
tmp > IPPORT_RESERVEDMAX ||
tmp < IPPORT_RESERVEDMIN)
return (EINVAL);
break;
case IPCTL_LOWPORTMAX:
case IPV6CTL_LOWPORTMAX:
if (lpmin >= tmp ||
tmp > IPPORT_RESERVEDMAX ||
tmp < IPPORT_RESERVEDMIN)
return (EINVAL);
break;
#endif /* IPNOPRIVPORTS */
default:
return (EINVAL);
}
*(int*)rnode->sysctl_data = tmp;
return (0);
}
static inline int
copyout_uid(struct socket *sockp, void *oldp, size_t *oldlenp)
{
if (oldp) {
size_t sz;
uid_t uid;
int error;
if (sockp->so_cred == NULL)
return EPERM;
uid = kauth_cred_geteuid(sockp->so_cred);
sz = MIN(sizeof(uid), *oldlenp);
if ((error = copyout(&uid, oldp, sz)) != 0)
return error;
}
*oldlenp = sizeof(uid_t);
return 0;
}
static inline int
inet4_ident_core(struct in_addr raddr, u_int rport,
struct in_addr laddr, u_int lport,
void *oldp, size_t *oldlenp,
struct lwp *l, int dodrop)
{
struct inpcb *inp;
struct socket *sockp;
inp = in_pcblookup_connect(&tcbtable, raddr, rport, laddr, lport, 0);
if (inp == NULL || (sockp = inp->inp_socket) == NULL)
return ESRCH;
if (dodrop) {
struct tcpcb *tp;
int error;
if (inp == NULL || (tp = intotcpcb(inp)) == NULL ||
(inp->inp_socket->so_options & SO_ACCEPTCONN) != 0)
return ESRCH;
error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
KAUTH_REQ_NETWORK_SOCKET_DROP, inp->inp_socket, tp, NULL);
if (error)
return (error);
(void)tcp_drop(tp, ECONNABORTED);
return 0;
}
else
return copyout_uid(sockp, oldp, oldlenp);
}
#ifdef INET6
static inline int
inet6_ident_core(struct in6_addr *raddr, u_int rport,
struct in6_addr *laddr, u_int lport,
void *oldp, size_t *oldlenp,
struct lwp *l, int dodrop)
{
struct in6pcb *in6p;
struct socket *sockp;
in6p = in6_pcblookup_connect(&tcbtable, raddr, rport, laddr, lport, 0, 0);
if (in6p == NULL || (sockp = in6p->in6p_socket) == NULL)
return ESRCH;
if (dodrop) {
struct tcpcb *tp;
int error;
if (in6p == NULL || (tp = in6totcpcb(in6p)) == NULL ||
(in6p->in6p_socket->so_options & SO_ACCEPTCONN) != 0)
return ESRCH;
error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
KAUTH_REQ_NETWORK_SOCKET_DROP, in6p->in6p_socket, tp, NULL);
if (error)
return (error);
(void)tcp_drop(tp, ECONNABORTED);
return 0;
}
else
return copyout_uid(sockp, oldp, oldlenp);
}
#endif
/*
* sysctl helper routine for the net.inet.tcp.drop and
* net.inet6.tcp6.drop nodes.
*/
#define sysctl_net_inet_tcp_drop sysctl_net_inet_tcp_ident
/*
* sysctl helper routine for the net.inet.tcp.ident and
* net.inet6.tcp6.ident nodes. contains backwards compat code for the
* old way of looking up the ident information for ipv4 which involves
* stuffing the port/addr pairs into the mib lookup.
*/
static int
sysctl_net_inet_tcp_ident(SYSCTLFN_ARGS)
{
#ifdef INET
struct sockaddr_in *si4[2];
#endif /* INET */
#ifdef INET6
struct sockaddr_in6 *si6[2];
#endif /* INET6 */
struct sockaddr_storage sa[2];
int error, pf, dodrop;
dodrop = name[-1] == TCPCTL_DROP;
if (dodrop) {
if (oldp != NULL || *oldlenp != 0)
return EINVAL;
if (newp == NULL)
return EPERM;
if (newlen < sizeof(sa))
return ENOMEM;
}
if (namelen != 4 && namelen != 0)
return EINVAL;
if (name[-2] != IPPROTO_TCP)
return EINVAL;
pf = name[-3];
/* old style lookup, ipv4 only */
if (namelen == 4) {
#ifdef INET
struct in_addr laddr, raddr;
u_int lport, rport;
if (pf != PF_INET)
return EPROTONOSUPPORT;
raddr.s_addr = (uint32_t)name[0];
rport = (u_int)name[1];
laddr.s_addr = (uint32_t)name[2];
lport = (u_int)name[3];
mutex_enter(softnet_lock);
error = inet4_ident_core(raddr, rport, laddr, lport,
oldp, oldlenp, l, dodrop);
mutex_exit(softnet_lock);
return error;
#else /* INET */
return EINVAL;
#endif /* INET */
}
if (newp == NULL || newlen != sizeof(sa))
return EINVAL;
error = copyin(newp, &sa, newlen);
if (error)
return error;
/*
* requested families must match
*/
if (pf != sa[0].ss_family || sa[0].ss_family != sa[1].ss_family)
return EINVAL;
switch (pf) {
#ifdef INET6
case PF_INET6:
si6[0] = (struct sockaddr_in6*)&sa[0];
si6[1] = (struct sockaddr_in6*)&sa[1];
if (si6[0]->sin6_len != sizeof(*si6[0]) ||
si6[1]->sin6_len != sizeof(*si6[1]))
return EINVAL;
if (!IN6_IS_ADDR_V4MAPPED(&si6[0]->sin6_addr) &&
!IN6_IS_ADDR_V4MAPPED(&si6[1]->sin6_addr)) {
error = sa6_embedscope(si6[0], ip6_use_defzone);
if (error)
return error;
error = sa6_embedscope(si6[1], ip6_use_defzone);
if (error)
return error;
mutex_enter(softnet_lock);
error = inet6_ident_core(&si6[0]->sin6_addr,
si6[0]->sin6_port, &si6[1]->sin6_addr,
si6[1]->sin6_port, oldp, oldlenp, l, dodrop);
mutex_exit(softnet_lock);
return error;
}
if (IN6_IS_ADDR_V4MAPPED(&si6[0]->sin6_addr) !=
IN6_IS_ADDR_V4MAPPED(&si6[1]->sin6_addr))
return EINVAL;
in6_sin6_2_sin_in_sock((struct sockaddr *)&sa[0]);
in6_sin6_2_sin_in_sock((struct sockaddr *)&sa[1]);
/*FALLTHROUGH*/
#endif /* INET6 */
#ifdef INET
case PF_INET:
si4[0] = (struct sockaddr_in*)&sa[0];
si4[1] = (struct sockaddr_in*)&sa[1];
if (si4[0]->sin_len != sizeof(*si4[0]) ||
si4[0]->sin_len != sizeof(*si4[1]))
return EINVAL;
mutex_enter(softnet_lock);
error = inet4_ident_core(si4[0]->sin_addr, si4[0]->sin_port,
si4[1]->sin_addr, si4[1]->sin_port,
oldp, oldlenp, l, dodrop);
mutex_exit(softnet_lock);
return error;
#endif /* INET */
default:
return EPROTONOSUPPORT;
}
}
/*
* sysctl helper for the inet and inet6 pcblists. handles tcp/udp and
* inet/inet6, as well as raw pcbs for each. specifically not
* declared static so that raw sockets and udp/udp6 can use it as
* well.
*/
int
sysctl_inpcblist(SYSCTLFN_ARGS)
{
#ifdef INET
struct sockaddr_in *in;
const struct inpcb *inp;
#endif
#ifdef INET6
struct sockaddr_in6 *in6;
const struct in6pcb *in6p;
#endif
struct inpcbtable *pcbtbl = __UNCONST(rnode->sysctl_data);
const struct inpcb_hdr *inph;
struct tcpcb *tp;
struct kinfo_pcb pcb;
char *dp;
size_t len, needed, elem_size, out_size;
int error, elem_count, pf, proto, pf2;
if (namelen != 4)
return (EINVAL);
if (oldp != NULL) {
len = *oldlenp;
elem_size = name[2];
elem_count = name[3];
if (elem_size != sizeof(pcb))
return EINVAL;
} else {
len = 0;
elem_count = INT_MAX;
elem_size = sizeof(pcb);
}
error = 0;
dp = oldp;
out_size = elem_size;
needed = 0;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
if (name - oname != 4)
return (EINVAL);
pf = oname[1];
proto = oname[2];
pf2 = (oldp != NULL) ? pf : 0;
mutex_enter(softnet_lock);
TAILQ_FOREACH(inph, &pcbtbl->inpt_queue, inph_queue) {
#ifdef INET
inp = (const struct inpcb *)inph;
#endif
#ifdef INET6
in6p = (const struct in6pcb *)inph;
#endif
if (inph->inph_af != pf)
continue;
if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
KAUTH_REQ_NETWORK_SOCKET_CANSEE, inph->inph_socket, NULL,
NULL) != 0)
continue;
memset(&pcb, 0, sizeof(pcb));
pcb.ki_family = pf;
pcb.ki_type = proto;
switch (pf2) {
case 0:
/* just probing for size */
break;
#ifdef INET
case PF_INET:
pcb.ki_family = inp->inp_socket->so_proto->
pr_domain->dom_family;
pcb.ki_type = inp->inp_socket->so_proto->
pr_type;
pcb.ki_protocol = inp->inp_socket->so_proto->
pr_protocol;
pcb.ki_pflags = inp->inp_flags;
pcb.ki_sostate = inp->inp_socket->so_state;
pcb.ki_prstate = inp->inp_state;
if (proto == IPPROTO_TCP) {
tp = intotcpcb(inp);
pcb.ki_tstate = tp->t_state;
pcb.ki_tflags = tp->t_flags;
}
pcb.ki_pcbaddr = PTRTOUINT64(inp);
pcb.ki_ppcbaddr = PTRTOUINT64(inp->inp_ppcb);
pcb.ki_sockaddr = PTRTOUINT64(inp->inp_socket);
pcb.ki_rcvq = inp->inp_socket->so_rcv.sb_cc;
pcb.ki_sndq = inp->inp_socket->so_snd.sb_cc;
in = satosin(&pcb.ki_src);
in->sin_len = sizeof(*in);
in->sin_family = pf;
in->sin_port = inp->inp_lport;
in->sin_addr = inp->inp_laddr;
if (pcb.ki_prstate >= INP_CONNECTED) {
in = satosin(&pcb.ki_dst);
in->sin_len = sizeof(*in);
in->sin_family = pf;
in->sin_port = inp->inp_fport;
in->sin_addr = inp->inp_faddr;
}
break;
#endif
#ifdef INET6
case PF_INET6:
pcb.ki_family = in6p->in6p_socket->so_proto->
pr_domain->dom_family;
pcb.ki_type = in6p->in6p_socket->so_proto->pr_type;
pcb.ki_protocol = in6p->in6p_socket->so_proto->
pr_protocol;
pcb.ki_pflags = in6p->in6p_flags;
pcb.ki_sostate = in6p->in6p_socket->so_state;
pcb.ki_prstate = in6p->in6p_state;
if (proto == IPPROTO_TCP) {
tp = in6totcpcb(in6p);
pcb.ki_tstate = tp->t_state;
pcb.ki_tflags = tp->t_flags;
}
pcb.ki_pcbaddr = PTRTOUINT64(in6p);
pcb.ki_ppcbaddr = PTRTOUINT64(in6p->in6p_ppcb);
pcb.ki_sockaddr = PTRTOUINT64(in6p->in6p_socket);
pcb.ki_rcvq = in6p->in6p_socket->so_rcv.sb_cc;
pcb.ki_sndq = in6p->in6p_socket->so_snd.sb_cc;
in6 = satosin6(&pcb.ki_src);
in6->sin6_len = sizeof(*in6);
in6->sin6_family = pf;
in6->sin6_port = in6p->in6p_lport;
in6->sin6_flowinfo = in6p->in6p_flowinfo;
in6->sin6_addr = in6p->in6p_laddr;
in6->sin6_scope_id = 0; /* XXX? */
if (pcb.ki_prstate >= IN6P_CONNECTED) {
in6 = satosin6(&pcb.ki_dst);
in6->sin6_len = sizeof(*in6);
in6->sin6_family = pf;
in6->sin6_port = in6p->in6p_fport;
in6->sin6_flowinfo = in6p->in6p_flowinfo;
in6->sin6_addr = in6p->in6p_faddr;
in6->sin6_scope_id = 0; /* XXX? */
}
break;
#endif
}
if (len >= elem_size && elem_count > 0) {
error = copyout(&pcb, dp, out_size);
if (error) {
mutex_exit(softnet_lock);
return (error);
}
dp += elem_size;
len -= elem_size;
}
needed += elem_size;
if (elem_count > 0 && elem_count != INT_MAX)
elem_count--;
}
*oldlenp = needed;
if (oldp == NULL)
*oldlenp += PCB_SLOP * sizeof(struct kinfo_pcb);
mutex_exit(softnet_lock);
return (error);
}
static int
sysctl_tcp_congctl(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int error;
char newname[TCPCC_MAXLEN];
strlcpy(newname, tcp_congctl_global_name, sizeof(newname) - 1);
node = *rnode;
node.sysctl_data = newname;
node.sysctl_size = sizeof(newname);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error ||
newp == NULL ||
strncmp(newname, tcp_congctl_global_name, sizeof(newname)) == 0)
return error;
mutex_enter(softnet_lock);
error = tcp_congctl_select(NULL, newname);
mutex_exit(softnet_lock);
return error;
}
static int
sysctl_tcp_init_win(SYSCTLFN_ARGS)
{
int error;
u_int iw;
struct sysctlnode node;
iw = *(u_int *)rnode->sysctl_data;
node = *rnode;
node.sysctl_data = &iw;
node.sysctl_size = sizeof(iw);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (iw >= __arraycount(tcp_init_win_max))
return EINVAL;
*(u_int *)rnode->sysctl_data = iw;
return 0;
}
static int
sysctl_tcp_keep(SYSCTLFN_ARGS)
{
int error;
u_int tmp;
struct sysctlnode node;
node = *rnode;
tmp = *(u_int *)rnode->sysctl_data;
node.sysctl_data = &tmp;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
mutex_enter(softnet_lock);
*(u_int *)rnode->sysctl_data = tmp;
tcp_tcpcb_template(); /* update the template */
mutex_exit(softnet_lock);
return 0;
}
static int
sysctl_net_inet_tcp_stats(SYSCTLFN_ARGS)
{
return (NETSTAT_SYSCTL(tcpstat_percpu, TCP_NSTATS));
}
/*
* this (second stage) setup routine is a replacement for tcp_sysctl()
* (which is currently used for ipv4 and ipv6)
*/
static void
sysctl_net_inet_tcp_setup2(struct sysctllog **clog, int pf, const char *pfname,
const char *tcpname)
{
const struct sysctlnode *sack_node;
const struct sysctlnode *abc_node;
const struct sysctlnode *ecn_node;
const struct sysctlnode *congctl_node;
const struct sysctlnode *mslt_node;
const struct sysctlnode *vtw_node;
#ifdef TCP_DEBUG
extern struct tcp_debug tcp_debug[TCP_NDEBUG];
extern int tcp_debx;
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, pfname, NULL,
NULL, 0, NULL, 0,
CTL_NET, pf, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, tcpname,
SYSCTL_DESCR("TCP related settings"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rfc1323",
SYSCTL_DESCR("Enable RFC1323 TCP extensions"),
sysctl_update_tcpcb_template, 0, &tcp_do_rfc1323, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_RFC1323, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sendspace",
SYSCTL_DESCR("Default TCP send buffer size"),
NULL, 0, &tcp_sendspace, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SENDSPACE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "recvspace",
SYSCTL_DESCR("Default TCP receive buffer size"),
NULL, 0, &tcp_recvspace, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_RECVSPACE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "mssdflt",
SYSCTL_DESCR("Default maximum segment size"),
sysctl_net_inet_tcp_mssdflt, 0, &tcp_mssdflt, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_MSSDFLT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "minmss",
SYSCTL_DESCR("Lower limit for TCP maximum segment size"),
NULL, 0, &tcp_minmss, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "msl",
SYSCTL_DESCR("Maximum Segment Life"),
NULL, 0, &tcp_msl, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_MSL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "syn_cache_limit",
SYSCTL_DESCR("Maximum number of entries in the TCP "
"compressed state engine"),
NULL, 0, &tcp_syn_cache_limit, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SYN_CACHE_LIMIT,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "syn_bucket_limit",
SYSCTL_DESCR("Maximum number of entries per hash "
"bucket in the TCP compressed state "
"engine"),
NULL, 0, &tcp_syn_bucket_limit, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SYN_BUCKET_LIMIT,
CTL_EOL);
#if 0 /* obsoleted */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "syn_cache_interval",
SYSCTL_DESCR("TCP compressed state engine's timer interval"),
NULL, 0, &tcp_syn_cache_interval, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SYN_CACHE_INTER,
CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "init_win",
SYSCTL_DESCR("Initial TCP congestion window"),
sysctl_tcp_init_win, 0, &tcp_init_win, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_INIT_WIN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "mss_ifmtu",
SYSCTL_DESCR("Use interface MTU for calculating MSS"),
NULL, 0, &tcp_mss_ifmtu, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_MSS_IFMTU, CTL_EOL);
sysctl_createv(clog, 0, NULL, &sack_node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sack",
SYSCTL_DESCR("RFC2018 Selective ACKnowledgement tunables"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_EOL);
/* Congctl subtree */
sysctl_createv(clog, 0, NULL, &congctl_node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "congctl",
SYSCTL_DESCR("TCP Congestion Control"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &congctl_node, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "available",
SYSCTL_DESCR("Available Congestion Control Mechanisms"),
NULL, 0, tcp_congctl_avail, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &congctl_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "selected",
SYSCTL_DESCR("Selected Congestion Control Mechanism"),
sysctl_tcp_congctl, 0, NULL, TCPCC_MAXLEN,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "win_scale",
SYSCTL_DESCR("Use RFC1323 window scale options"),
sysctl_update_tcpcb_template, 0, &tcp_do_win_scale, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_WSCALE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "timestamps",
SYSCTL_DESCR("Use RFC1323 time stamp options"),
sysctl_update_tcpcb_template, 0, &tcp_do_timestamps, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_TSTAMP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "compat_42",
SYSCTL_DESCR("Enable workarounds for 4.2BSD TCP bugs"),
NULL, 0, &tcp_compat_42, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_COMPAT_42, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "cwm",
SYSCTL_DESCR("Hughes/Touch/Heidemann Congestion Window "
"Monitoring"),
NULL, 0, &tcp_cwm, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_CWM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "cwm_burstsize",
SYSCTL_DESCR("Congestion Window Monitoring allowed "
"burst count in packets"),
NULL, 0, &tcp_cwm_burstsize, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_CWM_BURSTSIZE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "ack_on_push",
SYSCTL_DESCR("Immediately return ACK when PSH is "
"received"),
NULL, 0, &tcp_ack_on_push, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_ACK_ON_PUSH, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "keepidle",
SYSCTL_DESCR("Allowed connection idle ticks before a "
"keepalive probe is sent"),
sysctl_tcp_keep, 0, &tcp_keepidle, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_KEEPIDLE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "keepintvl",
SYSCTL_DESCR("Ticks before next keepalive probe is sent"),
sysctl_tcp_keep, 0, &tcp_keepintvl, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_KEEPINTVL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "keepcnt",
SYSCTL_DESCR("Number of keepalive probes to send"),
sysctl_tcp_keep, 0, &tcp_keepcnt, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_KEEPCNT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "slowhz",
SYSCTL_DESCR("Keepalive ticks per second"),
NULL, PR_SLOWHZ, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SLOWHZ, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_refused",
SYSCTL_DESCR("Log refused TCP connections"),
NULL, 0, &tcp_log_refused, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_LOG_REFUSED, CTL_EOL);
#if 0 /* obsoleted */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rstratelimit", NULL,
NULL, 0, &tcp_rst_ratelim, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_RSTRATELIMIT, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rstppslimit",
SYSCTL_DESCR("Maximum number of RST packets to send "
"per second"),
NULL, 0, &tcp_rst_ppslim, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_RSTPPSLIMIT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "delack_ticks",
SYSCTL_DESCR("Number of ticks to delay sending an ACK"),
NULL, 0, &tcp_delack_ticks, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_DELACK_TICKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "init_win_local",
SYSCTL_DESCR("Initial TCP window size (in segments)"),
sysctl_tcp_init_win, 0, &tcp_init_win_local, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_INIT_WIN_LOCAL,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRUCT, "ident",
SYSCTL_DESCR("RFC1413 Identification Protocol lookups"),
sysctl_net_inet_tcp_ident, 0, NULL, sizeof(uid_t),
CTL_NET, pf, IPPROTO_TCP, TCPCTL_IDENT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "do_loopback_cksum",
SYSCTL_DESCR("Perform TCP checksum on loopback"),
NULL, 0, &tcp_do_loopback_cksum, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_LOOPBACKCKSUM,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "pcblist",
SYSCTL_DESCR("TCP protocol control block list"),
sysctl_inpcblist, 0, &tcbtable, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "keepinit",
SYSCTL_DESCR("Ticks before initial tcp connection times out"),
sysctl_tcp_keep, 0, &tcp_keepinit, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
/* TCP socket buffers auto-sizing nodes */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "recvbuf_auto",
SYSCTL_DESCR("Enable automatic receive "
"buffer sizing (experimental)"),
NULL, 0, &tcp_do_autorcvbuf, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "recvbuf_inc",
SYSCTL_DESCR("Incrementor step size of "
"automatic receive buffer"),
NULL, 0, &tcp_autorcvbuf_inc, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "recvbuf_max",
SYSCTL_DESCR("Max size of automatic receive buffer"),
NULL, 0, &tcp_autorcvbuf_max, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sendbuf_auto",
SYSCTL_DESCR("Enable automatic send "
"buffer sizing (experimental)"),
NULL, 0, &tcp_do_autosndbuf, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sendbuf_inc",
SYSCTL_DESCR("Incrementor step size of "
"automatic send buffer"),
NULL, 0, &tcp_autosndbuf_inc, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sendbuf_max",
SYSCTL_DESCR("Max size of automatic send buffer"),
NULL, 0, &tcp_autosndbuf_max, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
/* ECN subtree */
sysctl_createv(clog, 0, NULL, &ecn_node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ecn",
SYSCTL_DESCR("RFC3168 Explicit Congestion Notification"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &ecn_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enable TCP Explicit Congestion "
"Notification"),
NULL, 0, &tcp_do_ecn, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &ecn_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxretries",
SYSCTL_DESCR("Number of times to retry ECN setup "
"before disabling ECN on the connection"),
NULL, 0, &tcp_ecn_maxretries, 0, CTL_CREATE, CTL_EOL);
/* SACK gets its own little subtree. */
sysctl_createv(clog, 0, NULL, &sack_node,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enable RFC2018 Selective ACKnowledgement"),
NULL, 0, &tcp_do_sack, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, &sack_node,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxholes",
SYSCTL_DESCR("Maximum number of TCP SACK holes allowed per connection"),
NULL, 0, &tcp_sack_tp_maxholes, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, &sack_node,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "globalmaxholes",
SYSCTL_DESCR("Global maximum number of TCP SACK holes"),
NULL, 0, &tcp_sack_globalmaxholes, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, &sack_node,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "globalholes",
SYSCTL_DESCR("Global number of TCP SACK holes"),
NULL, 0, &tcp_sack_globalholes, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_SACK, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("TCP statistics"),
sysctl_net_inet_tcp_stats, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_STATS,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "local_by_rtt",
SYSCTL_DESCR("Use RTT estimator to decide which hosts "
"are local"),
NULL, 0, &tcp_rttlocal, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
#ifdef TCP_DEBUG
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "debug",
SYSCTL_DESCR("TCP sockets debug information"),
NULL, 0, &tcp_debug, sizeof(tcp_debug),
CTL_NET, pf, IPPROTO_TCP, TCPCTL_DEBUG,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "debx",
SYSCTL_DESCR("Number of TCP debug sockets messages"),
NULL, 0, &tcp_debx, sizeof(tcp_debx),
CTL_NET, pf, IPPROTO_TCP, TCPCTL_DEBX,
CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRUCT, "drop",
SYSCTL_DESCR("TCP drop connection"),
sysctl_net_inet_tcp_drop, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, TCPCTL_DROP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "iss_hash",
SYSCTL_DESCR("Enable RFC 1948 ISS by cryptographic "
"hash computation"),
NULL, 0, &tcp_do_rfc1948, sizeof(tcp_do_rfc1948),
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE,
CTL_EOL);
/* ABC subtree */
sysctl_createv(clog, 0, NULL, &abc_node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "abc",
SYSCTL_DESCR("RFC3465 Appropriate Byte Counting (ABC)"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &abc_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enable RFC3465 Appropriate Byte Counting"),
NULL, 0, &tcp_do_abc, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &abc_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "aggressive",
SYSCTL_DESCR("1: L=2*SMSS 0: L=1*SMSS"),
NULL, 0, &tcp_abc_aggressive, 0, CTL_CREATE, CTL_EOL);
/* MSL tuning subtree */
sysctl_createv(clog, 0, NULL, &mslt_node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "mslt",
SYSCTL_DESCR("MSL Tuning for TIME_WAIT truncation"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &mslt_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enable TIME_WAIT truncation"),
NULL, 0, &tcp_msl_enable, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &mslt_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "loopback",
SYSCTL_DESCR("MSL value to use for loopback connections"),
NULL, 0, &tcp_msl_loop, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &mslt_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "local",
SYSCTL_DESCR("MSL value to use for local connections"),
NULL, 0, &tcp_msl_local, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &mslt_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "remote",
SYSCTL_DESCR("MSL value to use for remote connections"),
NULL, 0, &tcp_msl_remote, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &mslt_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "remote_threshold",
SYSCTL_DESCR("RTT estimate value to promote local to remote"),
NULL, 0, &tcp_msl_remote_threshold, 0, CTL_CREATE, CTL_EOL);
/* vestigial TIME_WAIT tuning subtree */
sysctl_createv(clog, 0, NULL, &vtw_node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "vtw",
SYSCTL_DESCR("Tuning for Vestigial TIME_WAIT"),
NULL, 0, NULL, 0,
CTL_NET, pf, IPPROTO_TCP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &vtw_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enable Vestigial TIME_WAIT"),
sysctl_tcp_vtw_enable, 0,
(pf == AF_INET) ? &tcp4_vtw_enable : &tcp6_vtw_enable,
0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &vtw_node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "entries",
SYSCTL_DESCR("Maximum number of vestigial TIME_WAIT entries"),
NULL, 0, &tcp_vtw_entries, 0, CTL_CREATE, CTL_EOL);
}
void
tcp_usrreq_init(void)
{
#ifdef INET
sysctl_net_inet_tcp_setup2(NULL, PF_INET, "inet", "tcp");
#endif
#ifdef INET6
sysctl_net_inet_tcp_setup2(NULL, PF_INET6, "inet6", "tcp6");
#endif
}
PR_WRAP_USRREQS(tcp)
#define tcp_attach tcp_attach_wrapper
#define tcp_detach tcp_detach_wrapper
#define tcp_accept tcp_accept_wrapper
#define tcp_bind tcp_bind_wrapper
#define tcp_listen tcp_listen_wrapper
#define tcp_connect tcp_connect_wrapper
#define tcp_connect2 tcp_connect2_wrapper
#define tcp_disconnect tcp_disconnect_wrapper
#define tcp_shutdown tcp_shutdown_wrapper
#define tcp_abort tcp_abort_wrapper
#define tcp_ioctl tcp_ioctl_wrapper
#define tcp_stat tcp_stat_wrapper
#define tcp_peeraddr tcp_peeraddr_wrapper
#define tcp_sockaddr tcp_sockaddr_wrapper
#define tcp_rcvd tcp_rcvd_wrapper
#define tcp_recvoob tcp_recvoob_wrapper
#define tcp_send tcp_send_wrapper
#define tcp_sendoob tcp_sendoob_wrapper
#define tcp_purgeif tcp_purgeif_wrapper
const struct pr_usrreqs tcp_usrreqs = {
.pr_attach = tcp_attach,
.pr_detach = tcp_detach,
.pr_accept = tcp_accept,
.pr_bind = tcp_bind,
.pr_listen = tcp_listen,
.pr_connect = tcp_connect,
.pr_connect2 = tcp_connect2,
.pr_disconnect = tcp_disconnect,
.pr_shutdown = tcp_shutdown,
.pr_abort = tcp_abort,
.pr_ioctl = tcp_ioctl,
.pr_stat = tcp_stat,
.pr_peeraddr = tcp_peeraddr,
.pr_sockaddr = tcp_sockaddr,
.pr_rcvd = tcp_rcvd,
.pr_recvoob = tcp_recvoob,
.pr_send = tcp_send,
.pr_sendoob = tcp_sendoob,
.pr_purgeif = tcp_purgeif,
};