NetBSD/external/lgpl3/mpfr/dist/gmp_op.c
mrg efee5258bc initial import of MPRF 3.0.1.
The MPFR library is a C library for multiple-precision floating-point
computations with exact rounding (also called correct rounding).  It is
based on the GMP multiple-precision library and should replace the MPF
class in further releases of GMP.

GCC >= 4.2 requires MPFR.
2011-06-20 05:53:01 +00:00

323 lines
8.4 KiB
C

/* Implementations of operations between mpfr and mpz/mpq data
Copyright 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Init and set a mpfr_t with enough precision to store a mpz */
static void
init_set_z (mpfr_ptr t, mpz_srcptr z)
{
mpfr_prec_t p;
int i;
if (mpz_size (z) <= 1)
p = GMP_NUMB_BITS;
else
MPFR_MPZ_SIZEINBASE2 (p, z);
mpfr_init2 (t, p);
i = mpfr_set_z (t, z, MPFR_RNDN);
MPFR_ASSERTD (i == 0);
}
/* Init, set a mpfr_t with enough precision to store a mpz_t without round,
call the function, and clear the allocated mpfr_t */
static int
foo (mpfr_ptr x, mpfr_srcptr y, mpz_srcptr z, mpfr_rnd_t r,
int (*f)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t))
{
mpfr_t t;
int i;
init_set_z (t, z);
i = (*f) (x, y, t, r);
mpfr_clear (t);
return i;
}
int
mpfr_mul_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r)
{
return foo (y, x, z, r, mpfr_mul);
}
int
mpfr_div_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r)
{
return foo (y, x, z, r, mpfr_div);
}
int
mpfr_add_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r)
{
/* Mpz 0 is unsigned */
if (MPFR_UNLIKELY (mpz_sgn (z) == 0))
return mpfr_set (y, x, r);
else
return foo (y, x, z, r, mpfr_add);
}
int
mpfr_sub_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r)
{
/* Mpz 0 is unsigned */
if (MPFR_UNLIKELY (mpz_sgn (z) == 0))
return mpfr_set (y, x, r);
else
return foo (y, x, z, r, mpfr_sub);
}
int
mpfr_cmp_z (mpfr_srcptr x, mpz_srcptr z)
{
mpfr_t t;
int res;
init_set_z (t, z);
res = mpfr_cmp (x, t);
mpfr_clear (t);
return res;
}
int
mpfr_mul_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z, mpfr_rnd_t rnd_mode)
{
mpfr_t tmp;
int res;
mpfr_prec_t p;
if (MPFR_UNLIKELY (mpq_sgn (z) == 0))
return mpfr_mul_ui (y, x, 0, rnd_mode);
else
{
MPFR_MPZ_SIZEINBASE2 (p, mpq_numref (z));
mpfr_init2 (tmp, MPFR_PREC (x) + p);
res = mpfr_mul_z (tmp, x, mpq_numref(z), MPFR_RNDN );
MPFR_ASSERTD (res == 0);
res = mpfr_div_z (y, tmp, mpq_denref(z), rnd_mode);
mpfr_clear (tmp);
return res;
}
}
int
mpfr_div_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z, mpfr_rnd_t rnd_mode)
{
mpfr_t tmp;
int res;
mpfr_prec_t p;
if (MPFR_UNLIKELY (mpq_sgn (z) == 0))
return mpfr_div_ui (y, x, 0, rnd_mode);
else if (MPFR_UNLIKELY (mpz_sgn (mpq_denref (z)) == 0))
p = 0;
else
MPFR_MPZ_SIZEINBASE2 (p, mpq_denref (z));
mpfr_init2 (tmp, MPFR_PREC(x) + p);
res = mpfr_mul_z (tmp, x, mpq_denref(z), MPFR_RNDN );
MPFR_ASSERTD( res == 0 );
res = mpfr_div_z (y, tmp, mpq_numref(z), rnd_mode);
mpfr_clear (tmp);
return res;
}
int
mpfr_add_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z, mpfr_rnd_t rnd_mode)
{
mpfr_t t,q;
mpfr_prec_t p;
mpfr_exp_t err;
int res;
MPFR_ZIV_DECL (loop);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_ASSERTD (mpz_sgn (mpq_denref (z)) != 0);
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
if (MPFR_UNLIKELY (mpq_sgn (z) == 0))
return mpfr_set (y, x, rnd_mode); /* signed 0 - Unsigned 0 */
else
return mpfr_set_q (y, z, rnd_mode);
}
}
p = MPFR_PREC (y) + 10;
mpfr_init2 (t, p);
mpfr_init2 (q, p);
MPFR_ZIV_INIT (loop, p);
for (;;)
{
res = mpfr_set_q (q, z, MPFR_RNDN); /* Error <= 1/2 ulp(q) */
/* If z if @INF@ (1/0), res = 0, so it quits immediately */
if (MPFR_UNLIKELY (res == 0))
/* Result is exact so we can add it directly! */
{
res = mpfr_add (y, x, q, rnd_mode);
break;
}
mpfr_add (t, x, q, MPFR_RNDN); /* Error <= 1/2 ulp(t) */
/* Error / ulp(t) <= 1/2 + 1/2 * 2^(EXP(q)-EXP(t))
If EXP(q)-EXP(t)>0, <= 2^(EXP(q)-EXP(t)-1)*(1+2^-(EXP(q)-EXP(t)))
<= 2^(EXP(q)-EXP(t))
If EXP(q)-EXP(t)<0, <= 2^0 */
/* We can get 0, but we can't round since q is inexact */
if (MPFR_LIKELY (!MPFR_IS_ZERO (t)))
{
err = (mpfr_exp_t) p - 1 - MAX (MPFR_GET_EXP(q)-MPFR_GET_EXP(t), 0);
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode)))
{
res = mpfr_set (y, t, rnd_mode);
break;
}
}
MPFR_ZIV_NEXT (loop, p);
mpfr_set_prec (t, p);
mpfr_set_prec (q, p);
}
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
mpfr_clear (q);
return res;
}
int
mpfr_sub_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z,mpfr_rnd_t rnd_mode)
{
mpfr_t t,q;
mpfr_prec_t p;
int res;
mpfr_exp_t err;
MPFR_ZIV_DECL (loop);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_ASSERTD (mpz_sgn (mpq_denref (z)) != 0);
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
if (MPFR_UNLIKELY (mpq_sgn (z) == 0))
return mpfr_set (y, x, rnd_mode); /* signed 0 - Unsigned 0 */
else
{
res = mpfr_set_q (y, z, MPFR_INVERT_RND (rnd_mode));
MPFR_CHANGE_SIGN (y);
return -res;
}
}
}
p = MPFR_PREC (y) + 10;
mpfr_init2 (t, p);
mpfr_init2 (q, p);
MPFR_ZIV_INIT (loop, p);
for(;;)
{
res = mpfr_set_q(q, z, MPFR_RNDN); /* Error <= 1/2 ulp(q) */
/* If z if @INF@ (1/0), res = 0, so it quits immediately */
if (MPFR_UNLIKELY (res == 0))
/* Result is exact so we can add it directly!*/
{
res = mpfr_sub (y, x, q, rnd_mode);
break;
}
mpfr_sub (t, x, q, MPFR_RNDN); /* Error <= 1/2 ulp(t) */
/* Error / ulp(t) <= 1/2 + 1/2 * 2^(EXP(q)-EXP(t))
If EXP(q)-EXP(t)>0, <= 2^(EXP(q)-EXP(t)-1)*(1+2^-(EXP(q)-EXP(t)))
<= 2^(EXP(q)-EXP(t))
If EXP(q)-EXP(t)<0, <= 2^0 */
/* We can get 0, but we can't round since q is inexact */
if (MPFR_LIKELY (!MPFR_IS_ZERO (t)))
{
err = (mpfr_exp_t) p - 1 - MAX (MPFR_GET_EXP(q)-MPFR_GET_EXP(t), 0);
res = MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode);
if (MPFR_LIKELY (res != 0)) /* We can round! */
{
res = mpfr_set (y, t, rnd_mode);
break;
}
}
MPFR_ZIV_NEXT (loop, p);
mpfr_set_prec (t, p);
mpfr_set_prec (q, p);
}
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
mpfr_clear (q);
return res;
}
int
mpfr_cmp_q (mpfr_srcptr x, mpq_srcptr z)
{
mpfr_t t;
int res;
mpfr_prec_t p;
/* x < a/b ? <=> x*b < a */
MPFR_ASSERTD (mpz_sgn (mpq_denref (z)) != 0);
MPFR_MPZ_SIZEINBASE2 (p, mpq_denref (z));
mpfr_init2 (t, MPFR_PREC(x) + p);
res = mpfr_mul_z (t, x, mpq_denref (z), MPFR_RNDN );
MPFR_ASSERTD (res == 0);
res = mpfr_cmp_z (t, mpq_numref (z) );
mpfr_clear (t);
return res;
}
int
mpfr_cmp_f (mpfr_srcptr x, mpf_srcptr z)
{
mpfr_t t;
int res;
mpfr_init2 (t, MPFR_PREC_MIN + ABS(SIZ(z)) * GMP_NUMB_BITS );
res = mpfr_set_f (t, z, MPFR_RNDN);
MPFR_ASSERTD (res == 0);
res = mpfr_cmp (x, t);
mpfr_clear (t);
return res;
}